
 1

VirtualViewer® HTML5 V5.1 for Java
Administrator Guide
With this release of VirtualViewer® 5.1, our documentation has been modified to make

it easier to search as well as more up to date. The documentation for this release has

been divided into multiple parts:

▪ Administrator Guide (this document)

▪ User functionality and interface guide

▪ Release notes

▪ Callback, Client and Java Content Handler API references

▪ Transition guide to VirtualViewer 5.x from previous versions

▪ Snowbound supported file format references

▪ Snowbound OSS documentation

▪ Snowbound TIFF tags references

Samples documents for testing may be found in the \Sample-documents directory of the

build. For questions or comments about the documentation, please email

documentation@snowbound.com.

mailto:documentation@snowbound.com

 2

An online version of this manual contains information on the latest updates to VirtualViewer

5.1. To find the most recent version of this manual, please download the most recent

version from our website at www.snowbound.com/support/manuals.html.

http://www.snowbound.com/support/manuals.html

 3

Copyright Information
While Snowbound® Software believes the information included in this publication is correct as of the publication

date, information in this document is subject to change without notice.

UNLESS EXPRESSLY SET FORTH IN A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED REPRESENTATIVE OF

SNOWBOUND SOFTWARE CORPORATION MAKES NO WARRANTY OR REPRESENTATION OF ANY KIND WITH

RESPECT TO THE INFORMATION CONTAINED HEREIN, INCLUDING WARRANTY OF MERCHANTABILITY AND FITNESS

FOR A PURPOSE, NON-INFRINGEMENT, OR THOSE WHICH MAY BE IMPLIED THROUGH COURSE OF DEALING OR

CUSTOM OF TRADE. WITHOUT LIMITING THE FOREGOING, CUSTOMER UNDERSTANDS THAT SNOWBOUND DOES

NOT WARRANT THAT CUSTOMER’S OPERATION OF THE SOFTWARE WILL BE UNINTERRUPTED OR ERROR-FREE,

THAT ALL DEFECTS IN THE SOFTWARE WILL BE CORRECTED, OR THAT THE RESULTS OF THE SOFTWARE WILL BE

ERROR-FREE. Snowbound Software Corporation assumes no responsibility or obligation of any kind for any errors

contained herein or in connection with the furnishing, performance, or use of this document.

Software described in Snowbound documents (a) is the property of Snowbound Software Corporation or the third

party, (b) is furnished only under license, and (c) may be copied or used only as expressly permitted under the terms

of the license.

All contents of this manual are copyrighted by Snowbound Software Corporation. The information contained herein is

the exclusive property of Snowbound Software Corporation and shall not be copied, transferred, photocopied,

translated on paper, film, electronic media, or computer-readable form, or otherwise reproduced in any way, without

the express written permission of Snowbound Software Corporation.

Microsoft, MS, MS-DOS, Windows, Windows NT, and SQL Server are either trademarks or registered trademarks of

Microsoft Corporation in the United States and/or other countries.

Adobe, the Adobe logo, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated.

Sun, Sun Microsystems, the Sun Logo, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in

the United States and other countries.

iText Copyright (c) 1998-2018 iText Group NV, Authors: Bruno Lowagie, Paulo Soares, et al iText® is a registered

trademark of iText Group NV.

Kakadu JPEG2000©, is copyrighted by Dr. David Taubman, and is proprietary to NewSouth Innovations, Pty. Ltd,

Australia.

United States Government Restricted Rights

The Software is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the United States Government is

subject to restrictions as set forth under subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer

Software clause of DFARS

252.227 –19 or subparagraphs (c)(i) and (2) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227

– 19 as applicable. The Manufacturer is Snowbound Software Corporation, 309 Waverley Oaks Rd., Suite 401,

Waltham, MA 02452, USA.

All other trademarks and registered trademarks are the property of their respective holders. Manual Title: Snowbound

Software VirtualViewer® HTML5 for Java Administrator’s Guide

Part Number: DOC 3.1-VV Java 5.1

Revision: 1

VirtualViewer® HTML5 for Java Release Number: 5.1

Published Date: October 2019

Published by: Snowbound Software Corporation.

309 Waverley Oaks Road

Suite 401

 4

Waltham, MA 02452 USA phone: 1-617-607-2000

Sales: 1-617-607-2010

Fax: 617-607-2002

©1996 - 2019 by Snowbound Software Corporation. All rights reserved.

 5

Contents

About Snowbound Software.. 7

Important information ... 11

Getting started ... 12

Licensing .. 12

System requirements ... 12

Determining memory requirements ... 15

Installing VirtualViewer HTML5 ... 18

Verifying your installation ... 20

Capacity Planning .. 21

Working with the Content Handler .. 31

What is the Content Handler? ... 31

How the Content Handler Works ... 31

Defining a Custom Content Handler ... 32

Authentication .. 34

Getting Document Content .. 35

CacheValidator.. 38

Event Notification and Handling .. 39

How to return an error for display in the client .. 46

Content Handler method documentation ... 46

Document Repository Specific Information .. 46

 6

Configuration guide .. 48

Toolbar Configuration ... 48

Feature-specific Configuration .. 50

Localization .. 66

Localization Files .. 66

Converting Terms .. 66

Supporting Accents/Special Characters .. 67

Force a Specific Language ... 68

Advanced customization .. 69

Virtual Documents .. 69

Special annotation layers ... 71

Annotations Security: Watermarks and Redactions ... 74

DWG Layer Support .. 77

Watermark JSON Files ... 79

Tips and troubleshooting ... 82

Tips ... 82

Troubleshooting ... 89

 7

About Snowbound Software

For over two decades, Snowbound Software has been the independent leader in

document viewing and conversion technology. It plays an integral role in enhancing and

speeding document processing for the Fortune 2000. Snowbound excels in providing

customers with powerful solutions for capturing, viewing, processing, and archiving

hundreds of different document and image types. Thanks to its pure HTML5 technology

and multi-environment support (including Java and Windows), Snowbound’s products

operate across all popular platforms and can be easily integrated into new or existing

enterprise content management systems. Nine of the 10 largest banks in the United

States (seven of 10 in the world), as well as some of the biggest healthcare providers,

government agencies, and insurance companies rely on Snowbound for their mission-

critical needs.

Important Phone Numbers and Links

For the most current information about Snowbound and our products, please contact

Snowbound Sales at 1-617-607-2010 or questions@snowbound.com.

You may also contact us at http://register.snowbound.com/MQL-contactUs-Website-

2017.html.

For sales inquiries, please visit

https://mylivechat.com/chatnoscript.aspx?HCCID=17729140.

Release Notes and Product Manuals:

The most current version of this manual along with other documents is available on

Snowbound’s website: https://www.snowbound.com/support/manuals

Snowbound Target Markets

Snowbound’s two flagship products—VirtualViewer® HTML5 (a pure HTML5 document

viewer) and RasterMaster® SDK (document/image conversion library)—help

organizations and companies across a variety of industries meet their document viewing

and conversion needs:

▪ Medical: Patient record management

mailto:questions@snowbound.com
http://register.snowbound.com/MQL-contactUs-Website-2017.html
http://register.snowbound.com/MQL-contactUs-Website-2017.html
https://mylivechat.com/chatnoscript.aspx?HCCID=17729140
https://www.snowbound.com/support/manuals

 8

▪ Insurance: Insurance & health insurance claim processing

▪ Finance: Mortgage processing & financial statements

▪ Shipping: Full array of shipping documents

▪ Legal: Claims, briefs, and other court documents

VirtualViewer® HTML5

Easy-to-Use in Any Environment

VirtualViewer® HTML5 is equipped with powerful and sophisticated features and

functionality.

True cross-platform support: VirtualViewer® HTML5 is a universal viewer that

operates seamlessly on any platform with both a pure Java solution with Java-based

server components or a .NET solution.

No Downloads: No application download or client-side installation is required, making

it a trouble-free solution for users as well as IT administrators.

Localized UI: The viewer’s intelligent localization capabilities auto-detect browser

settings and display in the proper language.

High-speed viewing: With advanced server processing, the viewer delivers an

extremely high-speed response.

Seamless Integration into ECM Applications: VirtualViewer® HTML5 integrates into

existing back end repositories and homegrown applications. Snowbound also offers a

variety of out of the box ECM connectors (Alfresco, IBM FileNet, and Open

Text/Documentum) with seamless integration.

One Quick & Easy 10 Minute Installation

Installation of VirtualViewer® HTML5 takes less than 10 minutes for POCs on any

desktop, laptop, and virtual machine. After the quick and easy install, VirtualViewer®

HTML5 is then backed by Snowbound’s award-winning and responsive support team.

Snowbound’s skilled network of system integrators can further enhance the benefits of

VirtualViewer® HTML5 with custom integration to your existing system.

Technical Information

 9

Snowbound provides the option of either a 100% Java or a .NET (64-bit) server

component. The viewer operates in all modern browsers (Microsoft Edge, Firefox,

Chrome, Safari, Microsoft Internet Explorer 11 and mobile browsers).

Server options:

▪ UNIX servers including Linux, Sun, IBM, HP, Mac

▪ Windows servers including Server 2016, 2012, 2010, 2008 and 2007. Server 2019

coming soon.

RasterMaster® SDK

RasterMaster® is the industry’s leading document/image conversion and imaging

library for Java and .NET. It is continually enhanced with new functionality and formats

and was developed by Snowbound’s experts who have nearly a hundred years of

combined imaging expertise.

High-Speed File Conversion

RasterMaster® is the fastest file conversion SDK on the market. Users can quickly

convert files on the fly for viewing or batch convert large amounts of document types.

Special features, including conversion via Byte Array is also available for high

performance applications.

Extensive Format Support

AFP, DWG, JPEG, MO:DCA, PDF, MS Office, TIFF, SVG, PNG, and hundreds more

document types are supported. Convert any format to PDF or TIFF to ensure universal

compatibility. RasterMaster® also includes both PDF/A and SVG output support,

enabling long term archiving and high resolution viewing.

Technical Information

RasterMaster® is available for multiple platforms, including Java and .NET:

▪ Java: for all computing platforms, including Unix, Linux, Windows, and Mac

▪ NET (x64): for Windows native applications, including Server 2016, 2012, 2010,

2008, and 2007

 10

Responsive Support

All of Snowbound’s products are backed by responsive support. Our expert, responsive

internal support team is available to answer your questions and help you install our

HTML5 viewer and conversion SDK. A support portal is also available 24x7 for questions

and information at

https://snowboundsupport.force.com/SupportPortal/CommunityLogin.

https://snowboundsupport.force.com/SupportPortal/CommunityLogin

 11

Important information

For the latest information, please refer to the Release Notes (releasenotes.md) in your

product build directory.

Release Notes and manuals may also be found on the Snowbound website at

http://www.snowbound.com/support/manuals.

• Please be advised the previously named “default content handler” and now

called the “sample content handler” is actually intended to be used for Proof

of Concept efforts but is not a complete connector.

• It is recommended that customers upgrade as soon as possible to the latest

release of VirtualViewer (typically offered quarterly). The product is rapidly

evolving with new features as well as fixes.

• Snowbound recommends the use of the SVG output format from the server

to the browser whenever possible for reducing data size and improving

performance, particularly when working with large spreadsheets.

• When working with large spreadsheets, it may be advantageous to try the file

breakup option so you’re not working with extremely large downloaded

documents that might affect performance.

• VirtualViewer for Java now supports only JRE 1.7+. Previous JRE versions are

no longer supported or tested except under special arrangements. It is

expected that support will shift to JRE 1.8 in 2019.

• For Windows products, .NET framework versions 4.5.2 and up are now

supported

• Web.xml changes: The following parameters in web.xml have been removed:

o defaultByteSize

o tiffByteSize

o jpegByteSize

 12

Getting started

This section explains the system requirements and how to install and verify

VirtualViewer® HTML5 on your system. Snowbound Software’s VirtualViewer HTML5 for

Java viewer works with the latest Java and AJAX technology to create a true zero

footprint viewing solution.

This section will aid you with setting up and working with the package included in your

zip file, virtualviewer.zip. This zip file installs all of the VirtualViewer HTML5 for Java

components.

Licensing

VirtualViewer® HTML5 for Java is delivered as a .zip file including the virtualviewer.zip

installation package. The package may vary depending on your version.

Your options are enabled through a SnowboundLicense.jar which contains a license .xml

file.

Your SnowboundLicense.jar is included in your delivery in the virtualviewer\WEB-INF\lib

directory. You do not need to take any further action.

If you order a new option, Snowbound will provide a new SnowboundLicense.jar to

replace the one we provided in your original delivery.

System requirements

The system requirements to successfully run VirtualViewer HTML5 for Java are listed

below.

Content server

VirtualViewer HTML5 for Java requires the VirtualViewer Java Content Server in order to

function. The VirtualViewer Java Content Server is included in the virtualviewer.zip

package.

 13

Validation minimum requirements

The following are the validation minimum requirements:

 Minimum requirements

Processor 64bit

Speed 2.4 GHz dual core

Ram 16GB

Available memory 6GB

SSD or HD 250GB

Performance minimum requirements

The following are the performance minimum server requirements:

 Minimum requirements

Processor 64bit

Speed 3.2 GHz quad core

Ram 32GB

Available memory 16GB

SSD or HD 250GB

 14

Performance recommended requirements

The following are the high performance recommended requirements:

 Recommended requirements

Processor 64bit

Speed 3.4 GHz quad core with hyper-threading

Ram 64GB

Available memory 32GB

SSD or HD 250GB

Servlet container

VirtualViewer HTML5 for Java requires a J2SE or J2EE servlet container to run. We

recommended the Apache Tomcat and IBM Websphere application servers.

Other servlet containers such as Weblogic or Jboss may be supported with additional

effort. Please contact Snowbound for detailed support information for these and any

other special-case systems.

Server Java version

VirtualViewer HTML5 for Java JRE of 1.8 or higher is highly recommend, though JRE 1.7

will be supported through 2019.

Client browser versions

We recommend Firefox, Google Chrome, Microsoft Edge, and Safari for client browser

use.

Internet Explorer 11 can be used in most circumstances, but due to age, incompatibility

and lower performance, it is not recommended. VirtualViewer may also work with other

browsers (such as Opera), but no testing is done to ensure compatibility or performance.

 15

Note: If you are using Internet Explorer 11, VirtualViewer will look, perform, and

behave better if it is running outside of compatibility mode. For best

performance, please configure Internet Explorer to use normal mode when using

VirtualViewer. Quirks mode in Internet Explorer is not supported.

Determining memory requirements

The guidelines below are meant to help you determine the amount of memory required

to meet the needs of your organizations and users. Please note that memory

requirements can vary wildly depending on the system, file, and organizational structure,

and as such, these guidelines should not be considered the final word on the matter,

but rather a starting point.

Determining memory required to display documents

The amount of memory required to display a document may be significantly larger than

the size of the document that is stored on disk. Just like a road map, the document is

folded up and compressed when it is stored. In order to see the document, it must be

unfolded (decompressed) and spread out so you can see the whole map. The map takes

up much more room when open for viewing. The same is true of online documents.

When a document is open, a black and white letter size page at 300 dpi takes roughly

1MB of memory to display and a color page takes 25MB.

The amount of memory required to view documents varies depending on the size of the

documents you are processing and the number of documents you are processing at any

one time. The amount of memory needed increases as:

▪ You go from black and white, to grayscale, to color documents (bits per pixel

increases).

▪ You go from compressed to uncompressed document formats (lossy

compression to raw image data).

▪ You go from low resolution to high resolution documents (dots per inch / -

quality increases).

▪ You go from small index card size images to large blueprint size images (number

of pixels increases).

Generally, higher quality documents require more memory to process. Snowbound

Software does not have a one-size-fits-all recommendation for memory because our

customers have such a variety of documents and different tolerances for the level of

output quality. However, you can try doubling the memory available to see if that

 16

resolves the issue. Keep increasing memory until you stop getting out of memory errors.

If you hit a physical or financial limit on memory, then you can do the following:

▪ Decrease the number of documents you have open at any one time.

▪ Decrease the quality of the images requested by decreasing bits per pixel, the

resolution, or the size.

To calculate the amount of memory required for an image, you will need to know the

size of the image in pixels and the number of bits per pixel in the image (black and

white=1, grayscale=8, color=24). If you do not know the height or width in pixels, but

you do know the size in inches and the dpi (dots per inch) of the image, then you can

calculate the size in pixels as (width_in_inches * dots_per_inch) = width_in_pixels.

To calculate the amount of memory (in bytes), multiply the height, width and number of

bits per pixel. Then, divide by 8 to convert from bits to bytes. In other words:

(height_in_pixels * width_in_pixels * (bits_per_pixel / 8) = image_size_in_ bytes

This table lists examples of memory requirements based on image sizes:

Image size Required memory

24-bit per pixel, 640 x 480 image 640 * 480 * (24 / 8) = 921600 bytes

1-bit per pixel, 8.5” x 11”, image at 300 dpi

(2550 pixels by 3300 pixels)

2550 * 3300 * (1 / 8) = 1051875

bytes

24-bit per pixel, 8.5” x 11”, image at 300

dpi (2550 pixels by 3300 pixels)

2550 * 3300 * (24 / 8) =

25245000bytes (25 megabytes)

Determining memory requirements based on the number of users and

pages viewed

To calculate the amount of memory needed based on the number of users and potential

pages viewed at any given time, you can use the general formula:

The number of concurrent users * size per page in MB * 5 pages in view = required

memory

The table below offers some examples:

 17

Users pages Required memory

Black and white page (100 dpi) .1MB per page x 5 pages =

.5MB x 1000 users
500 mb =~ 0.5GB

Black and white page (300 dpi) 1MB per page x 5 pages =

5MB x 1000 users
5000 mb =~ 5GB

Color pages (300 dpi) 25MB per page x 5 pages = 125MB x

1000 users

125000 mb =

~122GB

 18

Installing VirtualViewer HTML5

To install VirtualViewer HTML5 for Java, follow the steps below:

1. Extract the virtualviewer.zip file to a directory.

2. The extracted .zip file includes the virtualviewer.war file.

3. Save the virtualviewer.war file to the location where you want to install it. Please

note that the application needs to be added to a web server before it can be run.

Open the virtualviewer.war file in an archive utility such as 7-zip.

4. In the /virtualviewer directory, you will see the extracted files for VirtualViewer

HTML5 for Java. If you change the default directory from /virtualviewer, please

see Changing the Default Directory for more information about how to

successfully change the default directory.

5. Find the web application (webapps) directory where you want to install the files.

For example: C:\Program Files\Apache Software Foundation\Tomcat 7.0\webapps

In Tomcat 8.0, documents will load using absolute path and not rel- ative path.

Use the following example for the path for Tomcat 8: C:\Program Files\Apache

Software Foundation\Tomcat8.0\webapps\virtualviewer\Sample-Documents

6. From the extracted zip directory, copy the virtualviewer directory as a new

subdirectory under your webapps directory. If you are using a web server other

than Tomcat this may be a different location.

Note: For other web servers, you may need to take web application deployment

steps that are specific to that type of web server. If you have trouble installing

VirtualViewer HTML5 for Java, try exploding the .war file. Uninstall the application.

Extract the contents of the .war file and deploy using the root directory

/virtualviewer.

7. Verify that the VirtualViewer HTML5 for Java content server is running by looking

at the web server logs and search for VirtualViewer. You should see the start up

message. If you do not see VirtualViewer, then search for snow which may be in

an error message. If you still do not get a result, then please refer to the web

application deployment documentation for your web server for information on

troubleshooting web application deployment and start up issues.

http://localhost:4000/docs/vv/install-setup/vv-install.html

 19

The default port for VirtualViewer is 8080. To configure a different port, set

the codebaseparameter in the web.xml file located in virtualviewer\WEB-INF to the

appropriate value. The default parameter is provided below:

 20

<init-param>
<param-name>codebase</param-name>
<param-value>http://localhost:8080/virtualviewer</param-value>
</init-param>

After completing these steps, we recommend restarting Tomcat or your web application

to ensure that your changes have taken effect.

Verifying your installation

Once all components have been installed, VirtualViewer® HTML5 for Java will start up

from any supported browser. No client components are needed on the client machine.

To start VirtualViewer HTML5 for Java, open your *.html file in a browser. In most cases,

this will be index.html. Ensure that your web service (for example, Tomcat) is running

when you open the viewer in your browser.

Viewing sample documents

Snowbound Software provides sample documents along with the VirtualViewer HTML5

for Java installation to get you started. The sample files are located in the Sample-

Documents subdirectory.

The web.xml file delivered with VirtualViewer HTML5 for Java located in

virtualviewer\WEB-INF specifies the Sample-Documents subdirectory as the default

location of the sample files in the filePath parameter.

To view the sample documents, enter the URL for your server into a browser and specify

the document name after documentId with the document name as shown below:

http://[your server:port]/virtualviewer/index.html?documentId=[someFile.tiff]

So for example, if you wanted to view a permitting document and were running Tomcat

locally on port 8080 (the default port for VirtualViewer), you might

enter http://localhost:8080/virtualviewer/index.html?documentId=BostonPermit.tif into

your browser.

http://localhost:8080/virtualviewer/index.html?documentId=BostonPermit.tif

 21

If you are able to see all of the documents that came in the Sample-Documents

directory of your VirtualViewer HTML5 for Java installation, then you have successfully

installed it.

To view other documents, specify the filename after the documentId in the URL.

If you are not able to see the documents in the viewer, please see

the Troubleshooting page. If you are still not able to see the documents, please file a

ticket with Snowbound Support at support.snowbound.com.

Viewing your documents

Once you’ve verified the sample documents, you can move on to verifying that your

documents appear correctly by placing them in the Sample-Documents directory and

then specifying the document’s file name after the documentId in the URL.

For example, if you want to display the file named test.tif, add that file to your Sample-

Documents directory and test.tif after documentId as shown in the following example:

http://localhost:8080/virtualviewer/index.html?documentId=test.tif

The documentId should be a filename if the sample content handler is used. Otherwise,

it can be whatever the custom content handler expects for a documentId. For more

information about custom content handlers, please see Working with the Content

Handler.

Capacity Planning

VirualViewer HTML5 for Java performs well for your number of users, you may want to

do some capacity planning.

Please see the following algorithm for calculating memory for 200 users. For this

calculation, we assume five pages will be active in VirtualViewer HTML5 for Java at any

one time (one page being displayed, four thumbnails).

users * pages * page-seize = memory required for 200 users.

For example:

▪ For 200 concurrent users viewing 5 1-bit color pages, the required Java heap

capacity is:

200 users * 5 pages * 1 mb /pg = 1,000 mB = 1GB.

http://localhost:4000/docs/vv/install-setup/vv-install.html
http://support.snowbound.com/
http://localhost:4000/docs/vv/install-setup/vv-content-handler.html
http://localhost:4000/docs/vv/install-setup/vv-content-handler.html

 22

▪ For 200 concurrent users viewing 5 24-bit color pages, the required Java heap

capacity is:

 200 users * 5 pages * 24 mb /pg = 24,000 mB = 24GB.

For CPU size, generally, the larger the CPU and number of cores, the faster the response

time. We expect VirtualViewer HTML5 for Java to use all available resources to display

the documents as quickly as possible. It will peg the CPU for short periods during heavy

use.

Default Configuration Maximizes Performance

Please note that the default configuration for VirtualViewer HTML5 for Java is set to

maximize performance. The default settings are the following:

▪ The bit depth settings for vector formats such as PDF and Word are set to 1.

Note: With the bit depth set at 1, color formats will display as black and white. To

view these files in color, set the bit depth to 24.

▪ The DPI settings for vector formats such as PDF and Word are 200. To increase

the quality of an image, set the DPI to a higher value such as 400.

▪ The default format is set to TIFF_FAX_G4. If you are trying to view another format

in color, set the format parameter to the format type.

▪

To improve performance and the speed of loading documents in VirtualViewer Java

Content Server, try setting the values of the following parameters in the web.xml file as

shown below:

<param-name>documentCacheSize</param-name>

<param-value>1024000</param-value>

<param-name>wordBitDepth</param-name>

<param-value>1</param-value>

<param-name>wordDPI</param-name>

<param-value>100</param-value>

<param-name>wordFormat</param-name>

<param-value>JPEG</param-value>

<param-name>pdfBitDepth</param-name>

 23

<param-value>1</param-value>

<param-name>pdfDPI</param-name>

<param-value>100</param-value>

<param-name>pdfFormat</param-name>

<param-value>JPEG</param-value>

<param-name>xlsBitDepth</param-name>

<param-value>1</param-value>

<param-name>xlsDPI</param-name>

<param-value>100</param-value>

<param-value>xlsFormat</param-value>

<param-value>JPEG</param-value>

Note: Increasing the value of the documentCacheSize parameter will improve

performance on the client, but will require the server to keep more content in

memory and thereby decreasing performance. It is important to find the right

balance between the two by performance tuning the cache size during testing.

Recommended JRE Memory Settings

The amount of memory required to display a document may be significantly larger than

the size of the document that is stored on disk. Just like a road map, the document is

folded up and compressed when it is stored. In order to see the document, it must be

unfolded (decompressed) and spread out so you can see the whole map. The map takes

up much more room when open for viewing. The same is true of online documents.

When a document is open, a black and white letter size page at 300 dpi takes roughly

1MB of memory to display and a color page takes 25MB.

The amount of memory required to view documents varies depending on the size of the

documents you are processing and the number of documents you are processing at any

one time. The amount of memory needed increases as:

▪ You go from black and white, to grayscale, to color documents (bits per pixel

increases).

 24

▪ You go from compressed to uncompressed document formats (lossy com-

pression to raw image data).

▪ You go from low resolution to high resolution documents (dots per inch / quality

increases).

▪ You go from small index card size images to large blueprint size images (number

of pixels increases).

Generally, higher quality documents require more memory to process. Snowbound

Software does not have a one-size-fits-all recommendation for memory because our

customers have such a variety of documents and different tolerances for the level of

output quality. However, you can try doubling the memory available to see if that

resolves the issue. Keep increasing memory until you stop getting out of memory errors.

If you hit a physical or financial limit on memory, then you can do the following:

▪ Decrease the number of documents you have open at any one time.

▪ Decrease the quality of the images requested by decreasing bits per pixel, the

resolution, or the size.

To calculate the amount of memory required for an image, you will need to know the

size of the image in pixels and the number of bits per pixel in the image (black and

white=1, grayscale=8, color=24). If you do not know the height or width in pixels, but

you do know the size in inches and the dpi (dots per inch) of the image, then you can

calculate the size in pixels as (width_in_ inches * dots_per_inch) = width_in_pixels.

To calculate the amount of memory (in bytes), multiply the height, width and number of

bits per pixel. Then, divide by 8 to convert from bits to bytes. See the following example:

(height_in_pixels * width_in_pixels * (bits_per_pixel/ 8)) = image_size_in_ bytes

The table below lists examples of memory requirements based on image sizes:

Image Size Required Memory

24-bit per pixel, 640 x 480 image 640 * 480 * (24 / 8) = 921600 bytes

1-bit per pixel, 8.5" x 11" image

at 300 dpi (2550 pixels by 3300 pixels)

2550 * 3300 * (1 / 8) = 1051875 bytes

24-bit per pixel, 8.5" x 11" image

at 300 dpi (2550 pixels by 3300 pixels)

2550 * 3300 * (24 / 8) = 25245000 bytes (25

megabytes)

 25

Determining memory requirements based on the number of users and

pages viewed

To calculate the amount of memory needed based on the number of users and potential

pages viewed at any given time, you can use the general formula:

The number of concurrent users * size per page in MB * 5 pages in view = required

memory

The table below offers some examples:

Users pages Required memory

Black and white page (100 dpi) .1MB per page x 5 pages = .5MB x

1000 users
500 mb =~ 0.5GB

Black and white page (300 dpi) 1MB per page x 5 pages = 5MB x 1000

users
5000 mb =~ 5GB

Color pages (300 dpi) 25MB per page x 5 pages = 125MB x 1000

users

125000 mb =

~122GB

Caching to Improve Performance

The document cache keeps documents that VirtualViewer has displayed in server

memory so that they do not have to be re-rendered the next time they are viewed. This

enhances performance but consumes memory on the server. VirtualViewer lets you

determine and configure this trade-off between speed vs. memory consumption. Overall

cache use can be limited at the web server level.

When caching is enabled, the VirtualViewer content server caches the entire document

in memory. The HTML5 server caches the pages it receives from the content server. If

the content server and HTML5 server are on the same machine (this is common), they

will use the same cache.

The caching configuration parameters mentioned below are in the RetrievalServlet

portion of the content server’s web.xml file. These are documented in Servlet Tags for

web.xml.

 26

Do you need caching at all?

If your users never view the same page twice, set the documentCacheSize parameter to 0

to turn off document caching.

<init-param>

<param-name>documentCacheSize</param-name>

<param-value>0</param-value>

</init-param>

Sizing the Cache if You Need It

If your users view the same pages frequently, calculate the number of these pages that

should be cached away for faster viewing. This will be numberOfPagesToCache.

Next, determine how much memory will be used to cache each page,

sizeOfPageInBytes. To calculate the sizeOfPageInBytes value you will need to know:

▪ Your page size in inches.

▪ If the pages are in black & white or in color. Black & white pages use 1-bit per

pixel (bpp). Color uses 24-bpp.

▪ The desired resolution in dots per inch (DPI). 100 DPI is fine if the document will

not be zoomed or printed. A higher DPI may be required if users are zooming in

to look at details.

The size can be calculated using the following formula:

(height_in_pixels * width_in_pixels * bits_per_pixel) / (8 bits per byte) = image_size_in_bytes

The value is in bytes and describes the uncompressed size of the page, so it may look

rather large.

Below are some examples:

One black and white 8.5x11 inch page at 100 DPI = (8.5 inches* 300 dpi * 11 inches * 300

dpi) * (1 bit per pixel / 8 bits per byte) = 116875 bytes or 0.1MB per page for

sizeOfPageInBytes.

One black and white 8.5x11 inch page at 300 DPI = (8.5 inches* 300 dpi *11 inches * 300

dpi) * (1 bit per pixel / 8 bits per byte) = 1051875 bytes or roughly 1 MB per page.

 27

One color 8.5x11 inch page at 300dpi is 25245000 or roughly 25MB per page.

Now, multiply numberOfPagesToCache * sizeOfPageInBytes. Set the documentCacheSize to

the calculated cache size to turn on document caching.

If this number is larger than the memory you have available on the system, you can

adjust things like the document bit depth, resolution, or number of pages cached.

For example, a cache size of 1024000 (1GB) will hold 40 full 24-bit color pages at 300

DPI or 1,000 black and white pages at 300 DPI or 9,187 black and white pages at 100

DPI.

Cache maintenance

If your users modify and save the documents being viewed, set the clearCacheOnSave

parameter to true (the default) so that older versions of the page are not displayed.

<init-param>

<param-name>clearCacheOnSave</param-name>

<param-value>true</param-value>

</init-param>

The cache is primarily maintained by your application server. The disk cache will be

cleared of all temp files at VirtualViewer startup.

If you start seeing Out of Memory (-1) errors, then you may need to resize your cache as

described above.

Revalidate cache method called for every page

This is a short timespan cache to store answers from validateCache for each

session/user. Every x minutes the cache will be deleted for each user (with storing and

retrieval handled separately). This provides performance benefits to some users.

For whatever the specified window is (zero will check every time) we will cache the

validation for that amount of time based on sessionId, documentId and HTTP action (GET

or PUT). Once that time elapses, we will revalidate.

The time span value applies to both storage and retrieval.

 28

The validation cache is defined in ehcache.xml with the document cache in a section for

"vvValidationCache". By default, validations will expire after five minutes, although that

is configurable in ehcache.xml.

When Does the Cache Get Cleared?

The cache gets cleared when the user clicks the Save button.

The parameter clearCacheOnSave in the web.xml must be set to true and the

documentCacheSize in the web.xml must be greater than 0 to allow for caching.

To clear the Documentum caches if using Documentum, use the following JavaScript

method to clear the diskCache for the current session:

VirtualViewer.invalidateServerSessionDiskCache();

Use the following JavaScript method to clear the diskCache for all sessions:

VirtualViewer.invalidateAllServerDiskCaches();

Note: The above assumes that useSessionDiskCache is not set to false in the

web.xml.

When the Cache Size Is Reached

If you do not use the Save Document functionality, does the cache recycle on its own or

does the cache get overwritten once the cache size is reached?

The cache size is determined by the documentCacheSize parameter set in web.xml. If the

document is too big, it is not cached. The application will revert to using the

getDocumentContent method in the content handler instead of retrieving the documents

from the cache.

The documentCacheSize parameter limits the maximum size of a document (compressed)

allowed to be put in the cache. The setting does not limit the overall cache size. The

document size is logged if caching is on, log- level=finest and the document is too

big to fit in the cache.

 29

If the document is larger than documentCacheSize (in bytes), it will not enter the cache

and VirtualViewer will log something such as:

For key: documentId=MyBig.TIF, data size(2710838) > capacity (1024000) (Not caching)

When this happens, VirtualViewer will call getDocumentContent for the document every

time it renders the main display or thumbnail since the document is not in cache. Calling

getDocumentContent multiple times for the same document is usually a significant and

unnecessary performance hit which is why you should make the document cache big

enough to hold your largest documents.

When the document is within the documentCacheSize limit, it is allowed in the cache. If

the cache is already full, the cache will remove the oldest document(s) until there is

enough room to put the new document into the cache.

This is known as First In First Out (FIFO). The documents are identified by id, not by

content. There is no pooling of documents with the same content and different ids.

The documentCacheSize parameter defines the maximum size of the heap allocated to

VirtualViewer to use for document caching. If the -Xmx set in the web server for

VirtualViewer is less, the cache will be limited to the smaller value. VirtualViewer may use

any remaining heap memory for rendering pages and other operations.

Monitoring the Cache Size

Is there any way to monitor the cache size and have an alert when the cache size is

about to be reached?

The system logs will say that the application cannot cache the document because the

document exceeded the cache size. The application will retrieve the document with the

content handler method getDocumentContent instead of retrieving from the cache.

Cache Setting in Tomcat

Tomcat has a setting to limit how much cache it can consume. Set this limit to stop the

cache from growing at that threshold. Keep in mind it does not clear cache. It just limits

it so there is no build up and eventual OOM exceptions.

In the Tomcat application server, find the Tomcat Monitor application. Open the Tomcat

Monitor and then click on the Java tab. At the bottom, you will see the settings for

Maximum memory pool. Use this to control not only how much is cached by one single

application, but how much Tomcat will cache collectively. The value here is you can

 30

control how much VirtualViewer bytes are cached as well as all other applications. Thus,

managing memory at a much higher level.

Caching and security

Snowbound Software has no mechanism to selectively remove cached content.

However, a Cache Validation interface is provided so you can customize when cached

content is permitted to be retrieved. You can implement the validateCache method to

use your authentication system to validate that the current user is authorized to access

the cached page content.

 31

Working with the Content Handler

What is the Content Handler?

The VirtualViewer HTML5 for Java content handler is a Java class that the servlet will call

on to perform various actions concerning the retrieval and storage of content.

VirtualViewer HTML5 for Java comes with a sample file content handler that connects

VirtualViewer HTML5 for Java to your file system. The sample content handler that

connects to the server's File System is provided as a starting point to integrate

VirtualViewer HTML5 for Java with your document storage.

Additional out-of-the-box content handlers are being added as well as custom

variations. Support for Alfresco, Pega Systems, FileNet P8 and Documentum Webtop are

all available in various forms. You can create your own custom connector or use

Snowbound Professional Services to create a custom content handler for you.

By default, the VirtualViewer HTML5 for Java servlet will use the sample content handler

that Snowbound Software provides. SampleContentHandler.java, reads and writes to a

file system location. You can find this sample content handler at virtualviewer\Sample-

Code\Java Content Handler. It displays files from the .\sample-documents directory.

The sample content handler is not intended for production use. We encourage you

to use this as a starting point for writing your own custom content handler to integrate

VirtualViewer HTML5 for Java into back-end systems. You should create your own

content handler to serve up documents from locations that work for your company as

well as to add error handling and more robustness for handling requests from multiple

users.

How the Content Handler Works

Whenever VirtualViewer HTML5 for Java requests a document, the servlet will first check

the cache to see if the document is present. If it is not, it then calls into the content

handler for the document. The order of action is as follows:

1. getDocumentContent
2. getAnnotationNames

3. getAnnotationContent (once for each layer name returned by getAnnotationNames)
4. getBookmarkContent

Whenever the user chooses to save the document by choosing Save Document,

 32

VirtualViewer HTML5 for Java passes the appropriate data to the servlet, which calls the

content handler method saveDocumentComponents.

Inside saveDocumentComponents the following methods should be called separately when

the appropriate data has changed:

▪ saveDocumentContent
▪ saveAnnotationContent
▪ saveBookmarkContent

Other methods within the content handler are called by various functions in

VirtualViewer HTML5 for Java.

Defining a Custom Content Handler

The Content Handler APIS are now documented in our Javdocs located on our website

at https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/. Also

useful are the sample files found in in the VirtualViewer .war file under \Sample

Code\Java Content Handler\SampleContentHandler.java in your build directory.

The document content handler/connector that VirtualViewer will use is set using the

contentHandlerClass parameter in the application's web.xml file. Many customers create

a custom content handler class that integrates with their document management and

security systems.

Please see the following example for specifying a custom content handler:

<init-param>

<param-name>contentHandlerClass</param-name>

<param-value>com.snowbound.VirtualViewer.custom.MyContentHandler

</param-value>

</init-param>

<param-name>contentHandlerClass</param-name>

<param-value>com.mycompany.viewer.DocumentConnector</param-value>

VirtualViewer would then look for and invoke your custom content handler at ./WEB-

INF/classes/com/mycompany/viewer/DocumentConnector.class.

https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/

 33

Note: The filecontentHandler will handle byte arrays, but it does not support

input streams.

To use the sample/default File Connector specify:

<param-name>contentHandlerClass</param-name>

<param-value>com.snowbound.VirtualViewer.FileContentHandler</paramvalue>

<param name="filePath" value="C:/MyDocuments"/> // folder on the server

<param name='startFile' value='myLogo.gif'> // will display
C:/MyDocuments/myLogo.gif in the client at start up

The source code for the sample file content handler is provided as a starting point for

your own custom connector. The code is located in the VirtualViewer .war file under

\Sample Code\Java Content Handler\SampleContentHandler.java.

To use the default URL connector (no longer recommended):

<param-name>contentHandlerClass</param-name>

<param-value>com.snowbound.VirtualViewer.FileAndURLRetriever</paramvalue>

<param-name>baseURL</param-name>

<param-value>http://www.mycompany.com/</param-value>

<param name='startFile' value='myLogo.gif'> // will display
http://www.mycompany.com/myLogo.gif in the client at start up

VirtualViewerContentHandlerInterface

This interface defines methods for retrieving content for VirtualViewer HTML5 for Java.

Most of the methods take in a single input parameter, which is an instance of the class

ContentHandlerInput, an extension of java.util.Hashtable which contains the data that

is required to implement each method.

Likewise, most of the methods return a single value, which is an instance of the class

ContentHandlerResult, also and an extension of java.util.Hashtable which contains the

data required to complete the method.

 34

Authentication

The authentication is added in the content handler in the get and save method

implementations, including getDocumentContent, validateCache, and

saveDocumentContent.

VirtualViewer passes along any cookies that are associated with the html page. This

mechanism is how we support single sign on (SSO). Additionally, if the HTTP session ID

is not part of the cookie string, then VirtualViewer HTML5 for Java will automatically add

the HTTP session ID to the cookie string. This way, the content handler has the

information it needs to verify the current user is authorized to view or save the current

document.

If you need to pass more authentication information to your custom content handler,

you can use the ClientInstanceId to pass it encrypted in whatever way you like. You have

to decrypt it before using it.

When customizing the VirtualViewer content handler to connect to your document

storage, you may need to request or store authentication tokens as part of the process.

You can store the tokens in the session object within the content handler. Use the

HttpServletRequest session object in the content handler to achieve this.

The user can get a handle to HttpServletRequest session object in the content handler

by using this line of code:

HttpServletRequest request = (HttpServletRequest)
input.get(ContentHandlerInput.KEY_HTTP_SERVLET_REQUEST);

The user can then get or set session attributes:

request.getSession().getAttribute(arg0);

request.getSession().setAttribute(arg0, arg1)

Single Sign On (SSO)

Single sign on (SSO) related information can be stored in the ClientInstanceId

parameter or more often in the HTTP session ID. VirtualViewer HTML5 for Java should

 35

pass along any cookies that are associated with the HTML page that contains

VirtualViewer HTML5 for Java.

This mechanism is how we support single sign on (SSO). Additionally, if the HTTP

session ID is not part of the cookie string, then VirtualViewer HTML5 for Java will

automatically add the HTTP session ID to the cookie string.

Getting Document Content

The examples below show various ways of getting document content. Please also look at

the Javadoc content (https://docs.snowbound.com/virtualviewer/5.1.0/java/content-

handler-api/) for more information.

Document content as a byte array

Use the following example to get document content as a byte array from a file and

adding to ContentHandlerResult.KEY_DOCUMENT_CONTENT:

* This constant key should be used to store the document content as a
* byte array.
* public final static String KEY_DOCUMENT_CONTENT = "KEY_DOCUMENT_CONTENT";

public ContentHandlerResult getDocumentContent(ContentHandlerInput input)

throws FlexSnapsSIAPIException

{

String clientInstanceID = input.getClientInstanceID();

String key = input.getDocumentId();

String Logger.getInstance().log("FileContentHandler.getDocumentContent(" +
key + ")");

String fullFilePath = gFilePath + URLDecoder.decode(key);

File file = new File(fullFilePath);

ContentHandlerResult result = new ContentHandlerResult();

try

{

result.put(ContentHandlerResult.KEY_DOCUMENT_CONTENT,
ClientServerIO.getFileBytes(file));

}

catch (FileNotFoundException fnfe)

{

https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/
https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/

 36

/* Removing stack trace here, as it was unnecessary */

Logger.getInstance().log(Logger.SEVERE, fnfe.getMessage());

throw new FlexSnapSIAPIException("Document not found: "

+ ClientServerIO.makeXssSafe(key));

}

catch (Exception e)

{

return null;

}

result.put(ContentHandlerResult.KEY_DOCUMENT_DISPLAY_NAME, key);

return result;

}

Document content as a file

Use the following example to get document content as a file and adding to

ContentHandlerResult.KEY_DOCUMENT_FILE:

* This constant key should be used to store the document content as
* java.io.File object.
* public final static String KEY_DOCUMENT_FILE = "KEY_DOCUMENT_FILE";
* This is used for very large files to help load quickly... this is
* read only.
*/

Large file example

public ContentHandlerResult getDocumentContent(ContentHandlerInput input)

throws FlexSnapSIAPIException

{

String clientInstanceId = input.getClientInstanceId();

String key = input.getDocumentId();

String fullFilePath = gFilePath + URLDecoder.decode(key);

File file = new File(fullFilePath);

ContentHandlerResult result = new ContentHandlerResult();

try

 37

{

result.put(ContentHandlerResult.KEY_DOCUMENT_FILE, file);

catch (Exception e)

{

return null;

}

result.put(ContentHandlerResult.KEY_DOCUMENT_DISPLAY_NAME, key); return
result;

}

Document content as a vector

Use the following example to get document content as a vector and adding to

ContentHandlerResult.KEY_DOCUMENT_CONTENT_ELEMENTS:

* This constant key should be used to store the content of the various
* elements of the document if the document is made of more than one file.
* If this key is not null, then the KEY_DOCUMENT_ CONTENT will be ignored.

public final static String KEY_DOCUMENT_CONTENT_ELEMENTS = "KEY_
DOCUMENT_CONTENT_ELEMENTS";

*/

filenet example:

public ContentHandlerResult getDocumentContent(ContentHandlerInput input)

throws VirtualViewerAPIException

{

gLogger.log("FileNetContentHandler.getDocumentContent"); String documentId
= input.getDocumentId(); gLogger.log("documentId is " + documentId);

Document filenetDocument = getFilenetDocument(input); Vector vectorOfBytes
= getFilenetContentBytes(documentId, filenetDocument);

ContentHandlerResult result = new ContentHandlerResult(); try

{

 38

result.put(ContentHandlerResult.KEY_DOCUMENT_CONTENT_ELEMENTS,
vectorOfBytes); result.put(ContentHandlerResult.KEY_DOCUMENT_DISPLAY_NAME,
filenetDocument.getName());

}

catch (Exception e)

{

e.printStackTrace();

}

return result;

}

CacheValidator

This interface defines a method that will be called when a document is requested that is

in the cache to determine whether or not the cache may be used to retrieve the

document, or the normal content handler sequence must be called.

The document cache speeds up access to documents by saving the rendering the first

time a document is viewed. When it is viewed for the second time, the rendering can be

fetched from the document cache and re-used.

When multiple users are viewing documents, documents that should be secured may

end up in the document cache. To prevent a user that does not have permission from

viewing a high security document, use the cache validator to check the user’s permission

before allowing a document to be fetched from the cache for that user.

The cache validator can also be used to prevent high security documents from being

stored in the cache.

To use this feature, your custom content handler must implement

com.snowbound.contenthandler.interfaces.CacheValidator in addition to

VirtualViewerContentHandlerInterface.

 39

Cachevalidator method detail

validateCache: Determines whether or not the specified cache put or get is allowed.

public ContentHandlerResult validateCache (ContentHandlerInput input)

throws

com.snowbound.contenthandler.VirtualViewerAPIException

Parameters

A ContentHandlerInput object containing the following data:

Key Type Description

"KEY_CLIENT_ INSTANCE_ID" String Value of the clientInstanceId parameter.

“KEY_DOCUMENT_ID” String The name or ID of the document.

“KEY_ANNOTATION_ID” Either ContentHandlerInput.VALUE_CACHE_GET or

ContentHandlerInput.VALUE_CACHE_ PUT.

Returns

A ContentHandlerResult object with the following key/value pairs:

ContentHandlerResult.KEY_USE_OF_CACHE_ALLOWED either Boolean.FALSE or

Boolean.TRUE.

Event Notification and Handling

eventNotification

The VirtualViewer HTML5 for Java client sends event notifications to the VirtualViewer

HTML5 for Java's content handler on the server whenever the user does something that

triggers an audited event. Event triggers include opening a document or going to

another page in the document.

public ContentHandlerResult eventNotification (ContentHandlerInput input)

 40

throws

VirtualViewerAPIException

Implement this content handler method to receive event notifications.

<param name="enableEventNotifications" value="true">

The following auditing events trigger event notification:

▪ Page request

▪ Save annotation

▪ Save document

▪ Print

▪ Export

▪ Document close

The sample file content handler logs these events to the web server's log. For example,

these events might appear in a TomCat web server log:

[exec] 04-30-2012 16:00:13 FileCoNtentHandler.eventNotification

[exec] 04-30-2012 16:00:13 Key: KEY_EVENT_PAGE_

REQUESTED_NUMBER, value: 0

[exec] 04-30-2012 16:00:13 Key: KEY_DOCUMENT_ID,

value: 6-Pages.tif

[exec] 04-30-2012 16:00:13 Key: cacheBuster, value:

0.7112829455936928

[exec] 04-30-2012 16:00:13 Key: KEY_EVENT, value:

VALUE_EVENT_PAGE_REQUESTED

[exec] 04-30-2012 16:00:13 FileCon-

tentHandler.eventNotification

[exec] 04-30-2012 16:00:13 Key: KEY_EVENT_PAGE_

REQUESTED_NUMBER, value: 0

 41

[exec] 04-30-2012 16:00:13 Key: KEY_DOCUMENT_ID,

value: 6-Pages.tif

[exec] 04-30-2012 16:00:13 Key: cacheBuster, value:

0.1953655708607337

[exec] 04-30-2012 16:00:13 Key: KEY_EVENT, value: VALUE_EVENT_PAGE_REQUESTED

The server loglevel must be set to Info in order to see the event notifications. The

logLevel must be set to Finest to see all the Key event details in the log file.

You can change the information being logged and the required loglevel by modifying

the eventNotification method in the sample FileContentHandler.

The eventNotification method in the content handler can be customized to meet your

needs. For example, you could add code to send a message to an audit logging system

for certain events or change the log messages to match your company's standard

format.

Parameters

The ContentHandlerInput hash table will contain a variety of elements depending on the

type of event being logged, all values are strings:

Key Type Description

"KEY_EVENT" String One of the VALUE_EVENT_* values

"VALUE_EVENT_PAGE_
REQUESTED"

String The event being logged is a page request.

"KEY_EVENT_PAGE_REQUESTED
_NUMBER"

String The page number requested (zero-based)

"KEY_DOCUMENT_DISPLAY_
NAME"

String Getting document content as a byte array from a file

and adding to

ContentHandlerResult.KEY_DOCUMENT_CONTENT

"VALUE_EVENT_SAVE_
ANNOTATION"

String The event being logged is a save annotation request.

 42

"VALUE_EVENT_SAVE_
ANNOTATION_LAYER_NAME_
BASE"

String The base name of the keys containing the layer names.

There will be one of these for each layer. For example:

"KEY_EVENT_SAVE_ANNOTATION_LAYER_NAME_BASE0"

"VALUE_EVENT_PRINT" String The event being logged is a print request.

"KEY_EVENT_PRINT_PAGE_
NUMBERS"

String The page range being printed, in the format ‘0-4’.

"VALUE_EVENT_EXPORT" String The event being logged is a document export request.

"KEY_ANNOTATION_ID" String The name of the annotation layer.

Key/Value pairs passed on page request

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_PAGE_REQUESTED

Key = ContentHandlerResult.KEY_DOCUMENT_ID

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

Value = <clientInstanceId>

Key = ContentHandlerResult.KEY_EVENT_PAGE_REQUESTED

Value = <page number>

Key/Value pairs passed on annotation save

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_SAVE_ANNOTATION

Key = ContentHandlerResult.KEY_DOCUMENT_ID

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

 43

Value = <clientInstanceId>

Key/Value pairs passed on print

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_PRINT

Key = ContentHandlerResult.KEY_DOCUMENT_ID

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

Value = <clientInstanceId>

Key = ContentHandlerResult.KEY_EVENT_PAGE_REQUESTED

Value = <page number>

Key/Value pairs passed on export

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_EXPORT

Key = ContentHandlerResult.KEY_DOCUMENT_ID

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

Value = <clientInstanceId>

Key = ContentHandlerResult.KEY_EVENT_EXPORT_FORMAT_NAME

Value = <format>

 44

Key/Value pairs passed on document close

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_CLOSE_ DOCUMENT

Key = ContentHandlerResult.KEY_DOCUMENT_ID

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

Value = <clientInstanceId>

Key/Value pairs passed when retrieved from the internal cache

Key/Value

Key = ContentHandlerResult.KEY_EVENT

Value = ContentHandlerResult.VALUE_EVENT_DOCUMENT_RETRIEVED_FROM_CACHE

Key = ContentHandlerResult.KEY_DOCUMENT_ID\

Value = <documentId>

Key = ContentHandlerResult.KEY_CLIENT_INSTANCE_ID

Value = <clientInstanceId>

Use the following sample eventNotification method in a custom content handler to

make use of the new event for cache retrieval:

public ContentHandlerResult eventNotification

(ContentHandlerInput input)

throws

VirtualViewerAPIException

String eventType = (String) input.get("KEY_EVENT");

 45

if (eventType.equals("VALUE_EVENT_DOCUMENT_RETRIEVED_FROM_CACHE")) {

String documentId = input.getDocumentId(); System.out.println("Document
retrieved from cache: " + documentId); // do getDocumentContent related
tasks here because getDocumentContent will not be called

}

return ContentHandlerResult.VOID;

Returns

A ContentHandlerResult object or null. The return value is currently ignored.

Event notification rotate page

Use the following example to capture the page rotation event as part of the Event

Notification feature set.

var pageEvent = function() {

if(vvConfig.enableEventNotification === false) {
return;

}

var uri = new URI(vvConfig.servletPath);
uri.addQuery("action", "eventNotification"); uri.addQuery("KEY_EVENT",
"VALUE_EVENT_PAGE_REQUESTED");
uri.addQuery("KEY_DOCUMENT_ID", virtualViewer.getDocumentId());
uri.addQuery("clientInstanceId", virtualViewer.getClientInstanceId());
uri.addQuery("KEY_EVENT_PAGE_REQUESTED_NUMBER", pageNumber);

Extracting Parameters from ContentHandlerInput

The interface for extracting result parameters from a ContentHandlerResult can be found

in the JAVAdocs at https://docs.snowbound.com/virtualviewer/5.1.0/java/content-

handler-api/.

https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/
https://docs.snowbound.com/virtualviewer/5.1.0/java/content-handler-api/

 46

How to return an error for display in the client

There are two ways to return error messages to the client. The method that works with

all operations is to throw a VirtualViewerAPIException. For example:

if (currentSecLevel.equals("0"))

{throw new VirtualViewerAPIException("Security violation detected");

For Send and Save operations you may return an error message through

ContentHandlerResult.ERROR_MESSAGE as shown in the following example:

if (currentSecLevel.equals("0")) {

ContentHandlerResult failResult = new ContentHandlerResult();
failResult.put(ContentHandlerResult.ERROR_MESSAGE, "Security violation
detected");

failResult.put(ContentHandlerResult.KEY_DOCUMENT_DISPLAY_NAME, "Security
error");

return failResult;

}

Content Handler method documentation

For information regarding specific method APIs, please see the javadocs for your version

of VirtualViewer at https://docs.snowbound.com/virtualviewer/.

Document Repository Specific Information

Alfresco

Alfresco Quickshare Support added in 4.10

A logged-in user can create or close a public quickshare link through Alfresco. If a

logged-in user accesses that quickshare link, they can see and modify the document

through VirtualViewer as normal; if a guest or unauthenticated user accesses the

https://docs.snowbound.com/virtualviewer/

 47

quickshare link, they will be able to view the document but not save any modifications

to the document (or annotations, notes, etc).

Currently the unauthenticated user gets the full VirtualViewer UI with a readable error

message if they take any action that tries to save the document. In the future they

should get a limited UI that doesn't present those options.

Alfresco Watermark Support added in 4.10

Added support for Watermarks in the Alfresco version of VirtualViewer allowing saving

watermarks back into the Alfresco repository. All supported features or functions

remain.

Other information available in separate documents.

IBM Filenet P8

Filenet F_CREATOR Tag Support Added

Other information available in separate documents

OpenText Documentum

Information available in separate documents. Contact Snowbound sales.

Pega Systems

Support included in Version 8.1

 48

Configuration guide

Toolbar Configuration

The file user-config/toolbar-config.js now defines everything about the toolbars.

Customer admins can go in and manage this instead of modifying index.html directly:

VirtualViewer code goes into this configuration file and creates a toolbar button for

every configuration entry that it sees.

Toolbar button configuration

There are three parts to toolbar-config.js. First, we have the two big lists:

imageToolbarButtons for the top toolbar and annotationToolbarButtons for the left-hand

toolbar. Their names should categorically not be modified, particularly not in the final

return statement in toolbar-config.js.

Take, for instance, imageToolbarButtons. It looks like this:

var imageToolbarButtons = {
"buttonKey": {button configuration),
"anotherButtonKey": {button configuration}
};

Each "buttonKey" is a unique, descriptive key for the toolbar button. Unique because it's

defining the button in the configuration, and also because it's used in the HTML. It

should be letters only, and it is good practice for customers to put a prefix on this key.

For instance, Big Company, Inc may call a key "bcMyKey."

This is the same structure as the annotation toolbar list of buttons. Each button key

should also be unique between the two lists--don't put "vvMyNewButton" as a key in the

image toolbar configuration and in the annotation toolbar configuration.

Now we can look at the button configuration. In the curly brackets, there are a few

items:

▪ localizeKey: This is a string referring to a locale file, where the text that appears

in the title--what appears in the tooltip and in the dropdowns--is stored. If a

customer is creating a whole new button that doesn't have an entry in a locale

file, this field can be left blank, but the "name" field must be filled in or the button

 49

will appear blank in dropdowns.

▪ name: This is a string with the name of a toolbar button. VirtualViewer buttons do

not use this property, since they use localized strings, but customers without an

entry in a locale file must put the name of their toolbar button in this field. This

should be something short and descriptive.

▪ clickHandler: This is the function that will be called when a user clicks on the

toolbar button.

▪ iconImage: This is a string representing a URL to an icon image. VirtualViewer

buttons use CSS files to assign icon images, but customers can list an image here

and it will be used.

▪ addSeparatorAfter: This is a boolean value. If a group of buttons is too long, it

may be necessary to add a bit of whitespace after a button to visually break up

the group when the toolbar is fully expanded. If this is true, the viewer will pop

some white space after the button. It is not necessary to specify "false" on this

item.

▪ groupId: This is a string, and it refers to a group key. Groups are also configured

in toolbar-config.js. If a button is in group A, it will be placed in group A in the

order it appears--if the Sticky Note button is before the Rubber Stamp button in

the annotation toolbar list, and they both belong to group A, the Sticky Note

button will appear before the Rubber Stamp button in the UI. If an item is in the

annotation toolbar list, it should be assigned to an annotation toolbar group.

Additionally, this is optional--if a button has no groupId, it will essentially be in an

"uncategorized" list. It will appear at the end of the toolbar and will not be

included in a dropdown. (See the Layer Manager and Watermarks buttons as

default examples.)

Toolbar button group configuration

The final part of toolbar-config.js is the group configuration list, called

toolbarButtonLogicalGroups. This list looks very similar to the button configuration lists.

What it will do is define all the buckets that the toolbar buttons can go into.

Again, each group has a unique string key followed by a configuration object:

var toolbarButtonLogicalGroups = {

"myGroupKey": { configuration },
"myOtherGroupKey": { configuration }

};

 50

The configuration items are as follows:

▪ localizeKey: This is a string referring to a locale file, where the text that appears

in the tooltip of the dropdown button is stored. This can be left blank.

▪ groupTitle: Like "name" for the buttons, this is a string with the name of the

group in it. For instance, "Preferences" or "Edit" or "File." The localize key will

handle this, but a customer without a locale entry could use "groupTitle".

▪ iconImage: This is a string representing a URL to an icon image. VirtualViewer

buttons use CSS files to assign icon images, but customers can list an image here

and it will be used.

▪ annotationToolbar: This is a boolean flag that chooses where to put the group. If

true, the group is an annotation toolbar group; if false or absent, the group is in

the top toolbar. Annotation toolbar buttons should only be placed in annotation

groups, and similarly, image toolbar buttons should only be placed in image

toolbar groups.

Changes in VirtualViewer 5.x

New strings in vv-en.json:

▪ utilityToolbar.fileGroup: File

▪ utilityToolbar.zoomGroup: Zoom

▪ utilityToolbar.pagesGroup: Pages

▪ utilityToolbar.pageManipulationGroup: Page Manipulation

▪ utilityToolbar.infoGroup: Info and Settings

▪ annToolbar.textAndStampsGroup: Text and Stamps

▪ annToolbar.markupGroup: Markup

▪ annToolbar.shapesGroup: Shapes

Feature-specific Configuration

Username public API

This was added so that the user can programatically add a username to their instance of

VirtualViewer if they so desired. The user can still use the dialog box in the User

Preferences.

API: virtualViewer.setUsername(string);

 51

Document Properties

Use the following API methods to manage the display of document properties:

Showing the Information for a document:

VirtualViewer.prototype.showImageInfo = function()

Hiding the Information for a document:

VirtualViewer.prototype.hideImageInfo = function()

Toggling the Information for a document:

VirtualViewer.prototype.toggleImageInfo = function()

The Pages and Documents Panel

The Pages and Documents panel provides a convenient way to:

▪ Navigate to any page in a document in the Pages panel.

▪ Select another document to view from the multiple Documents panel.

▪ Create a new document by dragging and dropping pages from another

document.

However, this convenience does have a price. VirtualViewer HTML5 for Java performance

degrades because it is processing every page in the document Pages panel and/or the

first page of every document in the Documents panel. If you want to speed up

performance, you may want to disable or hide the Pages and Documents panel by

setting the showThumbnailPanel parameter to false in the config.js file as shown in the

example below:

var showThumbnailPanel = false;

 52

Document Notes Panel

The Document Notes Panel allows you to add notes that are relevant to the active

document that you are currently working with. It includes the ability to view, create, edit,

and delete notes.

The getDocumentNotes(string) function in webviewer.js in the js directory will change

the note's author to whatever name is specified in the string. The string will replace

"User Unknown" with whatever string is entered in this function.

To set the user name in the Document Notes panel, set:

virtualViewer.getDocumentNotes("[User’s Name]"),

For example, if you want to set the user name as Fred:

virtualViewer.getDocumentNotes("Fred"),

The time stamp is set by the server time for the computer of the user who created the

note. The time stamp changes for the server time for the computer of the user when

edited.

The Magnifier

The Magnifier functionality is defined by the magnifierDefaults parameter in the

config.js file as shown below with the default values:

magnifierDefaults: { zoomPercent: 150, width: 300, height:150, x:200, y:100 }

The toggleMagnifier() method to close the Magnifier can be mapped to a shortcut key.

The API call virtualViewer.setMagnifierPosition(X, Y) overrides the defaults and will

allow coordinates to be passed.

 53

Configuring email documents

To display the Email Document button, set the values for the emailDefaults parameter

in the config.js file as in the example below:

Set the prepopulatedForm parameter to the email address that you want to configure in

the config.js file as in the example below:

var prepopulateFrom = prepopulatedEmail@domain.com;

Set the parameters below in the web.xml file to set the values for your email system.

<init-param>

<param-name>smtpServer</param-name>

<param-value>...</param-value>

</init-param>

<init-param>

<param-name>smtpUsername</param-name>

<param-value>...</param-value>

</init-param>

<init-param>

<param-name>smtpPassword</param-name>

<param-value>...</param-value>

</init-param>

 54

Text Annotations

The default appearance for a text annotation looks like a yellow sticky note. If you prefer

a different look, the annotationDefaults config.js configuration parameter sets the

default and is customizable.

Please see the following example:

// Default appearance options for annotations

annotationDefaults: {

lineColor: "FE0000",
lineWidth: 3,
fillColor: "FE0000",
stickyFillColor: "FCEFA1", // yellowish
stickyMargin: 10, // also need to adjust .vvStickyNote in webviewer.css
highlightFillCOlor: "FCEFA1"
redactionFillColor: "000000",
redactionOpacity: 0.5, textString: "Text",
fontFace: "Arial", fontSize: 14, fontBold: false,
fontItalic: false,
fontStrike: false, // for future use
fontUnderline: false, // for future use
fontColor: "000000"

}

The system administrator has the ability to set the following default values for

annotations:

▪ Line color
▪ Line width
▪ Fill color
▪ Sticky note fill color
▪ Sticky note margin
▪ Text string
▪ Font face
▪ Font size
▪ Font bold
▪ Font Italic
▪ Font strike

 55

Configuring the Annotations Checkbox

To set the Annotations checkbox in the Export dialog box, set the

exportBurnAnnotations parameter to true in the config.js file as in the example below:

var exportBurnAnnotations = true;

Resize text annotations

In config.js, set the autoResizeTextAnnotations parameter to true to dynamically resize

annotations. The default value is false.

Annotation Commenting

Annotation commenting is display only. Export, Send, Email and Print will not display the

annotation comments on the pages.

In config.js, set the enableAnnotationCommenting parameter to true to enable annotation

commenting. Set the parameter to false to disable annotation commenting.

Annotation Navigation

The annotation navigation buttons are enabled by setting the showAnnNavToggle config.js

parameter to true. The default value is false.

Annotation Redaction Tags

Annotation redaction tagging assigns a categorical value to individual annotations or

redaction. To configure your predefined list of annotation redaction tags, add the strings

for your tags to the annotationTags array in the config.js file:

annotationTags: ["Confidential","Redaction","Social Security","Credit
Info"],

In config.js, set the searchRedactionTags parameter to true to turn on search redaction

tags. The default value is true.

 56

Note: On the Include Annotations dialog box, the Text and Non-Text options are

hidden from the Export Document, Email Document, and SaveAs Document sub-

option by default.

To re-enable the Text and NonText option, change their respective entries from

“display: none” to “display :! Important” in dialog.css.

div#vvExportOptionsAnnotationsTypeCheckboxes { display: block
!important;
}
div#vvEmailOptionsAnnotationsTypeCheckboxes { display: block !important;
}
div#vvSaveAsOptionsAnnotationsTypeCheckboxes { display: block
!important;
}

Text Rubber Stamp Annotations

The Text Rubber Stamp functionality is enabled when the enableTextRubberStamp

parameter is set to true and the config.js file contains one or more defined Rubber

Stamps.

The system will allow for a limited number of Rubber Stamps with the upper limit of

available Rubber Stamps set at ten. To disable this functionality, set the

textRubberStamps parameter to false in the config.js file as in the example below:

var enableTextRubberStamp = false;

The system administrator has the ability to set the following pre-defined font

characteristics for Rubber Stamps:

Font Face: (Helvetica, Times New Roman, Arial, Courier, Courier New)
Font Size: (Any valid integer in range of 2-176)
Font Color: (Any valid HTML color code, specified in hexadecimal)
Font Attributes: (Normal/Bold/Italic)

 57

Please see the following example for how we configure the two Rubber Stamps

“Approved” and “Denied”:

var textRubberStamps = [

{ textString: "Approved",
 fontFace: "Times New Roman",
 fontSize: 30,
 fontBold: true,
 fontItalic: true,
 fontColor: "00FF00" }

{ textString: "Denied", fontColor: "FF0000" }

];;

Any font characteristics not defined by the system administrator will use the following

default system characteristics:

{ fontFace: "Arial",
 fontSize: 12,
 fontColor: "FF0000",
 fontAttributes: "Normal" }

Image Rubber Stamp Annotations

An Image Rubber Stamp is an image annotation from a pre-defined list. You can define

a list of pre-configured/custom Image Rubber Stamps through the enableRubberStamp

parameter in the web.xml file.

If the enableRubberStamp parameter is set to true and one or more Rubber Stamps are

defined, then clicking on the Text Edit annotation toolbar button will produce the

rubber stamp text menu.

Note: If the enableRubberStamp parameter is set to false, then clicking the Text

Edit annotation button allows you to select only Add New Text to add a text

annotation.

The Image Rubber Stamp functionality is defined by the

enableSingleClickImageRubberStamp parameter in the web.xml file as shown below in a

 58

comma-separated list of names which will be used to pull the individual stamp

configurations out of the web.xml:

<init-param>

<param-name>testStamp1,testStamp2</param-name>
<param-value>8.5</param-value>

</init-param>

Set the comma-separated list of names which will be used to pull the individual stamp

configurations out of the web.xml. You use these names in the param-name tags as

shown in this example:

<init-param>

<param-name>testStamp1</param-name>
<param-value>

This is the First Test,300,175,
http://www.sample.com/sites/sample.com/files/images/Sample.png

</param- value>
</init-param>

<init-param>

<param-name>testStamp2<</param-name>
<param-value>

This is the Second Test,600,300,http://www.sample.com/sample.pngg
</param-value>

</init-param>

The param-value tags are comma separated as follows:

<param-value>displayName,stampWidth,stampHeight,stampURL</param-value>

▪ displayName -The text that will show up in the pop-up menu in the UI to describe

the stamp.

▪ stampWidth/stampHeight - The dimensions used when

▪ enableSingleClickImageRubberStamp is enabled in config.js.

▪ stampURL - The URL to the stamp in question. This will be downloaded on servlet

startup, converted to PNG, and stored in memory.

http://www.sample.com/sites/sample.com/files/images/Sample.png
http://www.sample.com/sample.pngg

 59

Set the enableSingleClickImageRubberStamp parameter to true in the config.js file to

draw the bounding box when adding a rubber stamp to the image with a single click .It

will be sized according to the dimensions specified in web.xml. If false, it will behave like

any other annotation.

<init-param>

<param-name>enableSingleClickImageRubberStamp</param-name>
<param-value>true</param-value>

</init-param>

Dynamically Load Custom Image Stamps via Javascript API

The list of available image stamps configured in config.js and can be modified

dynamically via a Javascript API. These stamps are loaded with a provided URI, rather

than by assuming a stamp's presence and naming convention in the Resources

directory.

Important! The web.xml initial parameter customImageRubberStamps has been

deprecated in favor of the new config.js initialStamps list and its related stamp

Javascript API.

The configuration item initialStamps in config.js holds a list of image stamp objects. An

image stamp object consists of a display name for a stamp, the stampTitle attribute,

and the URI of the stamp image in the url attribute. Optional attributes width and

height allow for default dimensions other than the stamp image's native dimensions.

These stamp images may be stored in any accessible location, whether that be locally in

the resources/stamps directory within VirtualViewer, or elsewhere on the web or your

organization’s filesystem.

Several of the functions below take image stamp objects. An image stamp object has

four attributes url, stampTitle, width, and height. Only url and stampTitle are required.

An example object, from config.example.js, would look like:

 60

{

stampTitle: "Approved",

url: "./resources/stamps/Approved.png", width: 535,

height: 293

}

Functions that accept image stamp objects include:

▪ clearImageStamps will remove all the stamp options from the Image Rubber

Stamp dropdown list in the toolbar.

▪ createImageStamp will add a single image stamp to the Image Rubber Stamp

dropdown on the toolbar.

▪ url {string} The URI of the stamp's image.

▪ stampTitle {string} The displayed title of the stamp. This will appear in the list

in the toolbar.

▪ options {object} Dimension options for the stamp. The attributes of this object

are listed below as options.attribute.

▪ options.width {number} The width of the stamp image. If not provided, the native

width of the stamp image will be used.

▪ options.height {number} The height of the stamp image. If not provided, the

native height of the stamp image will be used.

▪ createImageStampArray will add a whole array of image stamps to the viewer. The

provided stamps will append to the existing list of stamps. A stamp object has

mandatory URL and title properties, and optional width and height properties.

▪ stampList {array of image stamps} An array of stamp objects, that require url and

stampTitle properties to be valid, as described above.

▪ createImageStampArrayFromFunction will initialize the viewer's list of image

stamps. This takes a callback function as a parameter, and calls that function to

get the actual list of image stamps that will be used in the viewer.

▪ fn {function} This function is called with no parameters. It is expected to return

an array of image stamp objects, as described above. The array returned by this

function will be used to fill the stamp list on the toolbar.

Consolidate Annotation Layers

In config.js, set the enableCrop parameter to true to enable consolidate annotation

layers. Set the parameter to false to disable consolidate annotation layers. This

parameter is set to false by default.

 61

Substitute Image Thumbnails

You can add a substitute box instead of image thumbnails. This improves performance

because image thumbnails do not need to be created.

In config.js, set the doNotLoadPageThumbs parameter to true to display substitute boxes

instead of image thumbnails. The default value is false.

If the doNotLoadPageThumbs parameter is set to true, VirtualViewer will not request

thumbnail images. Instead, VirtualViewer displays a box with the page number. Select

the substitute thumbnail box as you would an image thumbnail.

doNotLoadPageThumbs: true,

Use the thumbPageLabel string to set the page thumbnail tooltip. Please note that it is

important to include the trailing space in "Page ":

"thumbPageLabel": "Page "

Search

The Search tab is enabled by default. The Search tab is enabled by setting the

showSearch config.js parameter to true. Set the parameter to false to disable the text

searching tab. Please see the example below:

var showSearch= true;

To determine whether or not text searches should be case sensitive, set the

searchCaseSensitive config.js parameter to true or false depending if you want case

sensitivity turned on or off. The default value is false. See the example below:

var searchCaseSensitive = false;

 62

Search default colors

You can configure the default colors for the first and second search match by setting the

values for the searchDefaultColor and the searchSelectedColor in the vvDefines.js file

found in the js directory as shown below:

vvDefines = {

searchDefaultColor: "rgba(255,78,0,0.2)",

searchSelectedColor: "rgba(255,255,0,0.2)"

}

OCR Configuration

This is a new OCR option in VirtualViewer. The OCR function allows searching text in an

image document (TIFF or PNG initially) as well as selecting text in the VV client after the

document has been OCRed.

To OCR a document in the VV client, a user must search for text in a non-text document

to get the OCR prompt. The OCRed result is cached; while that result is cached, the user

can search for and select text without a further OCR prompt.

The two new parameters necessary to enable OCR are in web.xml (web.config for .NET):

▪ enableOcr: Enable OCR for searching and text extraction. Must have a valid OCR

configuration and licensing to function correctly. Defaults to false.

▪ tesseractDataPath: Absolute or relative path to Tesseract OCR Engine's training

data. If using packed WARs in Tomcat, this needs to be changed to an external

unpacked folder. Defaults to "/tessdata".

Page manipulation

Disabling Page Manipulations

Page manipulations are enabled by default. To disable page manipulations, the

pageManipulations parameter must be set to false in the config.js file. This disables the

Page Manipulations menu in VirtualViewer HTML5 for Java and enables the Save

Annotations menu choice in the File menu.

 63

To disable it, set the pageManipulations parameter to false in the config.js file as shown

in the example below:

var pageManipulations = false;

Rotate Specific Pages

Use the following APIs to rotate specific pages:

▪ virtualViewer.rotatePageBy(pageNumber, angle) rotates the current page 0, 90,

180 or 270 (positive or negative) degrees from it's current state.

So, you call this twice with 90 degrees as the parameter, the final image will be

rotated by 180. It returns true if the page is rotated successfully. Otherwise, it

throws an error.

▪ virtualViewer.rotatePageTo(pageNumber, angle) rotates the document 0, 90, 180

or 270 degrees absolutely.

Thus, if you call this twice with 90 degrees as the parameter, the final image will

only be rotated by 90 degrees only. It returns true if the page is rotated

successfully. Otherwise, it throws an error.

Disabling Copy to New Document

The Copy to New Document functionality is enabled by default. To disable it, set the

pageManipulationsNewDocumentMenu parameter to false in the config.js file as shown in

the example below:

var pageManipulationsNewDocumentMenu = false;

Split screen

In config.js, set the splitScreen parameter to true to enable the Split Screen View

feature. If the splitScreen parameter is set to false, the Split Screen View feature is

disabled. The default value is true.

 64

splitScreen: true,

In config.js, set the screenSizes parameter to the screen size for panel 1 and panel 2.

The first value sets the size of screen panel 1. The second value sets the size of screen

panel 2. If the first value is set to 50, the first screen panel is set to 50% of the viewer. If

the second value is set 50, the second screen panel is set to 50% of the viewer.

screenSizes: [50, 50],

As images are added by selecting Split Image, each new document request replaces the

existing document in the lower panel.

 65

Defining keyboard shortcuts

Keyboard shortcuts are defined in config.js in the hotkeys section as shown below:

hotkeys: {

zoomIn: 'ctrl++,ctrl+=',
zoomOut:'ctrl+-,ctrl+_',
exportDocument: 'ctrl+shift+e',
printDocument: 'ctrl+shift+p',
lastPage: 'end',
firstPage: 'home',
previousPage: 'ctrl+shift+pageup',
nextPage: 'ctrl+shift+pagedown',
rotateCounter: 'ctrl+shift+l',
rotateClock: 'ctrl+shift+r', s
howKeyboardHints: 'ctrl+/',
toggleThumbnailPanel: 'ctrl+shift+t',
fitHeight: 'ctrl+shift+j',
fitWidth: 'ctrl+shift+w',
fitWindow: 'ctrl+shift+q',
panLeft: 'left',
panRight: 'right',
panUp: 'up',
panDown: 'down',
thumbPageDown: 'ctrl+end',
thumbPageUp: 'ctrl+shift+end',
copyText: 'ctrl+shift+c',
searchText: 'ctrl+shift+f',
enterSelectTextMode: 'ctrl+shift+insert',
toggleTextSelectionMode: 'ctrl+shift+d',
toggleImageInfo: 'ctrl+shift+u'

},

 66

Localization

VirtualViewer HTML5 for Java localization supports auto detecting the language settings

the user’s browser is configured to use. It then looks for a localization file in that

language. If a localization file for the corresponding language exists, it will be used to

display terms throughout the UI in that language.

For more information on setting language preferences in a browser, please see

http://www.w3.org/International/questions/qa-lang-priorities.en.php.

Localization Files

Localized files are stored in the/virtualviewer/resources/locale/ directory.

The english file, named vv-en.json, is located in that directory and can be used as a

reference when translating to other languages.

The naming of the localized files should follow the syntax of vv-en.json, replacing “en”

with the two-letter code of the language used for the appropriate translation. The two-

letter codes follow the ISO 639 code values.

Please visit the following links for additional resources on language codes:

▪ http://www.loc.gov/standards/iso639-2/php/code_list.php

▪ http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

Converting Terms

The terms that are displayed in vv-zz.json using all caps represent where the language

specific replacements should be placed.

Each term includes a replacement text for the alt value and the title value, although

these are most likely going to match each other.

The alt and the title values represent the displayed text that is shown if the image fails

to load or when the user hovers the mouse over the image. It can describe the icon, or

in the case of VirtualViewer HTML5 for Java, what action is associated with the

corresponding icon.

http://www.w3.org/International/questions/qa-lang-priorities.en.php
http://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

 67

Supporting Accents/Special Characters

To support the translation of terms to languages that use accents or special characters,

these accents/special characters must first be converted to Unicode before including it

in the translation file. You may also translate the entire string to Unicode, rather than

just the accent- s/special characters.

Please visit the following links for additional resources to convert text to Unicode:

▪ http://www.pinyin.info/tools/converter/chars2uninumbers.html

▪ http://tokira.net/unicode/index.php

EXAMPLE: Create a French Language Translation File

In order to illustrate how you might create a translation file, we’ll walk through an

example translating a term in a French language translation file.

The two letter code for French is “fr”, so we will copy vv-zz.json and rename the new file

vv-fr.json.

Now that we’ve created our translation file, we’ll create a translation for the Rotate Left

button.

In vv-fr.json, look for the corresponding value:

"rotateLeft": {

 "alt": "ROTATELEFT.ALT", "title": "ROTATELEFT.TITLE"

 },

The French translation for “Rotate Left” is “Rotation à Gauche”. In this case, we will use

the same value for both the alt and title values.

Converting the accents/special characters in this translation into Unicode results in

“Rotation À Gauch.” Now, replace the converted result in vv-fr.json as shown

below:

Using the converted results in vv-fr.json with:

http://www.pinyin.info/tools/converter/chars2uninumbers.html

 68

"rotateLeft": {

 "alt": "RotationÀ Gauche", "title": "RotationÀ Gauche"

 },

Now, when a user’s browser is set to display the French language, “Rotate Left” will

appear as “Rotation à Gauce.”

Force a Specific Language

If you do not wish to use the language settings auto-detection, you can force override

the UI to use a specified translation.

This setting is controlled via a setting localizeOptions in vvDefines.js as shown below.

The vvDefines.js file is located in the /virtualviewer/js/ directory.

// Remove the backslashes (//) before the word language and replace
// the values zz with the letter codes of the language file you want to
// force.
//
// Have the translation file available for reference.

localizeOptions: {

//language: "zz",
pathPrefix: "resources/locale"

},

 69

Advanced customization

This section describes how to set up and work with the advanced features in

VirtualViewer® HTML5.

Virtual Documents

This section describes how to work with virtual documents.

A virtual document is a collection of any combination of documents or pages of

documents displayed as a single multi-page document with a single set of thumbnails.

The pages can be from documents of different file format types such as AFP, Word, or

PDF. The virtual document is viewed and regarded as any normal document would be.

Please note the following:

▪ Exporting to a .tif may require significant resources especially if con- verting to

24-bit color.

▪ Virtual Documents export only to .tif because the virtual documents may be a mix

of multiple formats.

▪ If you are viewing all pages in a single document, you should not use Vir- tual

Documents.

▪ Document Notes is not supported in Virtual Documents.

Loading Virtual Documents

To pass a number of documents to the viewer, the value of a documentId can start with a

special identifier, followed by a string of a comma-separated list of documentIds. The list

is issued to create the virtual document. The documentIds are listed in the order in which

the documents are to be compiled for viewing.

Virtual Document Syntax

The special identifier is the string VirtualDocument: which is then followed by any

number of documentIds. The syntax can be used any time a normal documentId could be

used. A documentId in the comma-separated list may be specified in the following

manner.

File Name Description

 70

ABC.tif This specifies that all pages of the document should be included.

ABC.tif[2] This specifies that only a single page from the document should be

included.

ABC.tif[1-

3]

This specifies that a range of pages from the document should be

included.

Note: To include non-consecutive pages from a single document, you need to

specify the document each time in the virtual document string.

Displaying a Virtual Document

Virtual documents are displayed based upon parameters in the URL. For example,

suppose that you have three documents, ABC.tif, EFG.pdf, and IJK.doc, each with

three pages.

You can create a virtual document from the entirety of all three documents:

http://localhost:8080/virtualviewer/index.html?documentId=VirtualDocument:AB
C.tif,EFG.pdf,IJK.doc

Based upon the parameters described above, we know that we are displaying the entire

contents of the original documents in our virtual document. If we wanted to include (for

example) the full texts of ABC.tif and IJK.doc but only page two of EFG.pdf, we would

enter:

http://localhost:8080/virtualviewer/index.html?documentId=VirtualDocument:AB
C.tif,EFG.pdf[2],IJK.doc

Finally, if we wanted to include a range of pages from ABC.tif, the full EFG.pdf, and only

page 3 from LJK.doc, we would enter:

http://localhost:8080/virtualviewer/index.html?
documentId=VirtualDocument:ABC.tif[1-2],EFG.pdf,LJK.doc[3]

 71

Virtual Documents: Save Document As

When a user prints, exports, emails, or uses Save Document As with a virtual document,

the resulting document will reflect what the user sees on their screen at the time of

execution. Please note that sendDocument is not supported in virtual documents. A work

around is to send a virtual document with Save Document As. Save Document As has

better functionality than sendDocument.

The loadVirtualDocumentAnnotations and saveVirtualDocumentAnnotations web.xml

parameters enables virtual documents to read annotations from the source document

and to save annotations created on the virtual documents back to the source document.

The default values for both parameters are set to false.

Printing Virtual Documents

To print a virtual document, select the Print button.

Special annotation layers

You can save Snowbound and FileNet annotations. See the sections below for more

information on configuring Snowbound and FileNet annotations.

Support for Daeja annotation saving is in development. Please check with Snowbound

for updates if you are interested in this feature.

Enabling Snowbound annotations

To save annotations in the Snowbound XML format, add the annotationOutputFormat

parameter with the value set to Snowbound to the servlet web.xml files as shown in the

example below:

<init-param>

<param-name>annotationOutputFormat</param-name>

<param-value>Snowbound</param-value>

</init-param>

If VirtualViewer HTML5 for Java is configured to save Snowbound annotations, then any

existing annotations that are in the FileNet format are read in as read-only and are not

 72

able to be edited or deleted. Edit controls are disabled for annotation layers that are not

editable.

This means that, for example, the menu items for the layer will be visible, but grayed-out

in menus such as Select Layer. When you right-click an annotation to edit it, the pop-

up menu will simply not appear.

Snowbound annotation supported configurations

Supported server configurations

Parameter Name Value File Location

annotationOutputFormat Snowbound Web.xml

Note: Snowbound annotations can be used with any configuration of non-

required annotation parameters.

Supported client configurations

None.

Configuring FileNet annotations

To save annotations in the FileNet XML format, add the annotationOutputFormat

parameter with the value set to FileNet to the servlet web.xml files as shown in the

example below:

<init-param>

<param-name>annotationOutputFormat</param-name>

<param-value> FileNet</param-value>

</init-param>

You will also need to set the oneLayerPerAnnotation parameter the config.js file to true

as shown below:

 73

var oneLayerPerAnnotation = true;

FileNet annotation supported configurations

Supported server configurations

Parameter Name Value File Location

annotationOutputFormat filenet Web.xml

Note: Snowbound annotations can be used with any configuration of non-

required annotation parameters.

Supported client configurations

Parameter Name Value File Location

base64EncodeAnnotations False Config.js

oneLayerPerAnnotation True Config.js

Special Annotation Mapping

The table below shows the FileNet annotation and its analogous Snowbound

annotation:

FileNet Annotation Snowbound Annotation

v1-Rectangle SANN_FILLED_RECT

Arrow SANN_ARROW

Stamp SANN_EDIT

Text SANN_EDIT

Transparent Text SANN_EDIT (Not transparent)

v1-Oval SANN_FILLED_ELLIPSE

 74

v1-Highlight Polygon SANN_FILLED_POLYGON

Pen SANN_FREEHAND

Freehand Line SANN_FREEHAND

Highlight Rectangle SANN_HIGHLIGHT_RECT

v1-Line SANN_LINE

v1-Open Polygon SANN_POLYGON

Closed Polygon SANN_POLYGON

StickyNote SANN_POSTIT

Annotations Security: Watermarks and Redactions

The implementation of security for annotations allows each layer to have a permission

level assigned to it. This permission level is not inherent in the layer and is only defined

when the layer is retrieved by the content handler.

In order to assign a permission level to an annotation layer, the content handler must be

implemented or extended and the getAnnotationProperties method used.

The Annotation Security Model

The security model is such that when reading annotation layers, various levels of

permissions for viewing and working with annotation layers may be specified.

The model currently accounts for nine levels on a per layer basis.

Note: Redaction annotations are only considered redactions when they are

burned in and saved as an image format file such as TIFF format.

Permission Levels

Each successive level includes the functionality of previous levels. This allow each

annotation layer to carry a set of permissions. These permissions allows the layer to be

passed in with several different levels of permissions such as read only or edit.

 75

If you are storing the annotations as layers (XML files) with a redaction permission level,

then you will be able to present them to the users in the viewer as burned in, but they

will not actually be burned into the source document.

Permission Level Actions Permitted

PERM_HIDDEN Hidden The layer is passed to the client but not displayed.

PERM_PRINT_
WATERMARK

Print

Watermark

The user does not see the layer, but it will be burned

in for printing.

PERM_VIEW_
WATERMARK

View
Watermark

The user may view the layer but may not hide the layer.

PERM_VIEW View The user may view or hide the layer.

PERM_PRINT Print The user may print the layer.

PERM_CREATE Create The user may add an object to the layer

PERM_EDIT Edit The user may also edit an object on the layer, and edit
layer properties.

PERM_DELETE Delete The user may also delete an object on the layer, and
delete the layer

Level Definitions

Permission Definition

Hidden If a layer is indicated as having the Hidden permission, the information

about the layer will be passed, so that changes done by Page

Manipulation will be applied when the annotations are saved. The

layer is not displayed to the user even if manipulations are applied.

Print Watermark If a layer is indicated as having the Print Watermark permission, it shall

be passed as a normal layer, but will not be shown to the user. When

the document is printed, any layer with Print Watermark permission

will be applied to the image before printing.

View Watermark If a layer is indicated as having the View Watermark permission, it shall
be passed as a normal layer. However, the user will not be allowed to
show or hide the layer, or manipulate the layer in any way. This layer
will never be printed.

 76

View If a layer is indicated as having the View permission, it shall be passed
as a normal layer. The user will be able to hide or show the layer. The
user will not be able to add an object, edit an object, delete an object,
print the layer, rename the layer, or delete the layer..

Print If a layer is indicated as having the Print permission, it shall be passed as

a normal layer. The user will be able to hide or show the layer, print the

layer. The user will not be able to add an object, edit an object, delete

an object, or rename or delete the layer.

Create If a layer is indicated as having the Create per- mission, it shall be

passed as a normal layer. The user will be able to hide or show the layer,

print the layer, or add an object to the layer. The user will not be able to

edit an object, delete an object, edit the layer properties, or delete the

layer.

Edit If a layer is indicated as having the Edit permission, it shall be passed
as a normal layer. The user will be able to hide or show the layer, add
an object, edit an object, or edit the layer properties. The user will not
be able to delete objects or delete the layer.

Delete If a layer is indicated as having the Delete per- mission, it shall be
passed as a normal layer. The user will have full rights to perform any
operation on the layer.

Securely retrieving annotation layers

When loading a document, annotation layers will need to be retrieved and have the

correct permission level set. The process of loading an annotation layer is as follows:

For each annotationKey returned by getAnnotationNames the following method will be

called.

public Hashtable getAnnotationProperties (clientInstanceId, documentKey,
annotationKey)

This method returns a hash table with the following expected key/value pairs for that

annotation layer.

Key/Value Pairs

▪ The permissionLevel will determine how the layer is handled. If no value is set, an

exception will occur.

 77

▪ The redactionFlag determines if the layer has Mark Layer As Redaction selected

in the client. If no value is set, an exception will occur.

▪ If the permissionLevel is set to PERM_REDACTION, the value of redactionFlag is

moot since the client does not receive that layer as an annotation layer.

▪ If getAnnotationProperties returns null, an exception will occur. This prevents

cases where a layer should have strict permissions but for some reason no

permission level gets set.

Saving Redaction Layers

If a layer has Mark Layer As Redaction selected, when choosing Save Annotations,

VirtualViewer HTML5 for Java will pass both the permissionLevel and the redactionFlag

to the saveAnnotationContent method in a hash table:

public void saveAnnotationContent(ContentHandlerInput input)
saveAnnotationContent(ContentHandlerInput input)

(String clientInstanceId, String documentId, String annotationKey, byte []
data, Hashtable annProperties)

Printing Layers

When printing a document, the user may choose to print with or without annotations.

Only visible layers with a Print permission level or higher in the Image Panel will print.

A layer which has been given a permissionLevel of PERM_REDACTION shall always print as

part of the image, (since it has been burned into the image), even if the user chose to

print without annotations.

DWG Layer Support

You can toggle DWG layers in and out of view in VirtualViewer. DWG layers are typically

called referenced design layers. Layers include schematics or diagrams of blueprints that

are embedded in the DWG file and laid over the image at view time.

The DWG option for VirtualViewer HTML5 Java requires Microsoft Visual C++ 2015

Redistributable installed on your computer.

 78

You can either install this through Microsoft or use the vcredist_x64.exe that is included

with your Snowbound license.

Follow the steps below to use the Layer Manager:

1. Load a DWG or blueprints file that contains layers.

2. Select the Layer Manager .

The Layer Manager dialog box displays a list of all the DWG layers on the Image

Layers tab. The left side of the tab displays the layer name. The right side of the

tab displays a visibility button to toggle the visibility of the single layer.

3. From the Layer Manager dialog box, choose which DWG layers to take in and out

of view.

4. Select the Visibility button to view or hide the image layer. A check on the

visibility button indicates that the image layer is hidden.

5. Select OK to display the changes that you made in the Layer Manager.

The DWG file format is only available for 64-bit Windows systems. Cropping a DWG

page with layers is not supported.

Selecting Export, Print, Save As, and Email includes all DWG layers. There is no option

to choose specific layers for each function to carry out.

Page Manipulations carry over all DWG layers on that page.

Virtual Documents consisting of DWG pages allow you to take the layers in and out of

view on a page.

DWG XREF Support

You can load a DWG file that contains references to other files (xrefs). Those related

drawings are attached and displayed along with the DWG file. This feature assumes that

the xrefs are in the same location as the original DWG file.

Set a valid directory in the tmpDir key in web.xml.

If the content handler returns any external reference files, they are saved in the [your

temp directory]/[document ID] directory. Make sure this directory is accessible to

VirtualViewer to read and write. External reference files are saved into these directories.

 79

Use the following key in the Content Handler result class:

KEY_EXTERNAL_REFERENCE_CONTENT_ELEMENTS

This key returns the vector of ExternalReference objects defined in the

clientcontentserver package.

To implement external references in your content handler, include references to the

ExternalReference class in your code.

Watermark JSON Files

Watermarks for a document are stored in a json file. Like annotations, the file will be

documentkey + suffix, e.g., “6-Pages-1.tif.watermarks.json”.

The .watermarks.json file is a list of json objects, so it has the format:

[{ myJsonData }, { myOtherJsonData }]

Watermark properties

Each individual watermark is a json object. Each will have the following properties:

Property Type Description

Transparency Boolean
If true, the watermark will be transparent; if false, it will be a solid

color.

adminCreated Boolean
If false, any user can manage any aspect of the watermark. If true,

admin restrictions will apply (as described below).

Text string
This is the text that will appear on the watermark. Multiline

watermarks are supported. This is done under the hood in the

watermarks dialog, but if a user is manually entering json, they

 80

should enter a newline character ("\n") where a line break should

be.

allPages Boolean
If this is set, the watermark will appear on every page of a

document.

Pages

array of

page

indices,

zero-

indexed

For instance, to place a watermark on only page one, this

property would contain [0]. This is a key difference between

watermarks and annotations. Watermarks are intended to repeat

across pages, so an identical watermark will have multiple pages

it applies to.

widthAtTenPx integer

This is a read-only value used by VirtualViewer to calculate the

dimensions of the watermark, representing how wide the

watermark is when the font is 10 pixels high.

Stretch double

This defines how far across the page the watermark will stretch.

Set to 1.0, the watermark will go across 100% of the page (minus

some margin space). Set to 0.5, 50% of the page. The UI allows

only a small set of percentages. Diagonal watermarks will always

stretch 100% across the diagonal.

Format
json sub-

object

A json sub-object that has font and color information as follows:

▪ font: A font name, for instance "Arial".color:

▪ We currently support only one color, so "000000" would

be stored here.

Position
json sub-

object

This is another sub-json object, that defines where the watermark

will be placed on the page. There are two defining properties in

here: the vertical placement of the watermark (top of the page,

middle of the page, or the bottom of the page) and the direction

of the text. While these options may open up further, the

direction options are currently left-to-right text or diagonal text.

The two options combine so that, for instance, top vertical

placement & diagonal direction produce a watermark stretching

from the top-left to bottom-right corner--while bottom vertical

placement & diagonal direction will go from bottom-left to top-

right:

▪ vertical: Use 0 for top, 1 for center, and 2 for bottom.

▪ direction: Use 0 for left-to-right text, and 2 for diagonal

text.

 81

Watermark.json file sample

[{"widthAtTenPx":19,"transparency":true,"adminCreated":false,"text":"bugs","
allPage s":true,"pages":[],"stretchPercent":0.5,"format":{"font":"Times New
Roman","color":"000000"},"position":{"vertical":0,"direction":0}},{"widthAtT
enPx":86,"t
ransparency":true,"adminCreated":false,"text":"second%20watermark","allPages
":fal se,"pages":[0],"stretchPercent":1,"format":{"font":"Times New
Roman","color":"000000"},"position":{"vertical":2,"direction":2}},{"widthAtT
enPx":62,"t
ransparency":false,"adminCreated":false,"text":"sdadafsadfgsafd","allPages":
false,"p ages":[0],"stretchPercent":1,"format":{"font":"Times New
Roman","color":"000000"},"position":{"vertical":2,"direction":0}}]

 82

Tips and troubleshooting

This sections describes tips and troubleshooting solutions to resolve issues that some

users have experienced with VirtualViewer® HTML5.

Tips

Changing the Default Directory

VirtualViewer HTML5 for Java is delivered with virtualviewer/ as the default directory.

If you would like to change this directory, you need to change the pointers in the files

below to reflect that change.

For example, let’s suppose we want to change the directory from virtualviewer/ to a

directory called displaytools/.

First, in config.js, we would change:

servletPath: "/virtualviewer/AjaxServlet"

to:

servletPath: "/displaytools/AjaxServlet"

In web.xml (located in the WEB-INF sub-directory), we would change:

<init-param>

<param-name>codebase</param-name>

<param-value>http://localhost:8080/virtualviewer</param-value>

</init-param>

 83

to:

<init-param>

<param-name>codebase</param-name>

<param-value>http://localhost:8080/displaytools</param-value>

</init-param>

Changing the default directory for image rubber stamps

In web.xml, the default image rubber stamp parameters need to have their path

changed as shown in the example below, or else the viewer will spin and not load any

documents.

To take the “Approved” default stamp as an example, you would need to change the

parameter as follows:

<init-param>

<param-name>Approved</param-name>

<param-value>

Approved,535,293,http://localhost:8080/virtualviewer/resources/sta
mps/Approved.png

</param-value>

</init-param>

to:

<init-param>

<param-name>Approved</param-name>

<param-value>

Approved,535,293,http://localhost:8080/[new/path/to/your/resource/
folder]/Approved.png

</param-value>

</init-param>

 84

Documents Slow to Load in Multiple Documents Mode

Performance may be affected, and documents may take several minutes to load, if the

multipleDocMode parameter is set to availableDocuments and the directory specified in

the filePath configuration parameter has several hundred files (The default filePath

value is =".\sample-documents").

To avoid this issue, set the multipleDocMode parameter to specifiedDocuments. The

default setting for the multipleDocMode parameter is now specifiedDocuments.

Improving Performance or Quality

One of the differences between raster and vector formats is that raster formats have

specific DPI (dots per inch) and bit depths. Vector formats aren't inherently black and

white or color, and while they typically have sizing in inches, there is nothing that says

what DPI or bit depth to use when rendered as a raster image.

When the content server pulls out a page from a vector format document, it must

render that page to a certain DPI and bit depth, as well as save that image as some

format to be passed to the client for display. (Sending an SVG version of the document

for display retain the vector format and DPI is not necessary.) The particular settings are

determined on a per format basis by three servlet parameters.

To improve the performance, you can save your files as black and white or grayscale. For

example, if you are converting a PDF document, you can save the document in the

TIFF_G4_FAX file format. This will make the file size smaller and improve performance.

Please note that there is always a trade off between performance and quality. To

improve performance, the quality of the image may be less. This is true whenever

working with any imaging software. Please note that depending on the operating

system and configuration, certain unusual or corrupt documents or files can cause the

software to crash. Potentially, in some unusual circumstances, files may not be rendered

identically to the creator application and may not format correctly or miss information.

Setting the Bit Depth (xxxBitDepth)

This parameter determines what bit depth to use when converting the vector page.

Valid settings for this format are 1 (for black & white, smaller) or 24 (for color, bigger). If

any pages of the vector document might be in color, then the setting of 24 should be

used, since there is no way to tell if a page might or might not contain color vector

objects.

 85

The example below shows how to set the bit depth parameters in the web.xml file. For a

list of web.xml parameters, please see Servlet Tags for web.xml.

<init-param>

<param-name>docxBitDepth</param-name>

<param-value>24</param-value>

</init-param>

The available bit depth parameters are shown in the table below:

Parameter Name Description

bitDepth The default bits per pixel for decompression of ormats not specified with
individual parameters.

docxBitDepth The bit depth to use for Word 2007 documents. Valid values are 1 or 24.

iocaBitDepth The bit depth to use when decompressing IOCA pages. Valid values are 1 or
24.

modcaBitDepth The bit depth to use when decompressing MO:DCA pages. Valid values are 1
or 24.

pclBitDepth The bit depth to use when decompressing PCL pages. Valid values are 1 or 24.

pdfBitDepth The bit depth to use when decompressing PDF pages. Valid values are 1 or 24.

pptBitDepth The bit depth to use when decompressing PPT pages. Valid values are 1 or 24.

wordBitDepth The bit depth to use when decompressing Word pages. Valid values are 1 or
24.

xlsBitDepth The bit depth to use when decompressing XLS pages. Valid values are 1 or 24.

Setting the DPI (xxxDPI)

This parameter determines how many DPI (dots per inch) should be used when

converting a vector page. Typical settings for this parameter are 150, 200, or 300. The

higher the DPI, the higher the quality of the image, but also the bigger the size, which

means more processing on the server and larger page sizes across the network.

 86

The optimal setting for this varies by format, but 200 is usually good for black & white

documents or text, and 300 for color images and more detailed documents. Even higher

numbers can be used (400, 600) but it can seriously affect speed of processing and

available resources.

The example below shows how to set the DPI parameters in the web.xml file. For a list of

of web.xml parameters, please see Servlet Tags for web.xml.

<init-param>

<param-name>docxDPI</param-name>

<param-value>200</param-value>

</init-param>

The available DPI parameters are shown in the table below:

Parameter Name Description

docxDPI The Dots Per Inch to use for Word 2007 documents.

iocaDIP The Dots Per Inch to use when decompressing IOCA pages.

modcaDPI The Dots Per Inch to use when decompressing MO:DCA pages

pclDPI The Dots Per Inch to use when decompressing PCL

pdfDPI The Dots Per Inch to use when decompressing PDF pages.

pptDPI The Dots Per Inch to use when decompressing PPT pages.

wordDOI The Dots Per Inch to use when decompressing Word pages.

xlsDPI The Dots Per Inch to use when decompressing XLS pages.

Setting the Format (xxxFormat)

This parameter determines which format the vector page will be rendered to for sending

to the client. Valid values for this parameter are TIFF_G4_FAX (black & white, best for

text documents, small size), JPEG (color, good for images, lesser quality for text, small

size), TIFF_LZW (color or greyscale, good for documents with text and color elements),

or PNG (color, better for text than JPEG, not as small).

 87

By adjusting these parameters in various combinations, you can find the best settings

for your environment, documents, and user load.

The example below shows how to set the format parameters in the web.xml file. For a

list of web.xml parameters, please see Servlet Tags for web.xml.

<init-param>

<param-name>docxFormat</param-name>

<param-value>TIFF_LZW</param-value>

</init-param>

The available format parameters are shown in the table below:

Parameter Name Description

docxFormat The format to convert Word 2007 documents
to. Valid values should are TIFF_G4, JPEG,
TIFF_ LZW, PNG.

icoaFormat The format to convert IOCA pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG.

modcaFormat The format to convert MO:DCA pages to. Valid
val- ues are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG.

pclFormat The format to convert PCL pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG

pdfFormat The format to convert PDF pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG.

pptFormat The format to convert PPT pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG

wordFormat The format to convert Word pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG. The bit depth to use when
decompressing XLS pages. Valid values are 1
or 24.

xlsFormat The format to convert XLS pages to. Valid
values are TIFF_G4_FAX, JPEG, TIFF_LZW,
PNG.

The full list of format server parameters and their usage is in Servlet Tags for web.xml.

 88

Setting Office 2007 - 2010 Documents to Display Color Output

To display color output in Office 2007 - 2010 documents, set the xlsxBitDepth and

docxBitDepth parameters to 24 and the xlsxDPI and docxDPI parameters to 200 as

shown in the following example:

<init-param>

<param-name>xlsxDPI</param-name>

<param-value>200</param-value>

</init-param>

<init-param>

<param-name>docxBitDepth</param-name>

<param-value>24</param-value>

</init-param>

<init-param>

<param-name>docxDPI</param-name>

<param-value>200</param-value>

</init-param>

<init-param>

<param-name>xlsxBitDepth</param-name>

<param-value>24</param-value>

</init-param>

<init-param>

<param-name>xlsxDPI</param-name>

<param-value>200</param-value>

</init-param>

<init-param>

<param-name>docxBitDepth</param-name>

<param-value>24</param-value>

</init-param>

<init-param>

<param-name>docxDPI</param-name>

<param-value>200</param-value>

</init-param>

 89

Note: If you experience errors processing Office 2007-2010 documents, please

ensure that Aspose.Words.<jdk>.jar, Aspose.Cells.jar and dom4j-1.6.1.jar are on

the CLASSPATH. This issue should not typically appear however in VirtualViewer

versions 5.0 and later.

Troubleshooting

Submitting a Support Issue

You may encounter an issue that is not covered by the documentation. Snowbound

technical support is standing by to help you succeed.

In order to get a fast, helpful response, please make sure Snowbound has everything

needed to reproduce the issue, including:

▪ The configuration files: index.html, config.js, output.properties and

▪ .\WEB-INF\web.xml.

▪ The document that the user is trying to view. Most issues are document specific.

▪ The Java console log and the server log.

▪ A list of steps that the customer took from starting the Viewer until they see the

error.

▪ It is often helpful to have screen shot of what the user is doing when they

encounter the error as well.

▪ The version of VirtualViewer and Java that are being used.

"Please wait while your image is loaded" Message Displays Indefinitely

In some cases, images do not load in the VirtualViewer HTML5 for Java client, and the

“Please wait while your image is loaded” message displays indefinitely in the browser.

This generally happens when:

1. The web server is not properly configured to handle the necessary http requests

made by the client

2. The VirtualViewer server configuration itself is incorrect.

To resolve this issue, you should log the http traffic between the client and the server in

order to determine which http requests are failing and why. This can be done using a

browser plugin such as httpWatch (http://www.httpwatch.com) or Firebug

(http://getfirebug.com). You can also use a standalone application such as Fiddler

(http://www.fiddler2.com) or Wireshark (http://www.wireshark.org) which can be run

independently on the client machine. For Internet Explorer 9 users, the traffic can be

http://www.httpwatch.com/
tpwatch.com
http://getfirebug.com/
http://getfirebug.com/
http://www.wireshark.org/

 90

captured using the IE Developer Toolbar

(http://www.microsoft.com/download/en/details.aspx?id=18359).

Once the http traffic has been captured, you should be able to see which requests are

failing. Typically, a failed request will cause a 400 or 500 error code to be generated in

the logs. Some common error codes that can occur for VirtualViewer HTML5 for Java are

as follows:

404 Not Found

This error code indicates that the requested resource on the server could not be found.

This error can occur if the servlet mapping is incorrectly configured on the server. First,

make sure the servletPath parameter value in config.js contains the correct URL

mapping to the AJAX servlet. If you changed the default directory name for

VirtualViewer HTML5 for Java on the server, you will need to update this value to be

consistent with that change. For more information on defining the servletPath

parameter, please see Defining the Servlet Paths.

For VirtualViewer HTML5 for Java, the web.xml configuration should also be reviewed in

addition to config.js. Make sure that the values for <servlet-class> and <url-pattern>

are correct for the relative <servlet-name>. Please note that by default, the servlet name

is set to AjaxServlet.

405 Method Not Allowed

This error code indicates that the http request contains an action (e.g. POST, GET, HEAD,

etc.) that is not allowed by the requested IIS server module.

With respect to VirtualViewer HTML5 for Java .NET, this typically means that the IIS

handlers for AJAXServer and aspnet_isapi.dll have not been properly configured in IIS.

First, make sure web.config contains the following handler mapping for AJAXServer:

<httpHandlers>

<add verb="*" path="virtualviewer" type-
e="Snowbound.virtualviewer.AjaxServerHandler, Snow- bound.virtualviewer" />

</httpHandlers>

Then, make sure that a wildcard mapping for aspnet_isapi.dll has been created for your

website configuration. This DLL is a required resource for VirtualViewer and is usually

http://www.microsoft.com/download/en/details.aspx?id=18359
http://www.microsoft.com/download/en/details.aspx?id=18359

 91

located in Windows under C:\Windows\Microsoft.NET\Framework\v2.0.50727\. To add

aspnet_isapi.dll to your IIS configuration, please review the instructions below:

For IIS5:

1. Go to <VV web application> Properties > Directory (tab) > Configuration >

“Add”.

2. For the “Executable” setting, provide the path to aspnet_isapi.dll.

3. Set the “Extension” setting to “.*” and left click inside the “Executable” path field

to enable the OK button below (this is a bug in IIS5; see

http://support.microsoft.com/kb/317948 for more).

ForIIS6:

1. Go to <VV web application> Properties > Virtual Directory (tab) >

Configuration > “Insert Wildcard application map”, and provide the path to

aspnet_isapi.dll.

ForIIS7:

1. Go to <VV web application> Handler Mappings > Actions > “Add Wildcard

Script Mapping” and provide the path to aspnet_isapi.dll.

500 Internal Server Error

This error may occur if the content handler mapping is not correctly set in the web

configuration.

For VirtualViewer HTML5 for Java, check the contentHandlerClass parameter value.

For VirtualViewer HTML5 for Java .NET, check the contentHandler key value. Make sure

this value contains the correct path to the content handler.

Annotation Text Does Not Appear on Separate Lines

An issue may occur where annotation text does not appear on separate lines. This

occurs because Linux has different line-end characters than Windows. Linux uses just a

line feed while Windows uses a carriage return + line feed (CRLF).

To solve this issue, add the following line in your code so that line-end characters will be

the same on all systems:

System.setProperty("line.separator","\r\n")

http://support.microsoft.com/kb/317948

 92

Unable to Enter More Text After Using the “-” Key in an Annotation

An issue may occur where you cannot enter any more text after entering the “-” key in

an annotation. This was caused by the keyboard shortcut for zoom out being defined

without the CTRL modifier.

This issue will be resolved in the next release by changing the shortcuts for zooming. For

zoom in, select CTRL+. For zoom out, select CTRL-.

Getting an Evaluation Period Expired Error Message When Creating a War

File

An issue may occur where you receive an “Evaluation Period Expired” error message

when creating a war file.

To solve this issue, look for the servletURL parameter in your html file. If you are using

that parameter and it is pointing to an evaluation version of the servlet (possible on

another machine), you will get the error messages.

Fonts Do Not Display Correctly

An issue may occur where the font displays incorrectly in the following way:

▪ The text in the output document is not in the right font.

▪ The text in the output document does not display the same way on Windows and

on Linux.

To solve this issue, follow the steps below:

2. Inspect the document to determine what fonts it requires.

3. Make sure those fonts are installed on the system. The fonts are usually installed

in the font.properties file.

4. Make sure the fonts are registered with Java and are of a type supported by your

version of Java.

There are several resources on the Internet that discuss how to do this. There are also

some helpful tools such as font viewers that make this easier. Some resources we like

are:

▪ Java Font resources: http://mindprod.com/jgloss/font.html

http://http/mindprod.com/jgloss/font.html

 93

▪ Windows Font knowledgebase article: http://support.microsoft.com/kb/918791

▪ Java Font.Properties description from Sun:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/fontprop.html

▪ Linux Font installation: http://linuxandfriends.com/2009/07/20/how-to-install-

fonts-in-linux-ubuntudebian

▪ Linux Font configuration man page: http://linux.die.net/man/5/fonts-conf

Excel 2007 XLSX files return -7 Format_not_found error

Note: This issue should only be found in old versions of product.

To render Word 2007, Excel 2007 and PowerPoint 2007 documents, VirtualViewer

HTML5 for Java may rely on third party packages. In order to properly integrate these

packages, the CLASSPATH may have to be modified.

You can specify additions to the CLASSPATH using the web.xml parameter

classPathAddition according to the following example:

<init-param>

<param-name>classPathAddition</param-name>

<param-value>c:\sample\sample-cells-7.4.3.jar;c:\sample\dom4j-1.6.1.-
jar;c:\sample\sample.slides-7.3.0.jar;c:\sample\log4j-1.2.16.jar;

</param-value>

</init-param>

XLS or XLSX Page Content Truncated

Your XLS or XLSX page content may be truncated because XLS and HTML-formats do

not include the page size in the document like Word and PDF. It can be set explicitly

similar to how you can set the page size when printing. To set the page size to avoid

truncated content, use the xlsHeight, xlsWidth, xlsxHeight, and xlsxWidth parameters in

the web.xml file as shown in the examples below. .

For XLS files set the parameters as shown in the example below to the height and width

that you would like for your document:

http://http/support.microsoft.com/kb/918791
http://java.sun.com/j2se/1.4.2/docs/guide/intl/fontprop.html
http://linuxandfriends.com/2009/07/20/how-to-install-fonts-in-linux-ubuntu-
http://linuxandfriends.com/2009/07/20/how-to-install-fonts-in-linux-ubuntu-
http://linuxandfriends.com/2009/07/20/how-to-install-fonts-in-linux-ubuntu-debian
http://linux.die.net/man/5/fonts-conf

 94

<init-param>

<param-name>xlsHeight</param-name>

<param-value>11</param-value>

</init-param>

<init-param>

<param-name>xlsWidth</param-name>

<param-value>14</param-value>

</init-param>

For XLSX files, set the parameters as shown in the example below to the height and

width that you would like for your document:

<init-param>

<param-name>xlsxHeight</param-name>

<param-value>11</param-value>

</init-param>

<init-param>

<param-name>xlsxWidth</param-name>

<param-value>14</param-value>

</init-param>

Overlay Resources Not Pulled into APF or MODCA Document

If overlay resources such as signatures are not being pulled into an AFP or MODCA

document, then make sure that the resource filename does not have a filename

extension. If the resource filename has a filename extension, remove it.

Documents Loading Slowly in Multiple Documents Mode

Performance may be affected, and documents may take several minutes to load, if the

multipleDocMode parameter is set to availableDocuments and the directory specified in

the filePath configuration parameter (The default value is =".\sample-documents".) has

several hundred files. To avoid this issue, set the multipleDocMode parameter to

specifiedDocuments.

The default setting for the multipleDocMode parameter is now specifiedDocuments.

 95

Images Disappear in Internet Explorer 9 when Zooming or Rotating

Note: For this reason and many others, Snowbound DOES NOT RECOMMEND

any Internet Explorer older than Microsoft Edge.

An Internet Explorer 9 canvas bug can cause images to disappear when you click to

zoom or rotate the image.

The issue occurs because VirtualViewer AJAX is drawing faster than IE 9 can handle.

To correct this issue, we added a variable in vvDefines.js called ie9DrawDelay. It inserts a

delay in milliseconds into the IE 9 drawing code which can help work around this bug.

Please add this entry to the vvDefines.js file:

ie9DrawDelay: 900,

The vvDefines.js file is located in ./virtualviewer/js/ vvDefines.js.

The default value is 100 (100 milliseconds). The user can set the ie9DrawDelay variable as

high as necessary. However; if it is set too high, it could cause a delay for the user each

time they zoom.

The ie9DrawDelay variable will not work if IE 9 is set to compatibility mode. It will only

work in IE 9 standard mode. Please try adding

<meta http-equiv="X-UA-Compatible" content="IE=Edge">

to index.html to force IE 9 standard mode.

Internet Explorer Limits URLs to 2048 Characters

Note: For this reason and many others, Snowbound DOES NOT RECOMMEND

any Internet Explorer older than Microsoft Edge.

Customers that included a lot of parameters on their VirtualViewer command line ran

out of room because the viewer infrastructure was using an HTTP GET operation. The

GET URL length was limited by the Internet Explorer browser. Other browsers like

Chrome and Firefox allow a much longer URL.

 96

Please see the following work around to resolve the case where the user enters a URL

longer than 2048 characters into the URL bar:

For long DocumentIDs/cIIDs, call init() instead of calling initViaURL().

You can call init(), then call setDocumentId() and setClientInstanceId(), followed by

openInTab().

Please see the following example to create a Javascript function:

Instead of calling initViaURL in index.html, call init such that:

<body onload="virtualViewer.initViaURL()">

becomes:

<body onload="virtualViewer.init()">

Then, initialize the viewer as needed:

< VirtualViewer.setClientInstanceId("whatever their clientInstanceId is, if
any");

VirtualViewer.openInTab ("whatever their document id is");

This solution works for all supported browsers.

Internet Explorer Defaults to Compatibility View

Note: For this reason and many others, Snowbound DOES NOT RECOMMEND

any Internet Explorer older than Microsoft Edge.

In Internet Explorer, users may experience an issue where their browser defaults to IE7

compatibility view when they open VirtualViewer. Since VirtualViewer no longer

supports IE7, VirtualViewer will not work in this mode.

Users can resolve this issue by going into the Compatibility View Settings and

unchecking the box next to Display intranet sites in Compatibility View.

 97

Allowing Relative Paths to Work with Tomcat 8

Please note that in Tomcat 8.0, documents will load using absolute path, and not a

relative path.

The relative path is resolved to an absolute in FileContentHandler.setFilePath() via a

call to context.getRealPath(relativePathName).

The relativePathName should start with a /.

Please see the following code sample to allow relative paths to work on Tomcat 8 (also,

see FileContentHandler in the Javadocs directory of your product).

public static void setFilePath(String pathParam, ServletContext context)

{

if ((pathParam.startsWith("./") || pathParam.startsWith(".\\"))

&& context != null)

{

pathParam = pathParam.replace("./", "/"); pathParam =
pathParam.replace(".\\\\", "/");

gFilePath = context.getRealPath(pathParam)

+ File.separator;

}

else

{

gFilePath = pathParam;

}

Logger.getInstance().log(Logger.INFO,

"File path for documents is configured to "+ gFilePath);

}

Displaying a Document as Landscape

If the text input document is displayed as portrait and you would like to display it as

landscape, set the ascii.attribute parameter.

 98

Getting a ClassNotFoundException Error

A return status of -38 EXCEPTION_ERROR indicates an exception was thrown. This

usually includes a stack trace with information about what caused the exception.

If the stack trace includes java.lang.NoClassDefFoundError: this indicates the issue is a

missing .jar file. The name of the class following java.lang.NoClassDefFoundError: can

be used to determine which .jar file cannot be found.

Check your java CLASSPATH carefully to ensure the directory containing the .jar is in the

path. Please feel free to contact Snowbound Support at http://support.snowbound.com

for help determining which .jar is missing.

http://support.snowbound.com/
http://support.snowbound.com/

 99

	About Snowbound Software
	Important information
	Getting started
	Licensing
	System requirements
	Content server
	Validation minimum requirements
	Performance minimum requirements
	Performance recommended requirements

	Servlet container
	Server Java version
	Client browser versions

	Determining memory requirements
	Determining memory required to display documents
	Determining memory requirements based on the number of users and pages viewed

	Installing VirtualViewer HTML5
	Verifying your installation
	Viewing sample documents
	Viewing your documents

	Capacity Planning
	Default Configuration Maximizes Performance
	Recommended JRE Memory Settings
	Determining memory requirements based on the number of users and pages viewed
	Caching to Improve Performance
	Do you need caching at all?
	Sizing the Cache if You Need It
	Cache maintenance
	Revalidate cache method called for every page
	When Does the Cache Get Cleared?
	When the Cache Size Is Reached
	Monitoring the Cache Size
	Cache Setting in Tomcat
	Caching and security

	Working with the Content Handler
	What is the Content Handler?
	How the Content Handler Works
	Defining a Custom Content Handler
	VirtualViewerContentHandlerInterface

	Authentication
	Single Sign On (SSO)

	Getting Document Content
	Document content as a byte array
	Document content as a file
	Document content as a vector

	CacheValidator
	Cachevalidator method detail
	Parameters
	Returns

	Event Notification and Handling
	eventNotification
	Parameters
	Key/Value pairs passed on page request
	Key/Value pairs passed on annotation save
	Key/Value pairs passed on print
	Key/Value pairs passed on export
	Key/Value pairs passed on document close
	Key/Value pairs passed when retrieved from the internal cache

	Returns

	Event notification rotate page
	Extracting Parameters from ContentHandlerInput

	How to return an error for display in the client
	Content Handler method documentation
	Document Repository Specific Information
	Alfresco
	Alfresco Quickshare Support added in 4.10
	Alfresco Watermark Support added in 4.10

	IBM Filenet P8
	OpenText Documentum
	Pega Systems

	Configuration guide
	Toolbar Configuration
	Toolbar button configuration
	Toolbar button group configuration
	Changes in VirtualViewer 5.x

	Feature-specific Configuration
	Username public API
	Document Properties
	The Pages and Documents Panel
	Document Notes Panel
	The Magnifier
	Configuring email documents
	Text Annotations
	Configuring the Annotations Checkbox
	Resize text annotations
	Annotation Commenting
	Annotation Navigation
	Annotation Redaction Tags

	Text Rubber Stamp Annotations
	Image Rubber Stamp Annotations
	Dynamically Load Custom Image Stamps via Javascript API
	Consolidate Annotation Layers
	Substitute Image Thumbnails
	Search
	Search default colors

	OCR Configuration
	Page manipulation
	Disabling Page Manipulations
	Rotate Specific Pages
	Disabling Copy to New Document

	Split screen
	Defining keyboard shortcuts

	Localization
	Localization Files
	Converting Terms
	Supporting Accents/Special Characters
	EXAMPLE: Create a French Language Translation File

	Force a Specific Language

	Advanced customization
	Virtual Documents
	Loading Virtual Documents
	Virtual Document Syntax
	Displaying a Virtual Document
	Virtual Documents: Save Document As
	Printing Virtual Documents

	Special annotation layers
	Enabling Snowbound annotations
	Snowbound annotation supported configurations
	Supported server configurations
	Supported client configurations

	Configuring FileNet annotations
	FileNet annotation supported configurations
	Supported server configurations
	Supported client configurations

	Special Annotation Mapping

	Annotations Security: Watermarks and Redactions
	The Annotation Security Model
	Permission Levels
	Level Definitions

	Securely retrieving annotation layers
	Key/Value Pairs

	Saving Redaction Layers
	Printing Layers

	DWG Layer Support
	DWG XREF Support

	Watermark JSON Files
	Watermark properties
	Watermark.json file sample

	Tips and troubleshooting
	Tips
	Changing the Default Directory
	Changing the default directory for image rubber stamps
	Documents Slow to Load in Multiple Documents Mode
	Improving Performance or Quality
	Setting the Bit Depth (xxxBitDepth)
	Setting the DPI (xxxDPI)
	Setting the Format (xxxFormat)
	Setting Office 2007 - 2010 Documents to Display Color Output

	Troubleshooting
	Submitting a Support Issue
	"Please wait while your image is loaded" Message Displays Indefinitely
	404 Not Found
	405 Method Not Allowed
	For IIS5:
	ForIIS6:
	ForIIS7:

	500 Internal Server Error

	Annotation Text Does Not Appear on Separate Lines
	Unable to Enter More Text After Using the “-” Key in an Annotation
	Getting an Evaluation Period Expired Error Message When Creating a War File
	Fonts Do Not Display Correctly
	Excel 2007 XLSX files return -7 Format_not_found error
	XLS or XLSX Page Content Truncated
	Overlay Resources Not Pulled into APF or MODCA Document
	Documents Loading Slowly in Multiple Documents Mode
	Images Disappear in Internet Explorer 9 when Zooming or Rotating
	Internet Explorer Limits URLs to 2048 Characters
	Internet Explorer Defaults to Compatibility View
	Allowing Relative Paths to Work with Tomcat 8
	Displaying a Document as Landscape
	Getting a ClassNotFoundException Error

