
 1

Transitioning to VirtualViewer® v5.x
VirtualViewer® HTML5 Java versions 5.0 and later require several changes to your content
handler and may require updates to your custom Javascript integrations. These changes are
generally small-scale but necessary to keep your content handler up to date and to keep
VirtualViewer maintainable and modern through future VirtualViewer releases (as releases do
not typically modify public API).

There are five major steps to updating your content handler and Javascript for VirtualViewer
5.x. While your organization may wish to make updates based on new features and fixes in
each release, this guide is meant to be a starting point to get VirtualViewer 5.x up and
running.

In order to transition successfully to VirtualViewr 5.x, perform the following:

1. Update your VirtualViewer imports and dependencies to their new package locations
so your content handler builds and uses the correct code.

2. Ensure that all methods intended to be called by VirtualViewer are implementations of
an interface.
Note: While the content handler may still compile, VirtualViewer will not function if

 2

this step is not completed.

3. Update the logic of your saveDocumentComponents method so it does not delete a
document component (a bookmarks file, for instance) when it receives a null value.
Note: While the content handler may still compile, VirtualViewer will not function if
this step is not completed.

4. Throw a VirtualViewerAPIException instead of passing an error parameter in a
ContentHandlerResult.

5. Modify the parameters of selected VirtualViewer Javascript API calls, which now take
single objects instead of long lists of arguments (see the details).

 3

Update imports and dependencies
Update your VirtualViewer imports and dependencies to their new package locations so your
content handler builds and uses the correct code.

What to Do

Use the tables below, or your IDE, to convert your content handler’s import list to refer to the
new package locations.

More Details

VirtualViewer’s package structure has changed substantially to make public classes more
clearly accessible and to organize the codebase more logically in versions 5.0 and later. Some
import statements in your content handler code may no longer point to the right place.

For the most part, only the import statement will need to be updated. In addition to some
new interfaces which have been added in v5.0 and later, all classes containing FlexSnapSI
have been renamed to say VirtualViewer instead.

For example, FlexSnapSIContentHandlerlnterface is now
VirtualViewerContentHandlerlnterface, and FlexSnapSIAPIException is now
VirtualViewerAPIException, and so on.

com.snowbound.contenthandler
A new package, com.snowbound.contenthandler, now holds all content handler-related code:
interfaces, classes used in the content handler, and VirtualViewer’s example
FileContentHandler.

Note that both com.snowbound.snapserv.servlet.FlexSnapSISaverInterface and
com.snowbound.snapserv.servlet.FlexSnapSIContentHandlerInterface are now included
in com.snowbound.contenthandler.interfaces.VirtualViewerContentHandlerInterface.

com.snowbound.contenthandler Package Changes

Old package: com.snowbound.snapserv.servlet.FileContentHandler
New package: com.snowbound.contenthandler.example.FileContentHandler

Old package: com.snowbound.snapserv.servlet.ContentHandlerlnput
New package: com.snowbound.contenthandler.ContentHandlerlnput

 4

Old package: com.snowbound.snapserv.servlet.FlexSnapSIAPIException
New package: com.snowbound.contenthandler.VirtualViewerAPIException

Old package: com.snowbound.snapserv.transport.pagedataVirtualViewerFormatHash
New package: com.snowbound.contenthandler.VirualViewerFormatHash

Old package: com.snowbound.snapserv.servlet.AIIAnnotationslnterface
New package: com.snowbound.contenthandler.interfaces.AIIAnnotationslnterface

Old package: com.snowbound.snapserv.servlet.CacheValidator
New package: com.snowbound.contenthandler.interfaces.CacheValidator

Old package: com.snowbound.snapserv.servlet.CreateDocumentlnterface
New package: com.snowbound.contenthandler.interfaces.CreateDocumentlnterface

Old package: com.snowbound.snapserv.servlet.DocumentNoteslnterface
New package: com.snowbound.contenthandler.interfaces.DocumentNoteslnterface

Old package: com.snowbound.snapserv.servlet.VirtualViewerContentHandlerlnterface
New package: com.snowbound.contenthandler.interfaces.
VirtualViewerContentHandlerInterface

Old package: com.snowbound.snapserv.servlet.FlexSnapSISaverlntefrace
New package: com.snowbound.contenthandler.interfaces.
VirtualViewerContentHandlerInterface

Old package: com.snowbound.snapserv.servlet.FlexSnapSIContentHandlerlnterface
New package: com.snowbound.contenthandler.interfaces.
VirtualViewerContentHandlerInterface

Old package: com.snowbound.snapserv.servlet.Watermarkslnterface
New package: com.snowbound.contenthandler.interfaces.WatermarksInterface

com.snowbound.common
com.snowbound.common Package Changes

Old package: com.snowbound.snapserv.transport.PSPermissionsRecord
New package: com.snowbound.common.permissions.PSPermissionsRecord

Old package: com.snowbound.snapserv.transport.PermissionsFactory
New package: com.snowbound.common.permissions.PermissionsFactory

Old package: com.snowbound.snapserv.transport.PermissionsRecord
New package: com.snowbound.common.permissions.PermissionsRecord

Old package: com.snowbound.snapserv.servlet.Annotationlayer
New package: com.snowbound.common.transport.Annotationlayer

Old package: com.snowbound.snapserv.transport.pagedata.AnnotationWrapper
New package: com.snowbound.common.transport.AnnotationWrapper

Old package: com.snowbound.clientcontentserver.ExternalReference
New package: com.snowbound.common.transport.ExternalReference

 5

Old package: com.snowbound.common.transport.Permissionlevels
New package: com.snowbound.common.transport.Permissionlevel

Old package: com.snowbound.snapserv.transport.pagedata.PermissionsEntities
New package: com.snowbound.common.transport.PermissionsEntities

Old package: com.snowbound.snapserv.transport.pagedata.FlexSnapSISnowAnn
New package: com.snowbound.common.transport.VirtualViewerSnowAnn

Old package: com.snowbound.snapserv.transport.pagedata.RasterMaster
New package: com.snowbound.common.util.RasterMaster

Removals
Several private VirtualViewer classes have been moved out of the com.snowbound.common
package for clarity, so it’s easier to identify what’s public. The classes in
com.snowbound.common and com.snowbound.contenthandler are public and available for use.
Using classes in other namespaces should not be necessary and is not supported; those
classes may be obfuscated.

 6

Update your content handler
Ensure that all methods intended to be called by VirtualViewer are implementations of an
interface in your content handler.

What to Do

§ For each of these functions, make sure to add the interface that describes it to the
implements list of your content handler. This is the most important step.

§ Review the functions that are implemented, and not just stubbed out, in your content
handler

§ Implement any new functions that the interface requires

§ Delete unnecessary and unwanted interfaces and unnecessary stubbed-out functions

More Details

VirtualViewer 5.0 introduced a more modular interface system to make it easier to construct
content handlers without unwanted and unnecessary functionality. Any methods you do not
want or need can be omitted by not implementing the required interface, instead of having
to make a stubbed-out implementation.

If you are converting a pre-5.0 content handler, there may now be a mismatch between the
interfaces that your old content handler implements and the actual functions that your
content handler implements. This may be a silent problem that your IDE does not pick up on,
so it is imperative to assess your content handler and add any new interfaces that are needed.

For example, the function getAvailableDocumentIds used to be described in
FlexSnapSIContentHandlerlnterface. If you have FlexSnapSIContentHandlerlnterface
implemented, and simply change that to VirtualViewerContentHandlerlnterface without
adding the new AvailableDocumentslnterface, your code may silently fail.

VirtualViewer will check if your content handler implements AvailableDocumentslnterface
before attempting to call getAvailableDocumentIds. If it doesn’t implement the interface,
your getAvailableDocumentIds function would simply never get called.

While a few interfaces have been combined and removed into
VirtualViewerContentHandlerlnterface, more have been separated into feature-specific
interfaces.

 7

All of the interfaces can be found in the com.snowbound.contenthandler.interfaces
package and are described below:

Interface name Description (and changes)

AIIAnnotationslnterface Defines getAIIAnnotationsForDocument
(unchanged)

Annotationslnterface Defines annotation retrieval and modification
methods (previously defined
in FlexSnapSIContentHandlerlnterface)

AvailableDocumentslnterface Defines getAvailableDocumentlds (previously defined
in FlexSnapSIContentHandlerlnterface)

Bookmarkslnterface Defines bookmark retrieval and modification methods
(previously defined
in FlexSnapSIContentHandlerlnterface)

CacheValidator Defines validateCache (unchanged)

CreateDocumentlnterface Defines createDocument method (unchanged)

DocumentNoteslnterface Defines document notes retrieval and modification
methods (new deleteNotesContent method
added)

EventSubscriberlnterface Defines eventNotification method (previously
defined in
 FlexSnapSIContentHandlerlnterface)

SendDocumentlnterface Defines sendDocument method (previously defined
in FlexSnapSIContentHandlerlnterface)

VirtualViewerContentHandlerInterface Defines minimum necessary content handler methods
for document manipulation (renamed
from FlexSnapSIContentHandlerInterface)

Watermarkslnterface Defines watermark retrieval and modification
methods (new deleteWatermarkContent method
added)

 8

Update saveDocumentComponents
Update the logic of your saveDocumentComponents method so that it does not delete a
document component (a bookmarks file, for instance) when it receives a null value (see the
details).

WARNING: While the content handler may still compile, VirtualViewer will not function if this
step is not completed.

What to Do

Remove deletion logic from saveDocumentComponents. If saveDocumentComponents receives no
content for some component, it should not delete that component: it should take no action.
This is the most important step.

Implement deleteBookmarkContent, deleteNotesContent and deleteWatermarkContent
functions if using an interface that requires them.

More Details

The content handler function saveDocumentComponents should no longer delete bookmarks,
document notes or watermarks when it receives a null for those components. Instead, new
deleteBookmarkContent, deleteNotesContent and deleteWatermarkContent methods should
be implemented.

To solve an issue with our saving workflow, deleting bookmarks, document notes and
watermarks now have equivalent content handler methods deleteBookmarkContent,
deleteNotesContent, and deleteWatermarkContent, similar to the existing
deleteAnnotationContent. If no content is provided to saveDocumentComponents for
bookmarks, document notes or watermarks, no operation should be performed. VirtualViewer
will call the equivalent delete method after saveDocumentComponents if necessary.

With the old logic, saveDocumentComponents would handle everything. If it received a
ContentHandlerInput with a set of document notes but with bookmarks set to null, it
assumed that bookmarks should be deleted. That is, if a component was null in the
ContentHandlerInput, it should not exist on the database.

Now, that same null means “no action.” If saveDocumentComponents receives a
ContentHandlerInput where bookmarks is set to null, it should not delete bookmarks.

 9

In addition to solving a saving issue, this will allow VirtualViewer to be more efficient when
saving your documents. If no change is made to the above objects when saving a document,
no unnecessary operations will be requested of the content handler.

 10

Update exception handling
Throw a VirtualViewerAPIException instead of passing an error parameter in a
ContentHandlerResult.

What to Do

Locate places in your content handler where you call ContentHandlerResult.ERROR_MESSAGE,
and replace those calls with logging statements or by throwing VirtualViewerAPIException.

Locate references to FlexSnapSIAPIException, and replace those references with
VirtualViewerAPIException.

More Details

ContentHandlerResult.ERROR_MESSAGE has been removed. For serious errors that should
interrupt the request and inform the user, throw VirtualViewerAPIException.

Errors that should not interrupt the request can still be logged with VirtualViewer by using the
SLF4J Logger interface provided by SnowLoggerFactory. (VirtualViewerAPIExceptions are
logged automatically.)

 11

Modify parameters in the Javascript API
Modify the parameters of selected VirtualViewer Javascript API calls, which now take single
objects instead of long lists of arguments.

What to Do

Locate calls to saveDocument, exportDocument, printDocument, and emailDocument in your
Javascript code.

Translate the passed parameters into values in a parameter object, with the keys given in the
JSDoc documentation.

More Details

Several Javascript API calls in previous versions took more than ten parameters, which is very
fragile. Especially with Javascript, it’s easy to forget a single parameter and produce
unexpected behavior that’s hard to track down.

Many of these API calls now take an options object as a parameter, which will hold named
versions of the old parameters. The substance of the parameters hasn’t changed, but they
should be passed as part of an object instead.

For example, to manually perform a Save As operation on a document without its
annotations but with its watermarks burned in, the old call would require eleven parameters,
with only four set to non-default, non-null values.

Now, the same call would be much simpler and more readable, passing in only the non-
default parameters:

virtualViewer.saveDocument("myDocumentID.pdf",

 { "newDocumentId": "myNewDocumentID.pdf",

 "includeWatermarks": true,

 "saveAsFormat": "PDF"})

The API calls have been simplified as follows:

 12

Old signature New function signature

virtualViewer.saveDocument(documentId,
newDocumentId, newDisplayName,
burnRedactions, includeRedactionTags,
includeTextAnnotations,
includeNonTextAnnotations,
copyAnnotations, includeDocumentNotes,
includeWatermarks, saveAsFormat,
pageRangeType, pageRangeValue,
copyWatermarks, options)

virtualViewer.saveDocument(documentI
d, options)

virtualViewer.exportDocument(exportForma
t, fileExtension,
includeTextAnnotations,
includeNonTextAnnotations,
burnRedactions, includeRedactionTags,
includeDocumentNotes, includeWatermarks,
pageRangeType, pageRangeValue)

virtualViewer.exportDocument(options
)

virtualViewer.printDocument(documentId,
printToPDF, annotations, redactions,
redactionTags, watermarks, docNotes,
pageRangeType, pageRangeVal)

virtualViewer.printDocument(options)

virtualViewer.emailDocument(emailFormat,
includeTextAnnotations,
includeNonTextAnnotations,
burnRedactions, includeRedactionTags,
includeDocumentNotes, includeWatermarks,
pageRangeType, pageRangeValue,
fromAddress, toAddresses, ccAddresses,
bccAddresses, subject, emailBody)

virtualViewer.emailDocument(options)

