
VirtualViewer 5.0 Release Notes

Snowbound Software Corporation•
questions@snowbound.com•
(617) 607-2010•

Table of Contents

VirtualViewer 5.0 Release Notes
New User Interface Design○

SnowDoc for VirtualViewer Java○

Load Font Files into VirtualViewer Java○

Improved Documentation○

Content Handler Interface Updated (Content Handler Modification Required)○

New Thumbnail Tab for Viewing Annotation Information○

New and Changed Callbacks○

New and Changed Client-side API○

Loading Custom Image Stamps○

Retain Scroll Position Between Documents○

•

Fixes and Changes
Content Handler○

Improved EhCache Error Handling in VirtualViewer Java○

Miscellaneous○

•

VirtualViewer 4.14 Release Notes•
New Features

Document Filter○

API for Retrieving User Display Name○

Streaming Video Support○

Overwrite Original Format Notice○

New and Changed Callbacks○

•

Fixes and Changes
Multiple network requests for each image on Internet Explorer and Edge○

Large images and SVGs on Internet Explorer○

Miscellaneous Fixes and Changes○

•

VirtualViewer 4.13 Release Notes•
New Features

Save Default Choices for Document Dialogs○

Updated Search○

Configurable Highlight Colors for Search○

New Callbacks○

Configuration to Disable User Preferences○

Dynamic Debug Logging○

Simple Logging Facade (Java)○

Common Logging Facade (NET)○

•

https://snowbound.com/
mailto:questions@snowbound.com

Fixes and Changes
Sticky note updates○

enableOcr configuration fixed○

PDF signature printing issue○

Misc. Fixes/Changes:○

•

VirtualViewer v4.12 Release Notes•
New Features

Video○

Add configuration to auto-resize only sticky notes○

Set document display name API○

Highlight annotation button currently in use○

Redaction navigation○

Page manipulation with bookmarks○

Cache-seeding support (Java)○

•

Fixes and changes
Stricter URL encoding requirements in Java○

officeLicensePath parameter has been replaced by ODFLicensePath○

VirtualViewer initialization API are easier to work with○

Preserve document scroll when zooming○

Preserve document scroll and zoom when switching between tabs○

disableUploadDocument parameter moved to server○

Removed sample content handlers from VirtualViewer distributable○

Public print API○

Alternative License Loading (Java)○

Misc. Fixes/Changes:○

•

VirtualViewer 5.0 Release Notes

New User Interface Design

All toolbar icons and VirtualViewer's main user interface have been updated to a colorful, flat, and
modern look. There is no change to the function or placement of any icons, and no changes to
configuration. This feature is enabled by default.

Icons are now displayed as an icon font, rather than individual images loaded by URL. This
speeds up the loading time of the viewer, especially on highly latent connections, and provides a
smoother user experience.

Custom buttons may still be loaded as invidual images. To do this, place the image in a web-
accessible directory and point to the image path in the iconImage attribute of a button configuration
item in user-config/toolbar-config.js. To blend in with VirtualViewer toolbar icons more smoothly,
provide a blue version of the image to display when the user hovers over the icon; set additional
CSS to display this blue icon in place of the original image when the CSS pseudoselectors :hover
and :focus are active.

SnowDoc for VirtualViewer Java

VirtualViewer has significantly improved the performance of docx, xlsx, pptx, and doc files, using
the new SnowDoc feature of RasterMaster Java 20.0.

OfficeX files are performance-intensive to lay out, since they generally don't contain data
specifying where pages begin and end, or locations of characters on pages. Previously,
VirtualViewer and RasterMaster were redoing that layout work multiple times; with SnowDoc,
layout information is cached between calls so the performance-intensive processing only needs to
be done once.

The most dramatic change can be seen by loading a long docx file in VirtualViewer and navigating
to the last page. Before 5.0, loading the final page of docx document would take significantly longer
than loading a beginning page. Now, the loading time is short, and no longer than any other page
in the document.

This new feature does not require any updates to configuration or to content handler code.
Initialization parameters for OfficeX and doc formats in web.xml will be respected, with the
exception of the default page dimensions for xlsx files. In the case of xlsx files, the xlsxWidth and
xlsxHeight initialization parameters will be disregarded in 5.0 in favor of the native dimensions of
the document.

It is important to note that caching is crucial to the performance improvements of these files. The
initial load of a file with SnowDoc takes the most time; VirtualViewer needs to cache these
documents to avoid taking that performance hit over and over. If current configuration or content
handler code disables use of ehcache in VirtualViewer, consider enabling caching for docx, xlsx,
pptx, and doc files.

Load Font Files into VirtualViewer Java

It is now possible to include font files in the VirtualViewer Java war file. Those fonts will be used to
render documents, even if the font is not installed on the server environment running
VirtualViewer. The largest effects of this new feature are on Office formats. Previously, in order to
accommodate uncommon or rarely-used fonts in an Office document, the font would need to be
installed on the server running VirtualViewer, or the document might experience problems with text
layout. With this feature, specific fonts no longer have to be installed on the entire server.

The effects of loading a font will differ depending on the format of the loaded document, and
whether a document is loaded as an SVG or a PNG. For example, a .docx document loaded as an
SVG will display with the correct layout, but may not render in the font unless the font is installed
on the client machine. A .docx document loaded as a PNG will display with both the correct layout
and the correct font rendered into the image.

To enable this feature, simply add a .ttf file to a folder called fonts within the VirtualViewer war.
Within the war, there are folders called js and css. Add a folder called fonts as a sibling to these,
so the folder structure looks like this:

VirtualViewer war file
--WEB-INF/
--resources/
--js/
--fonts/ <===

--css/

Add .ttf files to the fonts folder:

VirtualViewer war file
--WEB-INF/
--resources/
--js/
--fonts/
----MyFont-Italic.ttf <===
--css/

Finally, restart VirtualViewer to initialize the new fonts.

Improved Documentation

VirtualViewer API and code documentation will no longer be included in the PDF manual at
www.snowbound.com, but will be generated fully by Javadoc and JSDoc utilities. This allows for
complete and up-to-date documentation of API and public code.

The new documentation may be found at the VirtualViewer Manuals Page. Some highlights are:

VirtualViewer client-side Javascript API documentation, generated by the JSDoc utility•

VirtualViewer Java Content Handler API documentation, generated by the Javadoc utility•

A transition guide for upgrading to VirtualViewer version 5.0. This document, written as a
technical guide, steps through the process of modifying the content handler and updating
interaction with VirtualViewer API

•

Content Handler Interface Updated (Content Handler Modification Required)

The interface between the content handler and VirtualViewer have been updated to make it easier
to use and set up. Many of these changes will require existing content handlers to be updated to
work with the new standard.

A detailed guide on transitioning to 5.0 can be found here.

FlexSnapSI to VirtualViewer

A few classes with names containing FlexSnapSI, our old product name, have been updated to
VirtualViewer. This includes the new VirtualViewerContentHandlerInterface and
VirtualViewerAPIException.

Usable classes organized into packages

All interfaces and classes that are usable by the content handler can now be found in the
com.snowbound.common and com.snowbound.contenthandler namespaces, and all classes in those
namespaces have a new detailed API documentation on our website. This will make it very easy
to find what is needed for your content handler and see what additional tools are available.

https://snowbound.com/support/manuals
https://www.snowbound.com/support/manuals
https://docs.snowbound.com/virtualviewer/5.0/javascript-api/
https://docs.snowbound.com/virtualviewer/5.0/java/content-handler-api/
https://docs.snowbound.com/virtualviewer/5.0/java/Transitioning%20to%20VirtualViewer%20v5.0.pdf
https://docs.snowbound.com/virtualviewer/5.0/java/Transitioning%20to%20VirtualViewer%20v5.0.pdf

Classes in namespaces other than com.snowbound.common and com.snowbound.contenthandler are for
internal use by VirtualViewer and may be obfuscated.

Content handler interfaces modularized

VirtualViewer's interfaces have been refactored to make it easier to separate out the features you
want to implement for your content handler. There is now only one required content handler
interface, VirtualViewerContentHandlerInterface, which contains every method a content handler
must implement. All other interfaces in com.snowbound.contenthandler.interfaces can be added to
enable their features or left out without the need to 'stub out' methods.

Many of our interfaces for new features were already modular in this fashion, but now more older
features like getAvailableDocumentIds and event notification have been modularized in the same
way.

Existing content handlers should be updated to make sure they implement all the interfaces they
need, or their old methods will not be called by VirtualViewer.

Explicit commands for content handler actions

The content handler method saveDocumentComponents is now expected to only save, not delete,
document components such as bookmarks, document notes, and watermarks. There are three
new content handler methods--deleteBookmarkContent, deleteNotesContent, and
deleteWatermarkContent--to handle deletion.

Previously, saveDocumentComponents was expected to delete a component such as an XML file
storing Snowbound bookmark data if it received a null value. Now, saveDocumentComponents is
expected to make no changes on receiving a null value for a component. This is crucial, because
VirtualViewer will now send a null value for a component if there have been no changes to save.
VirtualViewer will call a deleteBookmarkContent, deleteNotesContent, or deleteWatermarkContent to
delete all bookmarks, document notes, or watermarks.

With this feature, VirtualViewer is more maintainable in the future, may send smaller amounts of
data, and solves a saving problem.

This feature requires content handler updates for VirtualViewer to function, but the content handler
may still compile if the updates are not completed.

ERROR_MESSAGE fully replaced by VirtualViewerAPIException

Throwing a VirtualViewerAPIException is now the only way to pass an error to VirtualViewer. The
erroring request will be interrupted exception's message will be logged and may be displayed to
the end user.

New Thumbnail Tab for Viewing Annotation Information

A new tab in the thumbnail pane, displayed to the right of the main document pane, lists metadata
for the annotations in a document. Each annotation is described by a small block of text containing

the type of the annotation, the page that contains it, and its creation and most-recent modification
details. This information is updated live as the user creates, deletes, and modifies annotations.

The annotation information tab is disabled by default, and may be turned on by setting the
configuration item showAnnotationList in config.js to true.

New and Changed Callbacks

The VirtualViewer callback system is now implemented on top of JQuery custom events. The
existing API to set a callback, virtualViewer.setCallback(callbackName, handlerFunction), still has
the same signature; now, calling setCallback multiple times will set multiple handler functions to a
single callback event. The handler functions will be called synchronously in an arbitrary order.
Note that disableTextContextMenu and disablePageManipulationContextMenuOptions, the only callbacks
to support a return value from the handler, may still only have one handler function active at a
time.

Handler functions can also be removed by a new API, virtualViewer.removeCallback(callbackName,
removeVirtualViewerHandlers). Removing a callback by setting its handler function to null or
undefined (for instance, virtualViewer.setCallback('rotation', null);) will no longer deactivate the
handler function; removeCallback should be used instead.

Using this mechanism for callbacks not only allows for more flexible integrated code, it allows for
custom callbacks to be added without overriding VirtualViewer default callbacks. For instance,
VirtualViewer code uses callbacks for default behavior after uploading or saving a document as.
Removing a callback with the second parameter set to true will remove the default VirtualViewer
behavior for such a callback, but otherwise, behavior can now be added while preserving the old.

Callback API

virtualViewer.setCallback(callbackName, handlerFunction) adds a callback handler function.
The handler function will be called synchronously from VirtualViewer code.

callbackName {string} The name of the callback. For instance, pass in "saveAsDocument"
to set a handler function called when a document has completed saving as. Callback
names and detailed descriptions can be found in the VirtualViewer clientside
documentation.

○

handlerFunction {function} This function will be called and given a single argument
object. The attributes of the argument object vary from callback to callback.
VirtualViewer code will not respect the return value of a handler function except in two
cases: the callbacks disablePageManipulationContextMenuOptions and
disableTextContextMenu.

○

Returns true if the callback name was found and the handler function was set○

•

virtualViewer.removeCallback(callbackName, removeVirtualViewerHandlers) deactivates and
removes all handler functions for the given callback name.

callbackName {string} The name of the callback. For instance, pass in "saveAsDocument"
to remove handlers that would fire when a document has completed saving as.

○

•

Callback names and detailed descriptions can be found in the VirtualViewer clientside
documentation.
removeVirtualViewerHandlers {boolean} In some cases, VirtualViewer supplies default
handlers to callbacks. Most of the time, these handlers should be left in place to avoid
unexpected behavior. However, it may be necessary to turn off default VirtualViewer
handlers to improve integration. In this case, set this parameter to true. In all other
cases, this parameter may be left out, and only custom callback handler functions will
be removed.

○

Returns true if the callback name was found○

New Callbacks

onShowSelectTextContextMenu will be called from the show event of the menu that appears
when right-clicking the document. This menu may contain options to copy or redact text, to
perform OCR, or to add highlight annotations. The following parameters will be provided to
the callback in the argument object:

documentId {String} The ID of the document that the menu appears over○

•

Modified Callbacks

onDocumentLoad will be called when the document model has finished loading. Once the
document model has been loaded, the viewer considers the document itself to be loaded
and begins loading image- and page-specific information. The following parameters will be
provided to the callback in the argument object:

documentId {String} The ID of the document that has completed loading○

•

rotation will be called when a page is rotated. Pages can be rotated to 0, 90, 180, and 270
degrees. When freshly loaded from the server, a page always starts at 0 degrees rotation,
even if it was rotated in a previous VirtualViewer session. The following parameters will be
provided to the callback in the argument object:

documentId {String} The ID of the document whose page was rotated○

page {number} The 0-based index of the page that was rotated○

rotatedTo {number} The angle, in degrees, that the page was rotated to, compared to
its original zero position

○

rotatedBy {number} The angle, in degrees, that the page was rotated by, from its
position before rotation

○

degrees {number} The angle of rotation. This angle will match either rotatedTo or
rotatedBy

○

•

imageLoadCompleted will be called when an image has completed loading. Loading in
VirtualViewer can be a complicated process with several fallbacks for faulty images. This
callback is called at the end of the process, when an image is completely loaded and is
ready to draw. The following parameters will be provided to the callback in the argument
object:

val {boolean} Whether the image was loaded○

•

documentId {string} The ID of the document whose image is loading○

page {number} The 0-based index of the page that was loaded○

overlayImageLoadCompleted will be called when an image has completed loading for use as a
template overlay. The following parameters will be provided to the callback in the argument
object:

val {boolean} Whether the image was loaded○

documentId {string} The ID of the current base document○

overlayDocumentID {string} The ID of the document that is made transparent and
displayed over the base document

○

•

imageLoadRequested will be called when a request for an image fires off to the server.
VirtualViewer uses a buffering system to preload images. The following parameters will be
provided to the callback in the argument object:

val {boolean} Whether the image was requested○

documentId {string} The ID of the document whose image is loading○

page {number} The 0-based index of the page that is being requested○

•

New and Changed Client-side API

rotateSelectedPagesBy rotates specified pagees of the current document by 0, 90, 180 or 270
degrees from its current state.

pages {number[]} An array of the 0-based page indices that should be rotated.○

degrees {number} A value of 0, 90, 180 or 270. These values may be negative.○

•

closeTab
tabId {number|string} Either the 0-based index of the tab or the document ID that the
tab refers to.

○

•

removeWatermarkFromPage
page {number} The 0-based index of the page that the watermark is removed from. If a
page has multiple watermarks, all the watermarks will be removed from that page.

○

•

hideAnnTagsPopUp
hide {boolean} Whether to hide the annotation tag section. If this value is false or
undefined, it will not hide the annotation tag section.

○

•

API with New Argument Objects

The following API previously took upwards of ten arguments. Parameter lists as long as that are
unwieldy and fragile. These functions now take argument objects, with the parameter names as
keys and the arguments as the values. Possible attributes of the arguments object are noted here
as options.parameterName.

saveDocument will save the current document, including annotations and any image
manipulations. The most basic call of this function is simply virtualViewer.saveDocument(),
which saves the current document as it is. Passing in additional parameters can save
documents other than the current (pass in a docId); can save a document as (pass in
options.newDocumentId); and in Save As can include or exclude annotations, redactions,
pages, and many more aspects of a VirtualViewer document.

•

docId {string} The ID of the document to save. This document should be currently open
(though it may not be currently displayed, it should at least be open in a VirtualViewer
tab). If not set, the current document will be saved. This is the only parameter not
passed in the options object.

○

options {object} An object storing optional parameters. All following parameters should
be passed as attributes in this object.

○

options.newDocumentId {string} Set this parameter to save the current document as a
new document in the system. If set, this function operates as "save as". The original
document will remain unchanged, and VirtualViewer will ask the content handler to
save a new document with a new ID. Several of the following parameters are designed
to only affect Save As.

○

options.newDisplayname {string} Set the display name of the new document. This will
only be respected if newDocumentId is set.

○

options.burnRedactions {boolean} Set to true to permanently burn redactions into the
new document. If redactions are burned in, the underlying image is converted to the
redaction's black box, and underlying text is removed. This is not reversible.

○

options.includeRedactionTags {boolean} Whether or not to include redaction tags. This is
only respected if burnRedactions is true.

○

options.includeTextAnnotations {boolean} Used to permanently burn text annotations
into the new document.

○

options.includeNonTextAnnotations {boolean} Used to permanently burn non-text
annotations into the new document.

○

options.copyAnnotations {boolean} Used to copy annotation layers (including
redactions) into the new document.

○

options.includeWatermarks {boolean} Whether to permanently burn watermarks into the
new document. If true, copyWatermarks setting is ignored and watermarks are not
copied.

○

options.pageRangeType {string} Either "all", "complex" or "current". This parameter is only
respected in Save As.

○

options.pageRangeValue {string} A range of pages numbers to export. Dashes and
commas can be used: for instance, "2-4,7,10". This will only be respected if
pageRangeType is set to "complex". This parameter is only respected in Save As.

○

options.copyWatermarks {string} Whether to save/copy watermarks alongside the
document. Watermarks saved with this parameter will be editable in the future.

○

options.saveAsFormat {string} This can be "Original", "PDF" or "TIFF". Note that
"Original" may only be used when exporting a document without including annotations,
redactions, watermarks, or document notes. Additionally, to export as the original
format, pageRangeType must be "all". This parameter is only respected in Save As.

○

options.skipOverwriteDialog {boolean} If the current document will be overwritten by a
save action, VirtualViewer alerts the user with a dialog. Provide true to this parameter
to suppress that dialog.

○

options.documentPaneIndex {number} If document compare is open, provide an index to
specify whether to save the first or second open document. Provide 0 for the left-hand
document and 1 for the right-hand document. This may be helpful if the user has the
same document open in both panes.

○

exportDocument will export the current document as a PDF, a TIFF, or the original format, and •

locally download the resulting file.

options {object} The arguments object. All following parameters should be passed as
attributes in this object.

○

options.exportFormat {string} Either "Original", "PDF" or "TIFF". Note that "Original" may
only be used when exporting a document without including annotations, redactions,
watermarks, or document notes. Additionally, to export as the original format,
pageRangeType must be "all".

○

options.fileExtension {string} This is based on the exportFormat parameter. If
exportFormat is "Original", then the extension must be the current file extension of the
document. If "PDF", the extension should be "pdf". If "TIFF", then "tif". Importantly, the
extension can only be tif, pdf, or the original extension. VV will not convert a document
to any format other than PDF, TIFF, or the document's original format.

○

options.includeTextAnnotations {boolean} Whether or not to include text annotations.○

options.includeNonTextAnnotations {boolean} Whether or not to include non-text
annotations.

○

options.burnRedactions {boolean} Whether or not to burn in redactions. If redactions are
burned, the redaction becomes part of the image and any underlying text is removed. It
is not reversible.

○

options.includeRedactionTags {boolean} Whether or not to include redaction tags.○

options.includeDocumentNotes {boolean} Set this to true to append document notes as
text pages at the end of the document.

○

options.includeWatermarks {boolean} Set this to include watermarks in the exported
document.

○

options.pageRangeType {string} Either "all", "complex" or "current". "all" will export all
pages; "current" will export just the current page; but "complex" requires the parameter
pageRangeValue to be set as well.

○

options.pageRangeValue {string} A range of pages numbers to export. This may look like:
"1-2,3,6,7-10". VV allows commas and dash-separated ranges.

○

Returns true if the export request has successfully been fired off, and a falsey value if
not.

○

printDocument will print a document, using the browser's print dialog.

options {object} An object storing optional parameters. All following parameters should
be passed as attributes in this object.

○

options.documentId {string} The ID of a document to print. This document must be open
in the viewer.

○

options.printToPDF {boolean} If true, a PDF version of the document will be exported to
a file. The user will be presented with a save dialog.

○

options.includeAnnotations {boolean} Whether to include annotations on the printed
document.

○

options.includeRedactions {boolean} Whether or not to fully redact the printed
document.

○

options.includeRedactionTags {boolean} Whether or not to include redaction tags (only
used when redactions are applied to the document).

○

options.includeWatermarks {boolean} Whether or not to print with any of the ○

•

VirtualViewer-generated watermarks currently on the document.
options.includeDocumentNotes {boolean} Set this to true to append document notes as
text pages at the end of the document.

○

options.pageRangeType {string} Options are "all", "complex" or "current". If "complex", the
parameter pageRangeVal must be included; otherwise it will be ignored.

○

options.pageRangeValue {string} A range of pages numbers to print (only used for
"complex" pageRangeType). Commas and dashes may be used. For instance, "2-
4,7,10-11" would print only pages 2, 3, 4, 7, 10 and 11.

○

emailDocument will email the current document as a PDF, a TIFF, or as the original format.
VirtualViewer email requires some server-side configuration.

options {object} The arguments object. All following parameters should be passed as
attributes in this object.

○

options.format {string} Either "Original", "PDF" or "TIFF". The document must be
emailed as a .pdf or .tif file if annotations, redactions, watermarks, or document notes
are included, and if pageRangeType is any value other than "all".

○

options.includeTextAnnotations {boolean} Whether or not to include text annotations.○

options.includeNonTextAnnotations {boolean} Whether or not to include non-text
annotations.

○

options.burnRedactions {boolean} Whether or not to burn in redactions. If redactions are
burned, the redaction becomes part of the image and any underlying text is removed. It
is not reversible.

○

options.includeRedactionTags {boolean} Whether or not to include redaction tags.○

options.includeDocumentNotes {boolean} Set this to true to append document notes as
text pages at the end of the document.

○

options.includeWatermarks {boolean} [] Set this to true if watermarks should appear on
the emailed document.

○

options.pageRangeType {string} Either "all", "complex" or "current". "all" will email all
pages; "current" will email just the current page; but "complex" requires the parameter
pageRangeValue to be set as well.

○

options.pageRangeValue {string} A range of pages numbers to export. This may look like:
"1-2,3,6,7-10". VirtualViewer allows commas and dash-separated ranges.

○

options.fromAddress {string} The sender's email address. The default can be changed in
config.js.

○

options.toAddresses {string} A comma-separated list of recipient email addresses. For
instance, "myemail@email.com,youremail@email.com". The default can be changed in
config.js.

○

options.ccAddresses {string} A comma-separated list of email addresses to CC. For
instance, "myemail@email.com,youremail@email.com". The default can be changed in
config.js.

○

options.bccAddresses {string} A comma-separated list of email addresses to BCC. For
instance, "myemail@email.com,youremail@email.com". The default can be changed in
config.js.

○

options.subject {string} The subject line (title) of the email.○

options.emailBody {string} The message (body) of the email.○

Returns true if the email request is sent off successfully, and a falsey value if not.○

•

Loading Custom Image Stamps

With VirtualViewer's image stamp annotations, users can apply a set of small, administrator-
defined images to a document. The available images were defined in web.xml or web.config, and
provided in VirtualViewer's resources directory. This method did not allow dynamic adjustment to
the list of stamps, and could cause problems on different servers.

Now, the initial list of available image stamps are configured in config.js, and can be modified
dynamically by Javascript API. Further, stamps are loaded with a provided URI, rather than
assuming a stamp's presence and naming convention in the resources directory.

New API

Several of the following API take image stamp objects. An image stamp object has four attributes,
"url", "stampTitle", "width", and "height". Only "url" and "stampTitle" are required. An example
object, from config.example.js, would look like:

{
 stampTitle: "Approved",
 url: "./resources/stamps/Approved.png",
 width: 535,
 height: 293
}

clearImageStamps will remove all the stamp options from the Image Rubber Stamp dropdown
list in the toolbar.

•

createImageStamp will add a single image stamp to the Image Rubber Stamp dropdown on the
toolbar.

url {string} The URI of the stamp's image.○

stampTitle {string} The displayed title of the stamp. This will appear in the list in the
toolbar.

○

options {object} Dimension options for the stamp. The attributes of this object are listed
below as options.attribute.

○

options.width {number} The width of the stamp image. If not provided, the native width
of the stamp image will be used.

○

options.height {number} The height of the stamp image. If not provided, the native
height of the stamp image will be used.

○

•

createImageStampArray will add a whole array of image stamps to the viewer. The provided
stamps will append to the existing list of stamps. A stamp object has mandatory URL and
title properties, and optional width and height properties.

stampList {array of image stamps} An array of stamp objects, that require "url" and
"stampTitle" properties to be valid, as described above.

○

•

createImageStampArrayFromFunction will initialize the viewer's list of image stamps. This takes a
callback function as a parameter, and calls that function to get the actual list of image
stamps that will be used in the viewer.

•

fn {function} This function is called with no parameters. It is expected to return an array
of image stamp objects, as described above. The array returned by this function will be
used to fill the stamp list on the toolbar.

○

Configuration

The web.xml initial parameter customImageRubberStamps has been deprecated in favor of the new
config.js initialStamps list and its related stamp Javascript API.

The configuration item initialStamps in config.js holds a list of image stamp objects. An image
stamp object consists of a display name for a stamp--the "stampTitle" attribute--and the URI of the
stamp image in the "url" attribute. Optional attributes "width" and "height" allow for default
dimensions other than the stamp image's native dimensions.

Due to the URI provided to the stamp object, stamp images may be stored in any accessible
location. That may still be locally in the resources/stamps directory within VirtualViewer.

Retain Scroll Position Between Documents

The configuration item fitLastBetweenDocuments overrides the default zoom level, and will open a
document at the same percentage of zoom as the last-open document. For instance, if a user
zooms to 50% on a document open in the first tab, the document in the second tab will also
appear at 50% zoom.

Now, there is a new configuration item to do the same with scrolling: positionLastBetweenDocuments.
This will etain the scroll position of the previously-open document. So, for instance, the user may
scroll document A to the third page, and scroll a little to the right to center a particular form field on
the screen. When the user opens document B, it will open scrolled to the third page and a little to
the right. This setting works best with fitLastBetweenDocuments enabled, and with documents of the
same approximate size.

To enable, set the configuration item positionLastBetweenDocuments to true in config.js.

Fixes and Changes

Content Handler

In addition to the major content hander changes noted above, some minor fixes and changes have
been made.

Some deprecated and/or unused properties have been removed from ContentHandlerInput
and ContentHandlerResult.

•

Event notification properties are now deprecated on ContentHandlerResult. The equivalent
properties on ContentHandlerInput should now be used.

•

The annotation permission level constants on VirtualViewerContentHandlerInterface have
been deprecated. The new PermissionLevel enum should be used instead.

•

Improved EhCache Error Handling in VirtualViewer Java

Previously, an incomplete or malformed ehcache.xml document would completely shut down
VirtualViewer. Now, VirtualViewer handles and logs the error, and sets the cache that it was trying
to configure as a no-op cache.

Miscellaneous

Event notification now provides only necessary parameters to the content handler.•
The PermissionsEntities annotation layer property has been removed. This is not related to
annotation permission levels; permission levels remain.

•

Assigning the clientInstanceId with virtualViewer.setClientInstanceId() can now be done in
beforeVirtualViewerInit; previously the value would be overwritten on initialization.

•

Boostrap and JQuery external libraries are updated.•
Default fit and zoom preferences apply properly to newly-loaded documents.•
Posted messages are no longer caught by a VirtualViewer listener unless they apply to
VirtualViewer.

•

The last tab open in the viewer can now be closed, leaving an empty viewer.•
Only display the annotation tag section in the annotation pop up menu if tags are available.•
Annotation size "nubs" are now correctly sized for touch and non-touch environments.•
VirtualViewer Java no longer clutters the server log with irrelevant, non-VirtualViewer
messages.

•

vvConfig.useBrowserScaling turns off Pica scaling.•
The magnifier now displays a small 'x' button, so it can be closed directly rather than by
clicking on the toolbar button a second time.

•

VirtualViewer Java server code is now obfuscated to further clarify public and private code,
improving content handler stability. All public classes should still be available for use. The
VirtualViewer 5.0 transition document has more details on public and private classes in 5.0.

•

The JSESSIONID cookie is restored and updated on the VirtualViewer client on each server
request.

•

VirtualViewer 4.14 Release Notes

New Features

Document Filter

There is now an easy way to filter available documents by name in the document navigation pane.
This feature is enabled by default, but can be disabled by setting the config.js parameter
showDocumentFilter to false.

API for Retrieving User Display Name

virtualViewer.getUsername(): A new API has been added to programmatically retrieve the current
user's displayed user name on the client.

https://docs.snowbound.com/virtualviewer/5.0/java/Transitioning%20to%20VirtualViewer%20v5.0.pdf

virtualViewer.getUsername() takes no arguments•

Returns a string containing the user name currently set in the browser•

Streaming Video Support

Virtual Viewer now progressively loads videos when possible. This allows the user to play the
video as it buffers, instead of waiting for the entire video to load before allowing playback.
Browsers may not support progressive playback on certain files that have not been optimized for
progressive loading, on certain files that the browser does not support, or for other factors of the
browser's implementation of video. If the browser is not able to load a video progressively, then it
will fall back to previous behavior and load the entire file.

This feature requires no configuration and is on by default. Video behavior in VirtualViewer is the
same as before this feature; the only visible change is that the user may be able to play a video in
VirtualViewer before the entire file has loaded. There are no API changes or additions.

Overwrite Original Format Notice

When a user makes a page manipulation (e.g. crop, rotate, insert a page, remove a page etc) on a
document that is not TIFF or PDF and saves, the document's original format is always overwritten
to either TIFF or PDF. With this feature the user is warned when saving if the original format will
be changed. The notice dialog gives the user three options:

"Save and Overwrite": Continue the save and overwrite the original document's format.

"Save to New Document": Close the dialog and open the "Save As" dialog.

"Cancel": Quit the save operation and close the dialog.

The dialog only pops up if the user has made a page manipulation and the original file format is
not TIFF or PDF. Simply saving annotations, or modifying a document that is already a TIFF or
PDF, will not result in overwrite. This feature does not change saving behavior; it notifies the user
of the current saving workflow. This warning can be prevented from appearing by setting
enableSaveOverwriteWarning in config.js to false.

New and Changed Callbacks

imageLoadCompleted will be called when an image has finished loading and is able to be
displayed. Note that this callback was previously named imageLoadFinished; this callback
imageLoadCompleted is a replacement of imageLoadFinished.

•

afterTabClosed will be called after a tab closes successfully. It will not fire if there's an error
while closing the tab, or if the user initiates closing the tab and cancels. The following
parameters will be provided to the callback in the argument object:

closedDocumentId {String} The ID of the document that has just been closed.○

•

onLoadUsername will be called when User Preferences code has finished loading a username •

from localforage, or has found that there is no username to be loaded. The following
parameters will be provided to the callback in the argument object:

loadedUsername {String} The user name that has just been retrieved from localforage○

previousUsername {String} The user name that was previously set in the viewer○

Fixes and Changes

Multiple network requests for each image on Internet Explorer and Edge

Previously, a quirk of Internet Explorer and Edge's image loading workflow could create a race
condition. Both browsers may have significant time between when the image is done loading and
when the image is usable; due to a bug in VirtualViewer's loading process, this could lead
VirtualViewer to request the image again.

Now, VirtualViewer accounts for Internet Explorer and Edge with more nuanced checks for image
readiness, preventing multiple requests.

Large images and SVGs on Internet Explorer

As an older browser, Internet Explorer can handle very large images poorly: if a web application
uses a great deal of memory, Internet Explorer will behave in unexpected ways. A large image
with a high DPI, or multiple large images, may not be displayed or may cause errors.

Now, VirtualViewer has several fallbacks in the event of an image loading or drawing failure. First,
as before, if an image is loaded as an SVG, VirtualViewer will attempt to reload it as a raster
image. After that, if the image is still too large or still cannot be drawn, VirtualViewer will load a
downscaled, smaller image, as an attempt to use less memory in the browser. Beginning with
such large and high-resolution images means that displaying a slightly smaller image will not
provide a dramatic degradation in quality.

If the downscaled image still fails to function, VirtualViewer now has more fallbacks beyond
displaying a blank page; an expanded version of the page's thumbnail will be displayed in place, to
allow the user to manipulate the page and its annotations.

Miscellaneous Fixes and Changes

Fixed a bug on VirtualViewer .NET only, where sparse documents would display the first
document's image as every page. Now, sparse documents are properly displayed on
VirtualViewer .NET.

•

enableCacheObfuscation is no longer required to be set in the client-side config.js: only the
server-side configuration is needed and the client setting will be ignored.

•

Fixed a bug where if a user printed two documents in very short succession, VirtualViewer
might print the last document instead of the most recent

•

Improved annotation selection to make it more natural. A user must now click on the visible •

line of a line or arrow annotation in order to select it, instead of anywhere in its large
bounding box

Fixed an issue with the annotation tag dropdown•

Ensured the annotation navigation panel hides and shows correctly when switching between
documents

•

Previously, the toolbar jump-to-page text box in Internet Explorer would behave
unexpectedly, and sometimes interpret a backspace as a browser "back" command. Now,
the text box behaves in a standard manner

•

Fixed user interface problems in the layer manager dialog•

Removed a source of error in the layer manager dialog by modifying the layer deletion
workflow. Previously, the layer would be deleted on the server immediately upon clicking
"OK" in the layer manager dialog. Now, the layer will be deleted on the server only when the
user saves the entire document

•

Prevent Microsoft Edge from cutting off the bottom of extremely long documents•

Addressed video loading and downloading bugs•

Fixed a problem where document thumbnails could appear even if the thumbnail tab was
disabled

•

Videos resize properly in Edge•

If vvConfig.enableSingleClickImageRubberStamp is set to false, the stamp now draws in the
correct location, instead of initially appearing off the page

•

Fixed a bug where redaction buttons in the search panel might be enabled for documents
without text

•

Fixed a subtle bug could appear where drag-and-dropping a page thumbnail on a document
tab, in exactly the right place, could cause a browser error

•

Ensure that document notes load properly when switching between tabs•

Watermarks may now apply to a document created with Copy/Cut to New Document, if
requested by the user

•

Improved VirtualViewer's treatment of document IDs with special characters on .NET•

Fixed a bug where the dialog asking permission to OCR would appear inappropriately during
document compare

•

Update logic in the Export Document dialog so a user can no longer export a document in its
original format while including document notes

•

Hiding the top Image Controls toolbar no longer hides the thumbnail panel toggle•

Fixed UI bugs regarding disabled thumbnail tabs•

Annotations now cannot be copied and pasted onto a cropped document•

Annotation filtering and navigation works properly with Virtual Documents•

Postit Annotations now enforce minimum size on creation, instead of just on resize.•

VirtualViewer 4.13 Release Notes

New Features

Save Default Choices for Document Dialogs

Users may now save custom default choices for the Save As, Export, Copy to New, Cut to New,
Print, and Email dialogs.

For instance, a user's workflow may demand that all documents be exported as TIFFs. Previously,
the user would have to find the Format section in the Export dialog and click the TIFF radio button
for every export.

Now, the user can fill out the dialog with their preferred default choices and then click the button
labeled Save Preferences in the bottom left of the dialog. When the user opens the Export dialog
again, the form will be filled out with their saved defaults.

How to Use

To use this new feature, a user modifies the form choices in a dialog and saves those choices as
the new default. For instance, they may choose to set defaults in the print dialog. The user opens
the print dialog, and chooses the options to use going forward.

Clicking the Save Preferences button will save the user's choices. The dialog will still open
normally, and the user may still change options normally. The options that are selected
immediately on opening the dialog will now be the user's custom defaults.

Technical Details

Data will be stored in the browser's local storage, through the localforage library, so the
preferences will persist across sessions of VirtualViewer on the same browser. Radio buttons and
checkboxes will be stored; free text fields and page range fields will not have any defaults stored.

New Configuration Options

No configuration is necessary to enable this feature, but there are new configuration options to
pre-set certain dialog defaults.

vvConfig.includeRedactions The "Burn Redactions (Permanent)" checkbox will burn
redactions into an image. If this configuration item is true, "Burn Redactions (Permanent)"

•

will be checked by default.

vvConfig.includeRedactionTags The "Include Redaction Tags" checkbox will write redaction
tags onto the redactions on an image. If this configuration item is true, "Include Redaction
Tags" will be checked by default.

•

vvConfig.includeDocumentNotes The "Include Document Notes" checkbox will include the
document notes in the exported, saved, printed, or copied document. If this configuration
item is true, "Include Document Notes" will be checked by default.

•

vvConfig.includeWatermarks The "Include Watermarks" checkbox will include added
watermarks in the exported, saved, printed, or copied document. If this configuration item is
true, "Include Watermarks" will be checked by default.

•

Updated Search

VirtualViewer now supports document searches and OCR on Virtual Documents, Sparse
Documents, and compound documents. Search will also return correct results on documents
whose pages have been manipulated and that have not yet been saved; previously, it would use
the server version of a document, so could return results for a deleted page.

Pattern search is now supported on annotations. VirtualViewer may search annotation text, tags,
and notes for social security numbers, telephone numbers, credit card numbers, and email
addresses.

The user interface of the search tab has been updated with new button images, styles, and an
adjusted layout.

The search API remains largely the same, with a new addition:

Unchanged API:

virtualViewer.cancelCurrentSearch() stops the current search, and displays any already-
returned results.

•

virtualViewer.clearSearchResults() clears the current search, removing highlights from the
document and thumbnails from the search panel.

•

virtualViewer.nextSearchResult() advances the currently selected search result, switching
pages if necessary.

•

virtualViewer.previousSearchResult() moves the currently selected search result to the
previous match, switching pages if necessary.

•

virtualViewer.isDocumentSearchable() returns true if the document is searchable. It returns
false if the document is not searchable

•

virtualViewer.searchText(searchTerm, firstPage, lastPage, skipOcrPrompt) launches a search
through the current document's text for the given search term. This search is performed on
the server, and may perform OCR if the document has no text, OCR is enabled, and the user

•

consents. A progress bar will appear when search is launched, as document search is
performed asynchronously and in batches: a small batch of pages will be searched and a
new batch sent to the server when the previous batch is returned.

searchTerm {String} The word or words to search for. Set case sensitivity in your
configuration file.

○

firstPage {Number} Optionally define the start of a region of the document to search.
This is 0-indexed, and the default is 0.

○

lastPage {Number} Optionally define the end of a region of the document to search.
This is a 0-indexed, non-inclusive value. The default is the length of the document.

○

skipOcrPrompt {Boolean} If this parameter is set, document search will not prompt the
user before using OCR, but will go ahead and use it if necessary and if OCR is
enabled.

○

returns undefined○

New API:

virtualViewer.searchAnnotationText(searchTerm) launches a search through every annotation
on the current document for the given search term. Searched annotation text includes
annotation notes, text content, and tags. If no search term is provided and there is a search
pattern currently selected in the search tab, a pattern search through the annotations will be
launched.

searchTerm {String} The word or words to search for. Annotation search is case-
insensitive.

○

Returns undefined○

•

Configurable Highlight Colors for Search

Two new configuration parameters allow color customization for search. When a search is
completed, all search results are highlighted in an orange color on the document; the current
search result in focus is highlighted a light yellow.

The first option, vvConfig.searchColors.matchColor, sets the color for highlighting search results that
are not in focus. The second, vvConfig.searchColors.selectedMatchColor, sets the color for
highlighting the in-focus search result.

Both configurations may be set to a string that contains an rgba color, in the format
"rgba(255,78,0,0.2)". This is the default color for search-result highlights. The first three numbers
are RGB values to establish the color, and the fourth number is an alpha value--treated like a
percent--to define the transparency of the highlight.

New Callbacks

New callbacks have been provided to allow custom code to interact with VirtualViewer. In order to
set a callback, call virtualViewer.setCallback("callbackName", callbackFunction). This function
returns true if the callback was set correctly, and false if it was not. The callback function should
be defined, and should take a single argument object as a parameter. Then, for instance, if the
function is declared as function foo(args) { ... }, the arguments are accessible in the callback

function as args.firstArgument.

VirtualViewer is responsible for calling the provided callback function appropriately. For instance,
VirtualViewer will attempt to call the function set to the "switchToTab" callback whenever a user
switches their tab. Most callbacks do not pay attention to return values, but two new callbacks
require a boolean return.

annotationChanged is called whenever the user modifies an annotation; this will fire whenever
VirtualViewer itself judges that an annotation has been changed and the asterisk appears in
the tab name. The following parameters will be provided to the callback in the argument
object:

documentId {String} The ID of the current document whose annotations have been
modified

○

annotationLayerId {String} The ID of the layer that holds the modified annotation○

annotationId {String} The ID of the modified annotation○

•

disableTextContextMenu is called when the text context menu is about to appear, and if the
callback function returns true, the context menu will be disabled. This context menu can
contain options to copy and cut text if any is selected on the document, to perform OCR, or
to close document compare. The callback function will be provided one parameter in the
arguments object, and must return a value:

documentId {String} The ID of the current document that the user is clicking on○

Return true to disable the context menu, and return false to allow the context menu to
show as normal

○

•

disablePageManipulationContextMenuOptions is called when the page thumbnail context menu is
shown. If the callback function returns true, page manipulation options will be removed from
the context menu. Page manipulation options include cut, copy, and delete options; page
insertion options; and page selection options. This function is equivalent to setting the
configuration option vvConfig.pageManipulations, but allows document-by-document granular
control. The callback function will be provided one parameter in the arguments object, and
must return a value:

documentId {String} The ID of the current document whose pages the user is clicking on○

Return true to remove the page manipulation options, and return false to allow
VirtualViewer to show or hide the options as normal

○

•

Configuration to Disable User Preferences

Now, an administrator can completely disable User Preferences through a new option in vvConfig,
vvConfig.disableUserPreferences. This configuration item can be set to true or false. If true, the
User Preferences dialog will be unavailable to users. All configuration items that could be
overridden in User Preferences will be drawn from vvConfig; users will not be able to override
vvConfig settings. If not set or set to false, User Preferences will behave as normal.

Dynamic Debug Logging

To assist in debugging issues logging can now be toggled into a debug mode without having to
change configuration files. Turning on dynamic logging can be done with the client-side call
virtualViewer.loggingOverride(true) - while this flag is set all requests during that session will log
all messages as high priority. This allows finely detailed logs to be created for a specific use case
without changing global log configurations.

Simple Logging Facade (Java)

VirtualViewer Java now implements SLF4J (Simple Logging Facade for Java), a logging
abstraction that allows clients to plug in the logging system of their choice. Documentation and
examples can be found at https://www.slf4j.org/docs.html.

The default logger is still the java.util.logging framework. The init-param logLevel will only function
for the default java.util.logging framework - if another logging framework is plugged in using
SLF4J, that logging framework's configuration should be used instead.

Common Logging Facade (NET)

VirtualViewer NET now implements Common.Logging.NET, a logging abstraction that allows
clients to plug in the logging system of their choice. Documentation and examples can be found at
http://net-commons.github.io/common-logging/.

The default logging functionality is unchanged and is implemented in Common.Logging's
configuration as SnowboundLoggerFactoryAdapter. The web.config parameters logLevel and
logToIIS are also now implemented as arguments in Common.Logging's web.config section,
although the original InitParam arguments will still work for the default logger. If another logging
framework is plugged in using Common.Logging, that logging framework's configuration should be
used instead - logLevel and logToIIS will only affect the default logger.

Fixes and Changes

Sticky note updates

The double-arrow button to minimize sticky notes will now scale with zoom. Previously, it was
possible for the button to be drawn outside the bounds of the sticky note. Now, the button will no
longer be larger than the area of the sticky note, and will disappear when the sticky note is
zoomed out far enough.

Previously, on a zoomed-out document, it was possible for the size of a minimized sticky note to
be larger than the full sticky note. Now, the minimized sticky note will scale properly as the
document zooms.

enableOcr configuration fixed

The enableOcr configuration works again and now defaults to "true" (which will have no effect if
your Snowbound license doesn't support OCR). Setting enableOcr to "false" will disable OCR
even if your Snowbound license supports it. enableOcr was disabled in 4.12 and replaced with a

simple license feature check for OCR.

PDF signature printing issue

Some PDFs have an issue with signatures disappearing when printing via VirtualViewer. We've
modified our PDF.js printing solution to fix this issue. if you are encountering this problem, change
config.js's disableDirectPDFPrinting to "true" to use our modified PDF.js instead of your browser's.

Misc. Fixes/Changes:

Fixed issue with inserting annotations + disappearing layers•
Fixed client stack trace in sendDocument•
Added new config parameter, 'consolidateLayerName' to set the default name of a
consolidation layer

•

Prevent context menus from drawing off-screen when at the boundaries of the viewer•
Fixed document tab showing changes (with an Asterisk) when none were made•
Fixed bookmarks being lost during page manipulations•

VirtualViewer v4.12 Release Notes

New Features

Video

VirtualViewer can now load and play videos, in formats supported by HTML5-compatible
browsers. There is no editing or annotation support at this time - videos can only be viewed and
downloaded. Video format support will depend on the capabilities of the web browser.

Supported formats

VirtualViewer uses the browser's HTML5 video player to display video, and can play all types of
video supported by a browser's player. Most browsers support MP4, WebM and Ogg Vorbis. This
browser compatibility chart has more details: https://developer.mozilla.org/en-
US/docs/Web/HTML/Supported_media_formats

User preferences

There are several new configuration options for displaying video. These options can be viewed
and modified in User Preferences:

Video Autoplay: If enabled, the video will play as soon as it is opened. If disabled, the user
must click play in order to start the video.

•

Mute: If enabled, the video will start muted and the user must click to unmute. If disabled, the
video will start at full volume.

•

Video Controls: If enabled, the video will have the controls appear on the bottom of the •

player to control playback, fullscreen, volume, and the ability to download the video.
Available options may change depending on the browser you are using. If disabled, video
controls will be hidden from view and only accessible through the right-click menu.
Video Stretching: If enabled, the video will stretch beyond its original size to fill the viewer. It
will keep its aspect ratio, which means the video will not distort as it stretches. It acts like the
Fit to Window zoom option, so it will fit to height or width and may not actually fill the
viewport. If disabled, the video will not expand beyond its original size and will center in
VirtualViewer's main display area.

•

All of these options have equivalent config.js configuration options as defaults.

Supported features with video

We currently support the following actions with video:

Opening and viewing video.•
Downloading the video. This cannot be disabled.•
Change video viewing size (original size, fit to window and fullscreen).•

The following are some things that are limitations of the HTML5 Video Player:

Some browsers may not be able to seek, they just play from start to finish. Firefox had no
issues seeking, Chrome did.

•

Fast Forward and Rewind aren't baked into HTML5 Video Player.•

Add configuration to auto-resize only sticky notes

When the configuration parameter vvConfig.autoResizeTextAnnotations is set to true, the viewer
automatically resizes text annotations to fit the annotation text. If
vvConfig.autoConfirmTextAnnotations is also set to true, the text annotation will change its size as
the user types.

Now, there is a new configuration parameter vvConfig.autoResizeStickyNoteAnnotations. This fine-
tunes the configuration control. vvConfig.autoResizeTextAnnotations will now only affect text
annotations, and vvConfig.autoResizeStickyNoteAnnotations will only affect sticky note annotations.

Set document display name API

A new Javascript API virtualViewer.setDisplayName(newDisplayName, documentID) will set the
document specified by the given document ID to the new display name. The display name will
update on the document tab and document thumbnail.

Highlight annotation button currently in use

When the user clicks a button to draw an annotation, that button will stay highlighted until the user
completes the annotation.

Redaction navigation

Enhanced redaction navigation has been added to VirtualViewer. When the configuration for
vvConfig.showAnnNavToggle is set to true, the previous navigation buttons are displayed as well as a
set of radio buttons. The radio buttons are for the two navigation modes and display the annotation
and redaction counts for the document. When the annotation navigation mdoe is selected,
navigation occurs as it did in the past. When redaction navigation is selected, it goes from
redaction to redaction throughout the whole document. The redactions are selected and are
focused on. The filter pages button does not work in redaction navigation mode and is disabled.

Page manipulation with bookmarks

VirtualViewer now retains bookmarks created on pages of a document as they are subject to page
manipulations. The bookmarks would remain with the page in both reordering pages, cut/paste to
other documents and cut/copy to new document.

Cache-seeding support (Java)

There is a new client side API that allows the server to pre-cache images for future use. By calling
virtualViewer.seedCache(documentId, pages, clientInstanceId), the user can get pages ready on
the server, allowing for quicker retrieval.

Fixes and changes

Stricter URL encoding requirements in Java

Recent versions of Java enforce stricter URL validation. Now, URLs entered directly into the
browser's address bar must properly encode all URI components. Unencoded URLs that may
have succeeded in the past may now fail.

For instance, Virtual Documents in VirtualViewer may be opened directly from the address bar, by
entering a Virtual Document ID in the documentID field: VirtualDocument:documentName.pdf[1-3].
This request uses square brackets to specify a page range. The square brackets will cause the
request to fail on newer versions of Java. To work, the square brackets must be URI-encoded as
%5B for the opening bracket [, and %5D for the closing bracket]. The Virtual Document ID, properly
encoded, will work: VirtualDocument:documentName.pdf%5B1-3%5D. Square brackets and other invalid
characters must be URI-encoded.

VirtualViewer API for launching documents (virtualViewer.openInTab(documentID), for example) will
automatically encode the document ID as needed. Manual encoding only needs to occur when
typing a VirtualViewer URL directly into the browser's address bar.

officeLicensePath parameter has been replaced by ODFLicensePath

The officeLicensePath parameter is only needed for working with OpenOffice OpenDocument
Format files (ODF). You will only need to use the ODFLicensePath parameter to provide the path to
this license if you've licensed the OpenOffice format.

VirtualViewer initialization API are easier to work with

The API function beforeVirtualViewerInit is called before the VirtualViewer object is initialized, and
the API function afterVirtualViewerInit is called after; these functions are intended to be defined
by customers to easily run code as VirtualViewer starts up. Previously customers would have to
define these API functions after index.html was loaded; now, they can be defined any time.

Preserve document scroll when zooming

Previously, zooming in and out would cause the document to jump to the top of the current page.
Now, older functionality is restored, and the document will stay in the same scroll position while
zooming in and out.

Preserve document scroll and zoom when switching between tabs

When switching between open document tabs in the viewer, documents will now stay at the
current zoom and scroll position that the user set, rather than snapping to the default zoom and
going to the top of the current page. If the configuration parameter fitLastBetweenDocuments is set to
true, the document will still apply the zoom of the current document to the next document opened.

disableUploadDocument parameter moved to server

The config.js parameter to disable the Upload Document functionality has been replaced with a
server setting, disableUploadDocument. The config.js parameter disableUploadDoc is no longer used.

When the server setting disableUploadDocument is set to true, the service endpoint for upload will be
completely disabled, so that clever users can no longer bypass the UI to "force" a document into
the system. In prior releases, we specified that the content handler should handle the filtering of
uploaded documents. Filtering should still be performed by the content handler, but there is now a
way to completely disable upload document.

Removed sample content handlers from VirtualViewer distributable

Some sample content handlers were removed from compiled VirtualViewer code. They will no
longer be accessible. Any of the following sample content handlers in use should be replaced by a
customized version of the default content handler.

InputStreamContentHandler•
FileAndURLRetriever•
MergedImageContentHandler•
MultiContentElementContentHandler•

Public print API

The parameters for the printDocument() method have changed. The new parameters are as
follows:

{String} The documentId to print, must be of a document open in the viewer•
{Boolean} If true, a PDF will be exported to a file. The user will be present with a save dialog•
{Boolean} If true, the annotations will be printed.•
{Boolean} Whether or not to burn in redactions.•
{Boolean} Whether or not to include redaction tags (only used when includeRedactions is
true).

•

{Boolean} Whether or not to include watermarks.•
{Boolean} Whether or not to include document notes.•
{String} Either "all", "complex" or "current".•
{String} A range of pages numbers to export (only used for "complex" pageRangeType).•

Alternative License Loading (Java)

Some customers, who's servlet containers were not expanding the WAR file, but instead operating
on it directly (like WebSphere) were seeing an issue using the env-entry to specify the VV license
file. We added an alternative mechanism to specify the license file using an init-param:

<init-param>
 <param-name>snowboundLicensePath</param-name>
 <param-value>./WEB-INF/lib/SnowboundLicense.jar</param-value>
</init-param>

If you use this init-param, you will need to completely remove the env-entry from your web.xml.

Note: Features which depend on JNI, namely DWG and OCR support, are incompatible with the
init-param license loading. If you need these features you will need to use the env-entry
mechanism

Misc. Fixes/Changes:

Improved the responsiveness of the toolbars•
Added a close button to the split screen/document compare panel•
Fixed an issue with the autoLayerPrefix when there were existing autolayers•
Previously, if you created an annotation layer in the Layer Manager dialog and clicked the
dialog box's OK button instead of the layer UI's OK button, the layer would not be created

•

Fixed issue with annotation layers and page manipulations•
Fixed several minor/cosmetic issues with search UI•
Load the document model asynchronously, to improve responsiveness•
Make sure the document model has been loaded before requesting an image from the
server

•

Fixed tab naming after closing document compare panel•
Fixed issue with watermarks and reordering pages•
Confirm user wants to save when closing the browser window/tab•
Fixed an issue with image buffering•
Fixed issue with page-change callbacks where they were firing even if the page didn't
actually change (like calling firstPage() when you were already on page one).

•

