
Overview

Introduction
PrizmDoc Viewer allows you to add powerful document viewing and document conversion functionality to your web
applications.

Document Viewing for the Browser
PrizmDoc Viewer includes an advanced HTML Viewer control which allows your users to view, search, annotate, redact,
print, and download documents in many different file formats, right in their browser. They don't need to leave your
application or install any custom software:

Seamless Integration

Our viewer is designed for seamless integration with your web application. Key features, like search and redaction, can be
easily turned on or off depending on your application's needs (see the uiOptions Object). If you don't like the out-of-the-
box UI layout or style, you can completely change it. And since the viewer has an extensive JavaScript API, your application
can programmatically control and respond to the viewer.

PrizmDoc Viewer v13.17 1

©2021 My Company. All Rights Reserved.

Powerful Features

PrizmDoc Viewer offers powerful viewing features, including:

The option to use Microsoft Office for high-fidelity rendering of Word, Excel, and PowerPoint files (included
automatically with PrizmDoc Cloud)
Support for viewing and searching of large documents with thousands of pages
The ability to review changes between two different Microsoft Word files
The option to pre-convert document content in advance for even faster viewing on the web

Overall Architecture

Viewing functionality is powered by 1) the HTML Viewer control and 2) powerful REST APIs and server-side software.

The easiest way to get started is with PrizmDoc Cloud, where we fully host and manage the server-side pieces of PrizmDoc
Viewer for you:

Of course, if you need to, you can self-host everything:

Document Conversion

PrizmDoc Viewer v13.17 2

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

You can use PrizmDoc Viewer's Content Conversion Service REST API to easily:

Convert from Office, PDF, Email, HTML, TIFF, PNG, JPEG, CAD, and many other kinds of documents to PDF, TIFF,
PNG, JPEG, or SVG
Use OCR to convert a non-searchable PDF or TIFF into a new, visually-identical PDF that supports full-text search
Split and merge pages from multiple documents
Apply headers, footers, or watermarks to a document

As with viewing, the conversion REST APIs offer the option to use Microsoft Office for high-fidelity conversion of Word,
Excel, and PowerPoint files (included automatically with PrizmDoc Cloud).

The easiest way to get started is with PrizmDoc Cloud, where we fully host and manage a powerful PrizmDoc Server cluster
for you:

Of course, if you need to, you can self-host the server:

Supported File Formats

Supported File Formats
This section represents a reference for every document and image file format supported by PrizmDoc.

PrizmDoc detects most of the formats automatically, except the formats with poor signature or no
signature at all. Such formats are detected by the file extension.

PrizmDoc Viewer disables JavaScript execution for any HTML file conversion.

PrizmDoc Viewer v13.17 3

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

Document Formats

Format File Extension Supported by Microsoft
Office renderer

Auto
Detection

Adobe Portable Document
format

*.pdf No Yes

Microsoft Word format *.doc, *.dot Yes Yes

Microsoft Word Open XML
format

*.docx, *.docm, *.dotx, *.dotm Yes Yes

Rich Text format *.rtf Yes Yes

Microsoft Excel format *.xls, *.xlt Yes Yes

Microsoft Excel Open XML
format

*.xlsx, *.xlsm, *.xltx, *.xltm Yes Yes

Microsoft PowerPoint format *.ppt, *.pot, *.pps Yes Yes

Microsoft PowerPoint Open
XML format

*.pptx, *.pptm, *.potx, *.potm,
*.ppsx, *.ppsm

Yes Yes

OpenDocument Text format *.odt, *.ott, *.fodt No Yes

OpenDocument Spreadsheet
format

*.ods, *.ots, *.fods No Yes

OpenDocument Presentation
format

*.odp, *.otp, *.fodp No Yes

OpenDocument Math
Formula format

*.odf No Yes

OpenDocument Drawing
format

*.odg, *.otg, *.fodg No Yes

CAD Formats

Format File Extension Auto Detection

AutoDesk AutoCAD format (version 2.5 through 2014) *.dwg, *.dxf Yes

AutoDesk Design Web format *.dwf Yes

MicroStation Drawing format (V7 and V8) *.dgn Yes

Web Formats
PrizmDoc Viewer disables JavaScript execution for any HTML file conversion.

Format File Extension Auto Detection

HyperText Markup Language format *.html, *.htm Yes

PrizmDoc Viewer v13.17 4

©2021 My Company. All Rights Reserved.

Extensible HyperText Markup Language format *.xhtml, *.xhtm Yes

Most of the HTML files are auto-detected by searching for specific tags. Although html tags usually
denote a web page, they neither guarantee that the file is a web page, nor they are required for
rendering a file as a web page. Such incompliant files might not be recognized as HTML, but will still
be rendered as HTML in case if they are identified as such by the file extension.

Email Formats

Format File Extension Auto Detection

Microsoft Outlook format *.msg Yes

Outlook Express Email format *.eml No

EML files are not auto-detected, but identified by file extension because EML is a plain text in MIME
format which does not allow reliable auto-detection. Currently PrizmDoc supports rendering of the
following email headers: From, Subject, To, CC, BCC, Sent, and Attached.

Text Formats

Format File Extension Supported by Microsoft Office renderer Auto Detection

Text format *.txt No No

Comma-Separated Values format *.csv Yes No

Text and CSV files are not auto-detected, but identified by file extension because both are plain text
formats with no file signature. These formats however assume different rendering style. While Text is
rendered plain, the CSV is rendered like a spreadsheet. We distinguish them by file extension.

Medical Image Formats

Format Compression File Extension Auto
Detection

Digital Imaging & Communication in
Medicine format

Uncompressed,
JPEG, RLE

*.dcm, *.dicom, *.dcim,
*.dicm

Yes

Currently PrizmDoc auto detects DICOM Specification Part 10 compliant files only. Auto-detection of
the legacy DICOM files (without DICOM File Meta Information) is not supported, therefore the legacy
DICOM files are detected by the file extension. Currently PrizmDoc does not support conversion of
DICOM format to SVG.

Image Formats

Format File Extension Auto Detection

PrizmDoc Viewer v13.17 5

©2021 My Company. All Rights Reserved.

Format Compression File
Extension

Auto
Detection

Tagged Image File Format Uncompressed, PackBits, Huffman, CCITT G3,
CCITT G4, CCITT G32D, JPEG, Deflate, LZW

*.tif,
*.tiff

Yes

JPEG File Interchange Format JPEG *.jpg,
*.jpeg

Yes

JPEG 2000 File Format and
Code Stream

JPEG 2000 *.jp2,
*.jpc

Yes

Graphics Interchange Format LZW *.gif Yes

Portable Network Graphics
format

Deflate *.png Yes

Adobe Photoshop format Uncompressed, Deflate, RLE *.psd,
*.psb

Yes

Microsoft Windows Bitmap
format

Uncompressed, RLE *.bmp,
*.dib

Yes

Macintosh Metafile format Uncompressed, RLE, JPEG *.pct,
*.pic,
*.pict

Yes

Windows Metafile format
(see note below)

Uncompressed, RLE *.wmf Yes

Enhanced Metafile format
(see note below)

Uncompressed, RLE *.emf Yes

ZSoft Paintbrush PCX format Uncompressed, RLE *.pcx Yes

ZSoft Paintbrush DCX format Uncompressed, RLE *.dcx Yes

Sun Raster Data format Uncompressed, RLE *.ras Yes

Kodak Photo CD format Uncompressed, Huffman *.pcd Yes

Truevision Targa format Uncompressed, RLE *.tga,
*.tpic

Yes

Continuous Acquisition and
Life-cycle Support format

CCITT G4 *.cal,
*.cals

Yes

Icon Resource format Uncompressed, RLE *.ico Yes

Windows Cursor format Uncompressed, RLE *.cur Yes

NCR Image format Uncompressed, CCITT G4 *.ncr Yes

X Window Dump format Uncompressed *.xwd Yes

Silicon Graphics Image
format

Uncompressed, RLE *.sgi Yes

Wireless Bitmap format Uncompressed *.wbmp Yes

PrizmDoc Viewer v13.17 6

©2021 My Company. All Rights Reserved.

Scitex Color Tone format Uncompressed *.sct Yes

WordPerfect Graphics
Metafile format

RLE *.wpg Yes

X Bitmap format Uncompressed *.xbm Yes

Portable Bitmap format Uncompressed *.pbm Yes

Portable Graymap format Uncompressed *.pgm Yes

Portable Pixmap format Uncompressed *.ppm Yes

Xerox 9700 Graphic format Uncompressed *.img Yes

Dr. Halo format (see note
below)

RLE *.cut No

PrizmDoc Server running on Windows supports vector and raster content in Windows Metafile
(WMF) and Enhanced Metafile (EMF) formats. On Linux platforms, only WMF and EMF files
with a single raster image are supported; all others are rejected.
Dr. Halo (CUT) format cannot be reliably auto-detected due to its poor file signature, therefore
it is identified by file extension.
PrizmDoc does not support conversion of CAL/CALS, CUR, DCX, IMG, PCT/PIC/PICT, PSD/PSB,
RAS, TGA/TPIC and XWD formats to SVG.

Format Compression File
Extension

Auto
Detection

Viewer Requirements

Supported Browsers
CAUTION: PrizmDoc Viewer uses webfonts. We highly recommend that you do not disable the webfonts in your browser.
If you disable webfonts (via browser or ad blocker settings), PrizmDoc Viewer will fall back to a compatibility mode which
will result in much slower document rendering and scrolling (a warning will be sent to the browser console).

We support the current version and one version back for the following browsers:

iOS

Safari
Google Chrome

Android

Android Browser
Google Chrome
Mozilla Firefox

Windows

Internet Explorer (v11 only)

NOTE: Support for Internet Explorer was deprecated with PrizmDoc Viewer v13.14.

Microsoft Edge

PrizmDoc Viewer v13.17 7

©2021 My Company. All Rights Reserved.

Google Chrome
Mozilla Firefox

Mac OS

Safari
Google Chrome
Mozilla Firefox

Third-Party Dependencies
jQuery 3.6.0
Underscore 1.13.1
(Full Viewer) jQuery.Hotkeys 0.8

PrizmDoc Cells Overview

Introduction
PrizmDoc Viewer's rendering of Excel files is similar to viewing a spreadsheet in print preview. In many cases, this
view will suffice but it can be restrictive if you need to view values as well as formulas in a spreadsheet. If you need
a more detailed viewing experience of Excel files, we have built an advanced spreadsheet viewer called PrizmDoc
Cells to give PrizmDoc Viewer users the ability to review Excel files exactly as they would appear in the native
application.

You can analyze formulas, view charts and graphs, view multiple spreadsheets in a single workbook, and navigate
without pagination. Spreadsheet content and cells can be searched using the search bar. Search term "hits" are
highlighted in real-time as you type in the first character. With PrizmDoc Cells, you are able to view formulas as
well as formula results, search for key data and words, and not be restricted to viewing dynamic data as a static
image.

PrizmDoc Cells is offered as an option to PrizmDoc Viewer (both Self-Hosted and Cloud) and utilizes the PrizmDoc
Content Conversion Service to produce the best fidelity possible when rendering charts and graphs embedded in a
spreadsheet.

Integration with PrizmDoc Viewer
For more information on obtaining and integrating PrizmDoc Cells into a PrizmDoc Viewer deployment, view the
PrizmDoc Cells integration instructions with links to sample code here.

Evaluation and Deployment Licenses
For your convenience, PrizmDoc Cells automatically runs in evaluation mode without a license. When you are ready
to deploy to production, a license will be required to run PrizmDoc Cells in your production environment. Please
contact info@accusoft.com to obtain a production license.

Accusoft Support

Introduction

PrizmDoc Viewer v13.17 8

©2021 My Company. All Rights Reserved.

https://api.accusoft.com/cells/docs/
mailto:info@accusoft.com

If you have a question, or are experiencing an issue, check our Troubleshooting section and our online FAQs.

Still have a question? Send us a technical support request from our website.

The Accusoft Support Team can help with problems or questions you may have about the following:

Installation
Licensing
Sample code
Error handling
General questions or help on how to use PrizmDoc Viewer

For information about Accusoft Support Plans, see Support Plans or call Accusoft at 813-875-7575.

Also, check out the following additional resources on our website:

Online Demos
Code Samples

Glossary
This section contains the following information for PrizmDoc Viewer:

Definitions
New Terms

Definitions

Introduction
The following table lists common terminology for components and important concepts of PrizmDoc Viewer and
brief definitions of each, along with alternate names or abbreviations, and links to additional documentation.

Term Also Known
as... Definition

Application
Services

- The component of PrizmDoc Viewer that provides application-level logic between
PrizmDoc Server and the Viewer or the customer’s web-tier. See PrizmDoc
Application Services (PAS).

AutoRedaction
Service

ARS A component of PrizmDoc Server that creates markup XML for redactions on a
document. See Performing Auto-Redaction.

Central
Configuration

Central
Config

The configuration file for PrizmDoc Server. See Central Configuration.

Cells - PrizmDoc Cells is our spreadsheet viewer that gives PrizmDoc Viewer users the
ability to review Excel files exactly as they would appear in the native application.

Cloud Entry
Point

CEP The Load Balancer endpoint for requests to a cluster of PrizmDoc Server instances,
to be routed to an appropriate instance.

Cluster Mode - A mode in which multiple instances of PrizmDoc Server execute simultaneously in
a cluster, with individual Server Entry Points and a Cluster Entry Point that could
route to any of them. See PrizmDoc Viewer Cluster Mode.

PrizmDoc Viewer v13.17 9

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/faqs/topics/prizmdoc-viewer/
https://www.accusoft.com/support/
https://www.accusoft.com/support/support-plans/
https://www.accusoft.com/products/prizmdoc-suite/prizmdoc-viewer/
https://www.accusoft.com/demos-prizmdoc/
https://www.accusoft.com/code-examples/code-examples-prizmdoc-viewer/

Content
Conversion
Service

CCS A component of PrizmDoc Server that provides document format conversion. See
Convert Content with CCS.

Email
Conversion
Service

ECS A component of PrizmDoc Server that converts files from EML and MSG formats.

Email
Processing
Service

EPS A component of PrizmDoc Server that extracts content from EML and MSG files.

Error
Reporting
Service

ERS A component of PrizmDoc Server that logs errors originating from other PrizmDoc
Server components. See Error Reporting.

Format
Detection
Service

FDS A component of PrizmDoc Server that identifies the format of a source document.

HTML
Conversion
Service

HTMLCS A component of PrizmDoc Server that converts files from HTML formats.

Imaging
Services

PCCIS A component of PrizmDoc Server that handles the creation and management of
viewing sessions.

Load Balancer PLB A component of PrizmDoc Server that routes requests to the correct component
and balances loads across PrizmDoc Server instances in Cluster Mode.

Office
Conversion
Service

OCS A component of PrizmDoc Server that converts files from Office and text formats.

PDF
Conversion
Service

PDFCS,
Imaging
Conversion
Service

A component of PrizmDoc Server that converts files from PDF format.

PDF
Processing
Service

PDFPS A component of PrizmDoc Server that handles text extraction and markup burning
for PDF documents.

Prizm License
Utility

PLU A component of PrizmDoc Server that handles licensing of the product on
installation. See Licensing.

PrizmDoc
Viewer

- The full product composed the PrizmDoc Server, PrizmDoc Application Services
(PAS), and the Viewer.

PrizmDoc
Cloud

- A PrizmDoc Server hosted by Accusoft. See PrizmDoc Server (PrizmDoc Cloud).

PrizmDoc Self-
Hosted

- PrizmDoc Viewer hosted on a customer's server. See Server Hosting Options.

PrizmDoc - A back-end component of PrizmDoc Viewer that performs conversions and other

Term Also Known
as... Definition

PrizmDoc Viewer v13.17 10

©2021 My Company. All Rights Reserved.

Server manipulations of source files.

Raster
Conversion
Service

RCS A component of PrizmDoc Server that converts files from raster formats.

Redaction
Service

- A component of PrizmDoc Server that handles the markup burning workflow.

Server Entry
Point

SEP The Load Balancer endpoint for requests to a specific PrizmDoc Server instance.

Vector
Conversion
Service

VCS A component of PrizmDoc Server that converts files from vector formats.

Viewer - The front-end component of PrizmDoc Viewer that allows the uploading and
display of documents through a browser. See Viewer.

Viewing
Package

- A cache of web-compatible content for a document immediately available for use
in a Viewing Session.

Viewing
Session

- A resource that provides web-compatible content for an uploaded document.

Watchdog - A component of PrizmDoc Server that launches and monitors the health of other
PrizmDoc Server components.

Web Tier - A customer's web tier application that interfaces with PrizmDoc Viewer.

Work File
Service

WFS A component of PrizmDoc Server that handles the uploading and storage of
source documents.

Term Also Known
as... Definition

New Terms

Introduction
The product names have been updated to the following:

PrizmDoc Viewer
PrizmDoc Cloud
PrizmDoc Self-Hosted
PAS
PrizmDoc Server
Cloud Authentication
The Viewer

PrizmDoc Viewer
Formerly referred to as:

PrizmDoc

PrizmDoc Viewer v13.17 11

©2021 My Company. All Rights Reserved.

PrizmDoc Cloud
Formerly referred to as:

PrizmDoc Cloud-Hosted
PrizmDoc Accusoft Cloud-Hosted
Accusoft Cloud-Hosted Services
Accusoft Cloud Services (ACS)
Accusoft-Hosted Services

PrizmDoc Self-Hosted
Formerly referred to as:

PrizmDoc Enterprise

PAS
Formerly referred to as:

PrizmDoc Application Services
Prizm Application Services

PrizmDoc Server
NOTE: When using the PrizmDoc Server APIs, you will see PCCIS in the endpoint URL which is
shorthand for PrizmDoc Server.

Formerly referred to as:

PCC Backend Services
PCC Imaging Services (PCCIS)
PCC Services
Prizm Backend Services
Prizm Imaging Services
Prizm Platform Services (PPS)
Prizm Services

Cloud Authentication
Formerly referred to as:

PrizmDoc Cloud API

The Viewer
Formerly referred to as:

PrizmDoc Viewer
Client Viewer
Document Viewer
HTML5 Application

PrizmDoc Viewer v13.17 12

©2021 My Company. All Rights Reserved.

HTML5 Responsive Viewer
HTML5 Viewer
PCC Viewer
Prizm Responsive Viewer
The Viewing Client
Viewer Application
Viewer UI

Legal
This section contains legal information for PrizmDoc Viewer:

Copyright Information
Software License Agreement
Third-Party Attributions

Copyright Information
©2008-2021 Accusoft Corporation. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Accusoft® Corporation.

This manual and the software described in it are both products of the United States of America.

Accusoft Corporation
4001 North Riverside Drive
Tampa, FL 33603
Sales: 813-875-7575
info@accusoft.com
www.accusoft.com

Accusoft Trademarks
Visit our website for a complete list of trademarks (™) and registered marks (®) of Accusoft Corporation.

Accusoft Corporation and/or its agents use these marks and brand names in connection with its goods and/or
services, in the United States and other countries.

All other product and brand names are the property of their respective owners.

Accusoft Patents
PrizmDoc Viewer utilizes technology owned by Accusoft Corporation that is protected by U.S. Patents 9,860,194;
9,886,426 and U.S. Patents Pending.

Software License Agreement

ACCUSOFT CORPORATION
PRIZMDOC VIEWER ‘SHRINK-WRAP’ LICENSE AGREEMENT

PrizmDoc Viewer v13.17 13

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com
http://www.accusoft.com/
https://www.accusoft.com/company/policies/

PLEASE READ THIS LICENSE AGREEMENT (“AGREEMENT”) WHICH GOVERNS YOUR RIGHT TO USE OF PRIZMDOC
VIEWER (“PROGRAM”). YOU MUST ACCEPT THESE TERMS BEFORE YOU ARE PERMITTED TO INSTALL THE
PROGRAM. YOU EXPRESSLY AGREE THAT YOU HAVE THE AUTHORITY TO CONTRACTUALLY BIND THE
ORGANIZATION OR ENTITY YOU REPRESENT (“LICENSEE”) TO BE BOUND BY THESE TERMS.

BY DOWNLOADING THE PROGRAM FROM Accusoft AND THEN CONTINUING WITH THE INSTALLATION AND USE
OF PROGRAM, YOU AND LICENSEE AGREE TO BE BOUND BY THIS AGREEMENT. AND YOU EXPLICITLY CONFIRM
THAT YOU ARE ACCEPTING OUR PRIVACY POLICY. IF YOU HAVE ANY QUESTIONS ABOUT THAT POLICY, PLEASE
EMAIL privacy@accusoft.com.

1. Background. Accusoft Corporation, a Florida corporation, (“Accusoft”) is the owner of all right, title, and
interest in the software system known as PrizmDoc Viewer (“Program”) and consisting of an installed front-end
component plus either an installed back-end component hosted by LICENSEE or back-end services known as
PrizmDoc Cloud (“Service”) hosted by Accusoft. LICENSEE desires to receive and use a copy of Program under the
terms and conditions stated herein, for the purpose of evaluating the Program under an Evaluation Mode Limited
License (Paragraph 3) or for a commercial purpose under a Commercial License (Paragraph 4).

2. Evaluation Mode and Licensed Mode

Default Installation - Evaluation Mode (or Trial Licensing)

The Program installation installs Program in Evaluation Mode. This allows you to test many Program features and
functions. Images may be displayed with a watermark on them and occasionally dialogs may be posted reminding
you that Program is in evaluation mode. Printed, exported and e-mailed images may also display a watermark. This
Evaluation Mode license may expire after 30 days at which time Program may cease operating. If your evaluation is
not complete at that time, please contact www.accusoft.com or sales@accusoft.com to see if your Evaluation Mode
license time can be extended.

Changing from Evaluation Mode to Licensed Mode

A Commercial License may be purchased at www.accusoft.com or through sales@accusoft.com and then
LICENSEE’s rights as to the number of installations and scope and term of use are governed solely by the
purchased license and LICENSEE is required to purchase the appropriate license PRIOR TO SUCH
INSTALLATIONS.

Accusoft software applications, including Program, are limited to use on a single computer. No runtimes or copies
may be installed or distributed unless that installation or distribution is granted by a direct license from Accusoft.
These 'license agreements' provide the terms and limits of number of copies and usage.

All prospective customers have every opportunity to evaluate Accusoft's products including Program prior to
purchasing. Accusoft fully supports and warrants its code and its pricing of Program reflects those support and
warranty costs.

3. Evaluation Mode Limited License. In Evaluation Mode, Accusoft grants to LICENSEE only a limited, non-
transferable, non-exclusive and non-assignable license to evaluate the Program on a single computer for a thirty
(30) day period beginning on the date of download of the Program and as may be subsequently extended by
Accusoft on LICENSEE’s request (“Term”), for the sole purpose of evaluating the Program (the “Purpose”), and not
for any commercial usage. For clarity, LICENSEE may only install and use the Program on a single computer, and
may only use it in an internal testing or proof-of-concept environment. LICENSEE IS NOT PERMITTED TO
INSTALL AND USE THE PROGRAM IN A PRODUCTION ENVIRONMENT. Either party may terminate this
Agreement for convenience prior to the end of the Term on one day’s written notice (email notice is acceptable) to
the other party. LICENSEE shall have no right to, and shall not assign this Agreement whether by transfer,
assignment, merger or otherwise.

4. Commercial License. A license may be purchased at www.accusoft.com or through sales@accusoft.com. If a
separate license agreement for Program is entered into between Accusoft and LICENSEE at that time, then the
terms of that agreement and the Term of that agreement shall govern only where different from the terms and
Term of this Agreement. If a separate Accusoft license agreement for Program is not entered into at that time, then
LICENSEE’s permitted use of Program is governed by this Paragraph 4., replacing Paragraph 3. Evaluation Mode
Limited License, and all other terms and Term are according to this Agreement. In that case, Accusoft grants to
LICENSEE a limited, non-exclusive, non-assignable license to install and use Program on one computer for one year

PrizmDoc Viewer v13.17 14

©2021 My Company. All Rights Reserved.

https://www.edocr.com/v/bygevj2x/accusoft/Accusoft-Privacy-Policy
mailto:privacy@accusoft.com
https://www.accusoft.com/
mailto:sales@accusoft.com
https://www.accusoft.com/
mailto:sales@accusoft.com
https://www.accusoft.com/
mailto:sales@accusoft.com

beginning on the date of purchase of Program and as may subsequently be extended by Accusoft on LICENSEE’s
request (“Term”). LICENSEE is only permitted to transfer this license one time to one third party provided that: a)
LICENSEE does not install or use Program except on behalf of the third party, and (b) the third party also agrees to
all the terms of this Agreement as LICENSEE. When LICENSEE uses PrizmDoc Cloud Service, LICENSEE’s Commercial
License includes a monthly transaction limit or a fixed number of transactions (known as a “Transaction Bucket”)
which are not time limited except as noted in Section 7 below.

5. Error and Usage Reporting. LICENSEE acknowledges that Program includes an Error and Usage Reporting
mechanism that may automatically exchange error and usage information with an Accusoft server or servers over
the Internet when a connection to the Internet is available.

6. Ownership. LICENSEE acknowledges and agrees that Accusoft owns all right, title and interest in the
Program, in all forms, including without limitation any and all worldwide proprietary rights therein, including but
not limited to trademarks, copyrights, patent rights, patent continuations, trade secrets and confidential
information.

7. LICENSEE Service Restrictions
a. If LICENSEE’s usage of Service exceeds their monthly transaction limit, LICENSEE agrees that Accusoft may charge
LICENSEE an additional monthly fee for overage transactions at the same per transaction rate reached at their
transaction limit.
b. LICENSEE agrees to indemnify and hold Accusoft harmless from any claim, action or proceeding arising in any
way from LICENSEE’s uploaded content or from LICENSEE’s usage of uploaded content.
c. LICENSEE agrees to access or use Service solely via their licensed usage of Program.
d. LICENSEE agrees the Service account key allowing their licensed access to Service is Proprietary Information of
Accusoft as defined below, that they are responsible for the security of Service account key, that they will only
allow use of Service account key from their licensed usage of Program installed on their one allowed licensed host
and that they will immediately notify Accusoft if they learn that their Service account key was used by any other
party in any other way.
e. LICENSEE is prohibited from reverse-engineering or hacking Service including Service API’s (Application
Programming Interfaces).
f. LICENSEE is prohibited from removing or obscuring Accusoft or PrizmDoc marks.
g. LICENSEE agrees they will access or use Service only during Term and LICENSEE agrees to discontinue all use of
Service following Term and following termination of Agreement for any other reason.
h. Transactions purchased in a Transaction Bucket do not expire based on time, except Accusoft reserves the right
with thirty days notice to cancel unused transactions in the case of zero activity for 180 days, or if older than one
year, or immediately if Service account is closed or terminated per the terms of this Agreement.

8. Accusoft Service Obligations
a. Accusoft will utilize its best efforts to ensure that Service is available to LICENSEE at all times.
b. All data communication between Program front-end and the Program Service back-end can be encrypted via
HTTPS protocol.
c. Uploaded content and cached converted content is encrypted while it resides on the Service host filesystem.
d. Accusoft will limit access to Service hosts to necessary Accusoft employees.

9. Other Restrictions and Reservations. All rights and licenses not expressly granted to LICENSEE are reserved
to Accusoft. LICENSEE shall not disassemble, decompile, decrypt or reverse engineer (except reverse engineering
for the purpose of debugging modifications made by LICENSEE to LGPL-licensed portions of the Program) the
Program or in any manner attempt to discover or reproduce the source code or any other copyrightable aspect of
the Program, or any portion thereof. With an Evaluation Mode Limited License:
a. LICENSEE is strictly prohibited from reproducing, copying, marketing, selling, distributing, licensing, sublicensing,
leasing, timesharing or renting the Program or any component thereof, and
b. LICENSEE is strictly prohibited from any commercial use of the Program, and such actions are expressly
prohibited, and
c. LICENSEE is strictly prohibited from incorporating or including the Program or any component thereof, in whole
or part, into or as part of any product or service of LICENSEE regardless of functionality of Program (or lack thereof)
within or as part of such product or service, and
d. LICENSEE is strictly prohibited from using the Program, directly or indirectly, in developing LICENSEE’s own

PrizmDoc Viewer v13.17 15

©2021 My Company. All Rights Reserved.

product with, or including, similar functionality, and
e. LICENSEE is strictly prohibited from making any copies of the Program for any purpose whatsoever.

10. Warranty Disclaimer. LICENSEE ACKNOWLEDGES AND AGREES THAT THE PROGRAM IS PROVIDED “AS IS.”
ACCUSOFT DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND AGAINST INFRINGEMENT.

11. Limitation of Liability. ACCUSOFT SHALL HAVE NO LIABILITY TO LICENSEE, LICENSEE AFFILIATES,
SUBSIDIARIES, SHAREHOLDERS, OFFICERS, DIRECTORS, EMPLOYEES, REPRESENTATIVES OR ANY THIRD PARTY,
WHETHER IN CONTRACT, TORT, NEGLIGENCE OR PRODUCTS LIABILITY, FOR ANY CLAIM, LOSS OR DAMAGE,
INCLUDING BUT NOT LIMITED TO, LOST PROFITS, LOSS OF USE, BUSINESS INTERRUPTION, LOST DATA, LOST
FILES, OR FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY KIND OR
NATURE WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH USE OF OR INABILITY TO USE THE PROGRAM,
OR THE PERFORMANCE OR OPERATION OF THE PROGRAM, EVEN IF ACCUSOFT HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

12. Indemnification by LICENSEE. LICENSEE SHALL INDEMNIFY, HOLD HARMLESS AND DEFEND ACCUSOFT
FOR ANY LOSS, CLAIM, ACTION OR PROCEEDING THAT ARISES OR RESULTS FROM ANY ACTIONS OR OMISSIONS
OF LICENSEE PERTAINING TO THE PRODUCT OR FROM LICENSEE USAGE OF PROGRAM NOT PERMITTED BY THIS
AGREEMENT.

13. Termination. This Agreement and the limited license shall expire at midnight on the last day of the Term.
This Agreement shall also terminate immediately upon LICENSEE’S breach of any provision of this Agreement.
Upon expiration or termination of the Term or any other termination, LICENSEE shall have no license or rights
whatsoever in or regarding the Program, shall immediately cease to use the Program, and shall uninstall the
Program from LICENSEE’s and any other computers, and shall destroy all copies of the Program, unless LICENSEE
has entered into a separate Accusoft license agreement for the Program signed by an authorized representative of
Accusoft. In the event of any termination for any reason all sections of this Agreement survive except Paragraphs 2,
3, and 4.

14. Confidentiality. LICENSEE acknowledges that the Program contains Accusoft know-how, confidential and
trade secret information (“Proprietary Information”). LICENSEE agrees: (a) to hold the Proprietary Information in the
strictest confidence, (b) not to, directly or indirectly, copy, reproduce, distribute, manufacture, duplicate, reveal,
report, publish, disclose, cause to be disclosed, or otherwise transfer the Proprietary Information to any third party,
(c) not to make use of the Proprietary Information other than for usage of Program as permitted by this Agreement
and (d) to disclose the Proprietary Information only to LICENSEE’s representatives requiring such material for
effective performance of this Agreement and who have undertaken an obligation of confidentiality and limitation
of use consistent with this Agreement. This obligation shall continue as long as allowed under applicable law.

15. Injunctive Relief. LICENSEE agrees that any violation or threat of violation of this Agreement will result in
irreparable harm to Accusoft for which damages would be an inadequate remedy. Therefore, in addition to its
rights and remedies available at law (including but not limited to the recovery of damages for breach of this
Agreement), Accusoft shall be entitled to immediate injunctive relief to prevent any violation of Accusoft’s
copyright, trademark, trade secret rights regarding the Program, or any violation of this Agreement, including, but
not limited to, unauthorized use, copying, distribution or disclosure of or regarding the Program, as well as any
other equitable relief as the court may deem proper under the circumstances.

16. Liquidated Damages. In the event LICENSEE other than as granted by this Agreement and other than
granted by a separate Accusoft license agreement for Program (a) copies the Program, (b) uses the Program for
any reason other than the Purpose, (c) installs or uses the program on more than a single computer or (d)
otherwise violates or breaches this Agreement or separate Accusoft license agreement for Program, LICENSEE
agrees that Accusoft is entitled to obtain as liquidated damages and not as a penalty the then current published
quantity one list price for each unlicensed copy of Program distributed, copied or installed other than as granted
by this Agreement or other Accusoft license agreement for Program. THE LICENSEE EXPRESSLY AGREES THAT THE
FOREGOING LIQUIDATED DAMAGES ARE NOT A PENALTY.

17. No Reduced Pricing. In any determination of Accusoft’s damages (whether liquidated damages or actual
damages), or any determination of any licensing fees or royalties due Accusoft under this Agreement due to a

PrizmDoc Viewer v13.17 16

©2021 My Company. All Rights Reserved.

breach by LICENSEE hereunder, LICENSEE shall not be entitled to any discounts (volume or otherwise) or reduced
licensing fees or royalties. Further, LICENSEE agrees that it shall not be entitled to reduced licensing fees or
royalties when determining Accusoft’s damages due to any undertaking or activity by LICENSEE regarding the
Program outside of or exceeding the scope of permission or Purpose of this Agreement, or LICENSEE’s actions
otherwise in violation of this Agreement, other than as may be granted by a separate Accusoft license agreement
for Program.

18. Attorneys’ Fees and Costs. In the event of any lawsuit or other proceeding brought as a result of any
actual or alleged breach of this Agreement, to enforce any provisions of this Agreement, or to enforce any
intellectual property or other rights in or pertaining to the Program, the prevailing party shall be entitled to an
award of its reasonable attorneys’ fees and costs, including the costs of any expert witnesses, incurred at all levels
of proceedings.

19. Governing Law. This Agreement shall be construed, governed and enforced in accordance with the laws of
the State of Florida, without regard to any conflicts of laws rules. Any action related to or arising out of this
Agreement will be brought solely in the state court sitting in Hillsborough County, Florida or in the federal courts in
the Middle District of Florida, Tampa Division, and LICENSEE consents to the exclusive jurisdiction and venue of
said courts.

20. Severability. If any provision of this Agreement is determined to be invalid by any court of final jurisdiction,
then it shall be omitted and the remainder of the Agreement shall continue to be binding and enforceable. In
addition, the Court is hereby authorized to enforce any provision of the Agreement that the Court otherwise deems
unenforceable, to whatever lesser extent the Court deems reasonable and appropriate, rather than invalidating the
entire provision. Without limiting the generality of the foregoing, LICENSEE expressly agrees that should LICENSEE
be found to have breached the Agreement, under no circumstances shall LICENSEE be entitled to any volume or
other discount, or reduced licensing fee or royalty in the determination of Accusoft’s damages, or otherwise in the
determination of any licensing fee or royalty owed to Accusoft.

21. Government Rights. The Program and accompanying documentation have been developed at private
expense and are sold commercially. They are provided under any U.S. government contracts or subcontracts with
the most restricted and the most limited rights permitted by law and regulation. Whenever so permitted, the
government and any intermediaries will obtain only those rights specified in Accusoft’s standard commercial
license. Thus, the Program referenced herein, and the documentation provided by Accusoft hereunder, which are
provided to any agency of the U.S. Government or U.S. Government contractor or subcontractor at any tier shall be
subject to the maximum restrictions on use as permitted by FAR 52.227-19 (June 1987) or DFARS 227.7202-3(a)
(Jan. 1, 2000) or successor regulations. Manufacturer is Accusoft Corporation, 4001 N. Riverside Drive Tampa, FL
33603.

22. Entire Agreement. This Agreement represents the entire understanding of the parties concerning the
subject matter hereof and supersedes all prior communications and agreements, whether oral or written, relating
to the subject matter of this Agreement. Only a writing signed by the parties may modify this Agreement. In the
event of any modification in writing, of this Agreement, including an expanded Accusoft license agreement for
Program, all unmodified, non-conflicting sections of this Agreement survive.

23. Contact Us. Should you have any questions concerning this Agreement, or if you need to modify this
Agreement, or if you have an Evaluation Mode Limited License and you need to use Program for a different
purpose than Purpose such as a commercial purpose, or if you desire to contact Accusoft for any other question or
reason, please contact Accusoft at 1-813-875-7575 or at sales@accusoft.com.

24. Third Party Notices. See https://help.accusoft.com/PrizmDoc/v13.17/HTML/third-party-attributions.html

Agreement Version: 2021-03-31

Third-Party Attributions
The following third-party software may be used or distributed in the backend components (Windows PrizmDoc

PrizmDoc Viewer v13.17 17

©2021 My Company. All Rights Reserved.

mailto:sales@accusoft.com
https://help.accusoft.com/PrizmDoc/v13.17/HTML/third-party-attributions.html

Server, Windows PAS, Linux PrizmDoc Server, and/or Linux PAS), the Viewer, or the legacy samples of the
Program:

Backend: PrizmDoc Server
Windows Fonts
Linux Fonts
Prizmdoc Server Docker Image

PrizmDoc Application Services (PAS)
Viewer

Viewer Fonts
@prizmdoc/viewer-core

PrizmDoc Viewer Eval Docker Image
Legacy Samples

Backend: PrizmDoc Server

Active-Directory-Object-Picker

Copyright (c) 2004 by Armand du Plessis and is now extended and maintained by Tulpep
Download: https://github.com/Tulpep/Active-Directory-Object-Picker
License: https://github.com/Tulpep/Active-Directory-Object-Picker/blob/master/LICENSE

ajv

The MIT License (MIT)
Copyright (c) 2015-2017 Evgeny Poberezkin
Download: https://www.npmjs.com/package/ajv
License: https://github.com/epoberezkin/ajv/blob/master/LICENSE

Apache PDFBox (http://pdfbox.apache.org/)

Copyright (c) 2002-2010 The Apache Software Foundation
Download: http://pdfbox.apache.org/download.html
License: http://www.apache.org/licenses/LICENSE-2.0

Apache FontBox (http://pdfbox.apache.org/)

Copyright (c) 2008-2010 The Apache Software Foundation
Download: http://pdfbox.apache.org/download.html
License: http://www.apache.org/licenses/LICENSE-2.0

Apache JempBox (http://pdfbox.apache.org/)

Copyright (c) 2008-2010 The Apache Software Foundation
Download: http://pdfbox.apache.org/download.html
License: http://www.apache.org/licenses/LICENSE-2.0

Apache POI (http://poi.apache.org/)

Copyright (c) 2001-2007 The Apache Software Foundation
Download: http://www.apache.org/dyn/closer.cgi/poi/
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Commons FileUpload (http://commons.apache.org/fileupload/)

PrizmDoc Viewer v13.17 18

©2021 My Company. All Rights Reserved.

https://github.com/Tulpep/Active-Directory-Object-Picker
https://github.com/Tulpep/Active-Directory-Object-Picker/blob/master/LICENSE
https://www.npmjs.com/package/ajv
https://github.com/epoberezkin/ajv/blob/master/LICENSE
http://pdfbox.apache.org/
http://pdfbox.apache.org/download.html
https://www.apache.org/licenses/LICENSE-2.0
http://pdfbox.apache.org/
http://pdfbox.apache.org/download.html
https://www.apache.org/licenses/LICENSE-2.0
http://pdfbox.apache.org/
http://pdfbox.apache.org/download.html
https://www.apache.org/licenses/LICENSE-2.0
http://poi.apache.org/
http://www.apache.org/dyn/closer.cgi/poi/
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/fileupload/

Copyright (c) 2002-2008 The Apache Software Foundation
Download: http://commons.apache.org/fileupload/download_fileupload.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Commons IO (http://commons.apache.org/io/)

Copyright (c) 2001-2008 The Apache Software Foundation
Download: http://commons.apache.org/io/download_io.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Commons Lang (http://commons.apache.org/lang/)

Copyright (c) 2001-2010 The Apache Software Foundation
Download: http://commons.apache.org/lang/download_lang.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Commons Logging (http://commons.apache.org/logging/)

Copyright (c) 2003-2007 The Apache Software Foundation
Download: http://commons.apache.org/logging/download_logging.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Commons Text (http://commons.apache.org/proper/commons-text/)

Copyright (c) 2001-2017 The Apache Software Foundation
Download: http://commons.apache.org/proper/commons-text/download_text.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache JAMES Mime4j (http://james.apache.org/mime4j/)

Copyright (c) 2004-2010 The Apache Software Foundation
Download: http://james.apache.org/download.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

Apache Tika (https://tika.apache.org/)

Copyright 2015 The Apache Software Foundation
Download: https://tika.apache.org/download.html
License: https://github.com/apache/tika/blob/1.23/LICENSE.txt

Apache Xerces (http://xerces.apache.org/xerces-c/)

Copyright (c) 1999-2010 The Apache Software Foundation
Download: http://xerces.apache.org/xerces-c/download.cgi
License: http://www.apache.org/licenses/LICENSE-2.0

aws-sdk-js

Apache License Version 2.0
Copyright (c) 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Download: https://github.com/aws/aws-sdk-js
License: http://www.apache.org/licenses/LICENSE-2.0

biweekly

Copyright (c) 2013-2018, Michael Angstadt

PrizmDoc Viewer v13.17 19

©2021 My Company. All Rights Reserved.

http://commons.apache.org/fileupload/download_fileupload.cgi
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/io/
http://commons.apache.org/io/download_io.cgi
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/lang/
http://commons.apache.org/lang/download_lang.cgi
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/logging/
http://commons.apache.org/logging/download_logging.cgi
https://www.apache.org/licenses/LICENSE-2.0
http://commons.apache.org/proper/commons-text/
http://commons.apache.org/proper/commons-text/download_text.cgi
https://www.apache.org/licenses/LICENSE-2.0
http://james.apache.org/mime4j/
http://james.apache.org/download.cgi
https://www.apache.org/licenses/LICENSE-2.0
https://tika.apache.org/
https://tika.apache.org/download.html
https://github.com/apache/tika/blob/1.23/LICENSE.txt
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/download.cgi
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/aws/aws-sdk-js
https://www.apache.org/licenses/LICENSE-2.0

Download: https://github.com/mangstadt/biweekly License:
https://github.com/mangstadt/biweekly/blob/0.6.3/LICENSE

body-parser (https://github.com/expressjs/body-parser)

Copyright (c) 2014 Jonathan Ong <me@jongleberry.com>
Copyright (c) 2014-2015 Douglas Christopher Wilson <doug@somethingdoug.com>
Download: https://github.com/expressjs/body-parser
License: https://github.com/expressjs/body-parser/blob/master/LICENSE

Boost (http://www.boost.org)

Download: http://sourceforge.net/projects/boost/files/boost/1.55.0/
Version: 1.55.0
License: <install directory>\licenses\boost\LICENSE_1_0.txt

cairo (https://cairographics.org)

Copyright (c) 2002 University of Southern California
Copyright (c) 2005 Red Hat, Inc.
Download: https://www.cairographics.org/releases/
License (LGPL v2.1): <install directory>\licenses\cairo\ COPYING-LGPL-2.1

caolan/async

The MIT License (MIT)
Copyright (c) 2010-2018 Caolan McMahon
Download: https://github.com/caolan/async
License: <install directory>\licenses\async\LICENSE

CmdParser

The MIT License (MIT)
Copyright (c) 2015 - 2016 Florian Rappl
Download: https://github.com/FlorianRappl/CmdParser
License: https://github.com/FlorianRappl/CmdParser/blob/v1.0.0/LICENSE

compare-version

The MIT License (MIT)
(c) Kevin Mårtensson
Download: https://www.npmjs.com/package/compare-version
License: https://www.npmjs.com/package/compare-version#license

Consul

Mozilla Public License, version 2.0
Copyright (c) 2014-2018 HashiCorp, Inc.
Download: https://github.com/hashicorp/consul
License: <install directory>/license/Consul/LICENSE

css-color-names

The MIT License (MIT)
Copyright 2018 Dave Eddy dave@daveeddy.com
Download: https://github.com/bahamas10/css-color-names

PrizmDoc Viewer v13.17 20

©2021 My Company. All Rights Reserved.

https://github.com/mangstadt/biweekly
https://github.com/mangstadt/biweekly/blob/0.6.3/LICENSE
https://github.com/expressjs/body-parser
mailto:me@jongleberry.com
mailto:doug@somethingdoug.com
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser/blob/master/LICENSE
http://www.boost.org/
http://sourceforge.net/projects/boost/files/boost/1.55.0/
https://cairographics.org/
https://www.cairographics.org/releases/
https://github.com/caolan/async
https://github.com/FlorianRappl/CmdParser
https://github.com/FlorianRappl/CmdParser/blob/v1.0.0/LICENSE
https://www.npmjs.com/package/compare-version
https://www.npmjs.com/package/compare-version#license
https://github.com/hashicorp/consul
mailto:dave@daveeddy.com
https://github.com/bahamas10/css-color-names

License: https://github.com/bahamas10/css-color-names#license

Duration.js

Copyright (c) 2013 Ilia Choly
Download: https://github.com/icholy/Duration.js
License: MIT https://github.com/icholy/Duration.js/blob/master/LICENSE

expat - 2.1.0 (http://www.libexpat.org/)

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers
Download: http://sourceforge.net/projects/expat/files/expat
License: <install directory>\licenses\expat\COPYING

express (http://expressjs.com/)

Copyright (c) 2009-2014 TJ Holowaychuk <tj@vision-media.ca>
Copyright (c) 2013-2014 Roman Shtylman <shtylman+expressjs@gmail.com>
Copyright (c) 2014-2015 Douglas Christopher Wilson <doug@somethingdoug.com>
Download: https://github.com/strongloop/express
License: https://github.com/strongloop/express/blob/master/LICENSE

ffi

The MIT License (MIT)
Copyright (c) 2009-2011 Richard "Rick" W. Branson
Copyright (c) 2012-2014 Nathan Rajlich, Richard "Rick" W. Branson
Copyright (c) 2015 Nathan Rajlich, Richard "Rick" W. Branson, Gabor Mezo
Download: https://www.npmjs.com/package/ffi
License: https://github.com/node-ffi/node-ffi/blob/master/LICENSE

follow-redirects

The MIT License (MIT)
Copyright 2014–present Olivier Lalonde <olalonde@gmail.com>, James Talmage <james@talmage.io>, Ruben
Verborgh
Download: https://www.npmjs.com/package/follow-redirects
License: https://github.com/olalonde/follow-redirects/blob/master/LICENSE

fontconfig - 2.11.1 (http://www.freedesktop.org/wiki/Software/fontconfig/)

Copyright (c) 2001, 2003 Keith Packard
Download: http://www.freedesktop.org/software/fontconfig/release/
License: <install directory>\licenses\fontconfig\COPYING

freetype - 2.5.5

Copyright (c) 2012 The FreeType Project (www.freetype.org). All rights reserved.
Download: https://sourceforge.net/projects/freetype/files/
License: <install directory>\licenses\freetype\FTL.TXT

fs-extra

The MIT License (MIT)
Copyright (c) 2011-2017 JP Richardson

PrizmDoc Viewer v13.17 21

©2021 My Company. All Rights Reserved.

https://github.com/bahamas10/css-color-names
https://github.com/bahamas10/css-color-names#license
https://github.com/icholy/Duration.js
https://github.com/icholy/Duration.js/blob/master/LICENSE
http://www.libexpat.org/
http://sourceforge.net/projects/expat/files/expat
http://expressjs.com/
mailto:tj@vision-media.ca
mailto:shtylman expressjs@gmail.com
mailto:doug@somethingdoug.com
https://github.com/strongloop/express
https://github.com/strongloop/express/blob/master/LICENSE
https://www.npmjs.com/package/ffi
https://github.com/node-ffi/node-ffi/blob/master/LICENSE
mailto:olalonde@gmail.com
mailto:james@talmage.io
https://www.npmjs.com/package/follow-redirects
https://github.com/olalonde/follow-redirects/blob/master/LICENSE
http://www.freedesktop.org/wiki/Software/fontconfig/
http://www.freedesktop.org/software/fontconfig/release/
http://www.freetype.org/
https://sourceforge.net/projects/freetype/files/

Download: https://www.npmjs.com/package/fs-extra
License: https://github.com/jprichardson/node-fs-extra/blob/master/LICENSE

GLib (https://developer.gnome.org/glib/)

Authors: <install directory>/licenses/glib/AUTHORS
Download: http://ftp.gnome.org/pub/gnome/sources/glib/
License: <install directory>/licenses/glib/COPYING

HarfBuzz (http://www.freedesktop.org/wiki/Software/HarfBuzz/)

Copyrights: <install directory>/licenses/harfbuzz/COPYING
Download: http://www.freedesktop.org/software/harfbuzz/release/
License: <install directory>/licenses/harfbuzz/COPYING

http-signature

The MIT License (MIT)
Copyright Joyent, Inc. All rights reserved.
Download: https://github.com/joyent/node-http-signature/
License: <install directory>\licenses\http-signature\LICENSE

ICU4J - (*Windows Server Only*)

Copyright (c) 1995-2013 International Business Machines Corporation and others
Download: http://site.icu-project.org/download
License: <install directory>/licenses/ICU/license.htm

Java Advanced Imaging Codec

Copyright (c) 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.
Download: https://maven.geomajas.org/javax/media/jai-codec/1.1.3/jai-codec-1.1.3.jar
License: <install directory>/licenses/Sun JAI/LICENSE-jai.txt

Java Advanced Imaging API

Copyright (c) 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.
Download: https://repo1.maven.org/maven2/javax/media/jai_core/1.1.3/
License: http://download.java.net/media/jai/builds/release/1_1_3/LICENSE-jai.txt

Java Advanced Imaging Image I/O Tools

Copyright (c) 2006 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights
reserved.
Download: https://repo1.maven.org/maven2/com/sun/media/jai_imageio/1.1/
License: http://www.opensource.org/licenses/bsd-license.php

Java DogStatsD Client

The MIT License (MIT)
Copyright (c) 2012 youDevise, Ltd.
Download: https://github.com/DataDog/java-dogstatsd-client
License: https://github.com/DataDog/java-dogstatsd-client/blob/master/LICENSE

PrizmDoc Viewer v13.17 22

©2021 My Company. All Rights Reserved.

https://www.npmjs.com/package/fs-extra
https://github.com/jprichardson/node-fs-extra/blob/master/LICENSE
https://developer.gnome.org/glib/
http://ftp.gnome.org/pub/gnome/sources/glib/
http://www.freedesktop.org/wiki/Software/HarfBuzz/
http://www.freedesktop.org/software/harfbuzz/release/
https://github.com/joyent/node-http-signature/
http://site.icu-project.org/download
http://maven.geomajas.org/javax/media/jai-codec/1.1.3/jai-codec-1.1.3.jar
https://repo1.maven.org/maven2/javax/media/jai_core/1.1.3/
http://download.java.net/media/jai/builds/release/1_1_3/LICENSE-jai.txt
https://repo1.maven.org/maven2/com/sun/media/jai_imageio/1.1/
http://www.opensource.org/licenses/bsd-license.php
https://github.com/DataDog/java-dogstatsd-client
https://github.com/DataDog/java-dogstatsd-client/blob/master/LICENSE

JDOM

This product includes software developed by the JDOM Project (http://www.jdom.org/).
Copyright (c) 2000-2004 Jason Hunter & Brett McLaughlin. All rights reserved.
Source: http://www.jdom.org/downloads/source.html
Download: http://www.jdom.org/downloads/index.html
License: <install directory>\licenses\jdom\LICENSE.txt (http://www.jdom.org/docs/faq.html#a0030)

jimp

The MIT License (MIT)
Copyright (c) 2014 Oliver Moran
Download: https://www.npmjs.com/package/jimp
License: https://github.com/oliver-moran/jimp/blob/master/LICENSE

JPedal JBIG2 Image Decoder (http://jpedaljbig2imag.sourceforge.net/)

Copyright (c) 1997-2008, IDRsolutions and Contributors.
Download: http://sourceforge.net/projects/jpedaljbig2imag/files/
License: BSD License (<install directory>/licenses/jbig2_1.4/license.txt)

OpenJDK 1.8.0.282 https://adoptopenjdk.net/release_notes.html

GNU General Public License, version 2, with the Classpath Exception
Download: https://github.com/AdoptOpenJDK/openjdk8-upstream-binaries/releases/download/jdk8u282-
b08/OpenJDK8U-sources_8u282b08.tar.gz
License: <install directory>/java/jre8/LICENSE (https://openjdk.java.net/legal/gplv2+ce.html)

js-yaml (https://github.com/nodeca/js-yaml)

Copyright (c) 2011-2015 by Vitaly Puzrin
Download: https://github.com/nodeca/js-yaml
License: https://github.com/nodeca/js-yaml/blob/master/LICENSE

JSON.NET (http://www.newtonsoft.com/json) - (*Windows Server Only*)

Copyright (c) 2007 James Newton-King
Download: http://www.newtonsoft.com/json
License: https://github.com/JamesNK/Newtonsoft.Json/blob/master/LICENSE.md

jsoup

Copyright (c) 2009 - 2017 Jonathan Hedley (jonathan@hedley.net), MIT, v1.8.3
Download: https://repo.maven.apache.org/maven2/org/jsoup/jsoup/
License: https://jsoup.org/license

JTNEF (http://www.freeutils.net/source/jtnef/)

The JTNEF package used in this product is copyright (c) 2003-2010 by Amichai Rothman.

jutf7 (http://jutf7.sourceforge.net/)

The MIT License (MIT)
Copyright (c) 2006,2008 J.T. Beetstra
Download: https://sourceforge.net/projects/jutf7/files/jutf7/1.0.0/
License: https://sourceforge.net/p/jutf7/code/HEAD/tree/tags/jutf7-1.0.0/LICENSE.txt

PrizmDoc Viewer v13.17 23

©2021 My Company. All Rights Reserved.

http://www.jdom.org/
http://www.jdom.org/downloads/source.html
http://www.jdom.org/downloads/index.html
http://www.jdom.org/docs/faq.html#a0030
https://www.npmjs.com/package/jimp
https://github.com/oliver-moran/jimp/blob/master/LICENSE
http://jpedaljbig2imag.sourceforge.net/
http://sourceforge.net/projects/jpedaljbig2imag/files/
https://adoptopenjdk.net/release_notes.html
https://github.com/AdoptOpenJDK/openjdk8-upstream-binaries/releases/download/jdk8u282-b08/OpenJDK8U-sources_8u282b08.tar.gz
https://github.com/AdoptOpenJDK/openjdk8-upstream-binaries/releases/download/jdk8u282-b08/OpenJDK8U-sources_8u282b08.tar.gz
https://openjdk.java.net/legal/gplv2+ce.html
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml/blob/master/LICENSE
http://www.newtonsoft.com/json
http://www.newtonsoft.com/json
https://github.com/JamesNK/Newtonsoft.Json/blob/master/LICENSE.md
mailto:jonathan@hedley.net
https://repo.maven.apache.org/maven2/org/jsoup/jsoup/
https://jsoup.org/license
http://www.freeutils.net/source/jtnef/
http://jutf7.sourceforge.net/
https://sourceforge.net/projects/jutf7/files/jutf7/1.0.0/
https://sourceforge.net/p/jutf7/code/HEAD/tree/tags/jutf7-1.0.0/LICENSE.txt

lcms

The MIT License (MIT)
Copyright (c) 1998-2011 Marti Maria Saguer
Download: https://sourceforge.net/projects/lcms/files/lcms/2.6/lcms2-2.6.tar.gz/download
License: <install directory>/licenses/lcms/COPYING

libffi (https://sourceware.org/libffi)

Copyright (c) 1996-2014 Anthony Green, Red Hat Inc. and others
Download: https://github.com/libffi/libffi
License: <install directory>/licenses/libffi/LICENSE

libgif4

Copyright (c): https://sourceforge.net/projects/giflib/files/
Authors: https://sourceforge.net/projects/giflib/files/
Download: https://sourceforge.net/projects/giflib/files/
License: https://sourceforge.net/projects/giflib/files/

libintl (https://www.gnu.org/software/gettext)

Authors: <install directory>/licenses/libintl/AUTHORS, <install
directory>/licenses/libintl/THANKS
Download: http://ftp.gnu.org/pub/gnu/gettext/
License: <install directory>/licenses/libintl/COPYING

libjpeg

This software is copyright (c) 1991-1998, Thomas G. Lane.
License: <install directory>\licenses\libjpeg\license.txt

libjpeg-turbo (http://www.libjpeg-turbo.org)

Copyright (c) 1991-2012, Thomas G. Lane, Guido Vollbeding
Download: https://sourceforge.net/projects/libjpeg-turbo/files/
License: <install directory>/licenses/libjpeg-turbo/README
License: <install directory>/licenses/libjpeg-turbo/README-turbo.txt

libopenjpeg2 (http://www.openjpeg.org/)

Authors: http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
Copyright (c): http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
Download: http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
License: http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/

Libpng - 1.6.16

Copyright (c) 1998-2011 Glenn Randers-Pehrson
Download: https://sourceforge.net/projects/libpng/files/
License: <install directory>\licenses\libpng\LICENSE

LibreOffice (https://www.libreoffice.org/)

Publisher: The Document Foundation & PortableApps.com (John T. Haller)
License: LibreOffice is licensed under the GNU Lesser General Public License (LGPLv3).

PrizmDoc Viewer v13.17 24

©2021 My Company. All Rights Reserved.

https://sourceforge.net/projects/lcms/files/lcms/2.6/lcms2-2.6.tar.gz/download
https://sourceware.org/libffi
https://github.com/libffi/libffi
https://sourceforge.net/projects/giflib/files/
https://sourceforge.net/projects/giflib/files/
https://sourceforge.net/projects/giflib/files/
https://sourceforge.net/projects/giflib/files/
https://www.gnu.org/software/gettext
http://ftp.gnu.org/pub/gnu/gettext/
http://www.libjpeg-turbo.org/
https://sourceforge.net/projects/libjpeg-turbo/files/
http://www.openjpeg.org/
http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
http://mirrors.kernel.org/ubuntu/pool/universe/o/openjpeg/
https://sourceforge.net/projects/libpng/files/
https://www.libreoffice.org/

Download: https://www.libreoffice.org/download/
Please contact Accusoft support about the LibreOffice source code distribution with modifications by Accusoft.

libtiff - 4.0.3

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.
Download: http://download.osgeo.org/libtiff/
License: <install directory>\licenses\libtiff\COPYRIGHT

load-bmfont

The MIT License (MIT) Copyright (c) 2015 Jam3
Download: https://github.com/Jam3/load-bmfont
License: https://github.com/Jam3/load-bmfont/blob/master/LICENSE.md

lodash

The MIT License (MIT)
Copyright (c) JS Foundation and other contributors <https://js.foundation/>
Copyright (c) OpenJS Foundation and other contributors <https://openjsf.org/>
Download: https://github.com/lodash/lodash
License: <install directory>\licenses\lodash\LICENSE

lodash-node

Copyright jQuery Foundation and other contributors <https://jquery.org/>
Download: https://www.npmjs.com/package/lodash-node
License: https://github.com/lodash-archive/lodash-node/blob/master/LICENSE

log4j - Apache 2.0, v2.8

Copyright (c) 2017 The Apache Software Foundation, Licensed under the Apache License, Version 2.0.
Download: https://repo.maven.apache.org/maven2/org/apache/logging/log4j/log4j-api/2.8/
License: https://www.apache.org/licenses/LICENSE-2.0

merge-stream

The MIT License (MIT)
Copyright (c) Stephen Sugden <me@stephensugden.com> (stephensugden.com)
Download: https://github.com/grncdr/merge-stream
License: https://github.com/grncdr/merge-stream/blob/master/LICENSE

mime - (*Linux Server Only*)

The MIT License (MIT)
Copyright (c) 2010 Benjamin Thomas, Robert Kieffer
Download: https://github.com/broofa/node-mime
License: License: <install directory>\licenses\mime\LICENSE

mkdirp

The MIT License (MIT)
Copyright (c) 2010 James Halliday (mail@substack.net)
Download: https://github.com/substack/node-mkdirp
License: License: <install directory>\licenses\mkdirp\LICENSE

PrizmDoc Viewer v13.17 25

©2021 My Company. All Rights Reserved.

https://www.libreoffice.org/download/
http://www.accusoft.com/support
http://download.osgeo.org/libtiff/
https://github.com/Jam3/load-bmfont
https://github.com/Jam3/load-bmfont/blob/master/LICENSE.md
https://js.foundation/
https://openjsf.org/
https://github.com/lodash/lodash
https://jquery.org/
https://www.npmjs.com/package/lodash-node
https://github.com/lodash-archive/lodash-node/blob/master/LICENSE
https://repo.maven.apache.org/maven2/org/apache/logging/log4j/log4j-api/2.8/
https://www.apache.org/licenses/LICENSE-2.0
mailto:me@stephensugden.com
https://github.com/grncdr/merge-stream
https://github.com/grncdr/merge-stream/blob/master/LICENSE
https://github.com/broofa/node-mime
mailto:mail@substack.net
https://github.com/substack/node-mkdirp

MongoDB

Free Software Foundation's GNU AGPL v3.0
Copyright (c) 2016 MongoDB, Inc.
Download: https://www.mongodb.com/download-center#community
License: https://www.gnu.org/licenses/agpl-3.0.html
Server Side Public License VERSION 1, OCTOBER 16, 2018
Copyright (c) 2018 MongoDB, Inc.
Download: https://www.mongodb.com/try/download/community
License: https://www.mongodb.com/licensing/server-side-public-license

Mono - (*Linux Server Only*)

Download: http://www.mono-project.com/download/stable/
License(s): <install directory>\licenses\Mono\LICENSE

moment

The MIT License (MIT)
Copyright (c) JS Foundation and other contributors
Download: https://github.com/moment/moment/tree/2.29.1
License: https://github.com/moment/moment/blob/2.29.1/LICENSE

moment-timezone

The MIT License (MIT)
Copyright (c) JS Foundation and other contributors
Download: https://github.com/moment/moment-timezone/
License: https://github.com/moment/moment-timezone/blob/develop/LICENSE

mv - 2.1.1

The MIT License (MIT)
Copyright (c) 2014 Andrew Kelley
Download: https://github.com/andrewrk/node-mv
License: <install directory>\licenses\mv\LICENSE

nan

The MIT License (MIT)
Copyright (c) 2018 NAN contributors
Download: https://www.npmjs.com/package/nan
License: https://github.com/nodejs/nan/blob/master/LICENSE.md

netty-buffer,

netty-codec,

netty-codec-http,

netty-common,

netty-handler,

netty-transport:

PrizmDoc Viewer v13.17 26

©2021 My Company. All Rights Reserved.

https://www.mongodb.com/download-center#community
https://www.gnu.org/licenses/agpl-3.0.html
https://www.mongodb.com/try/download/community
https://www.mongodb.com/licensing/server-side-public-license
http://www.mono-project.com/download/stable/
https://github.com/moment/moment/tree/2.29.1
https://github.com/moment/moment/blob/2.29.1/LICENSE
https://github.com/moment/moment-timezone/
https://github.com/moment/moment-timezone/blob/develop/LICENSE
https://github.com/andrewrk/node-mv
https://www.npmjs.com/package/nan
https://github.com/nodejs/nan/blob/master/LICENSE.md

Apache License, Version 2.0
Copyright (c) 2012 The Netty Project
Download: https://github.com/netty/netty/
License: https://github.com/netty/netty/blob/4.1/LICENSE.txt

Ninject

Copyright (c) 2007-2012 Enkari, Ltd and the Ninject project contributors
Download: http://www.ninject.org/download.html
License: <install directory>/licenses/Ninject/LICENSE.txt
(http://www.apache.org/licenses/LICENSE-2.0)

NLog

Copyright (c) 2004-2016 Jaroslaw Kowalski jaak@jkowalski.net, Kim Christensen, Julian Verdurmen
Download: http://nlog-project.org/download/
License: <install directory>/licenses/NLog/LICENSE.txt

node-assert-plus (https://github.com/mcavage/node-assert-plus)

The MIT License (MIT)
Copyright (c) 2012 Mark Cavage
Download: https://github.com/mcavage/node-assert-plus
License: <install directory>\licenses\assert-plus\LICENSE

node-bunyan

The MIT License (MIT)
Copyright (c) 2011-2012 Joyent Inc.
Download: https://github.com/trentm/node-bunyan
License: <install directory>\licenses\bunyan\LICENSE

node-consul

The MIT License (MIT)
Copyright (c) 2014 Silas Sewell
Download: https://github.com/silas/node-consul
License: <install directory>/licenses/node-consul/LICENSE

node-gyp

The MIT License (MIT)
Copyright (c) 2012 Nathan Rajlich <nathan@tootallnate.net>
Download: https://www.npmjs.com/package/node-gyp
License: https://github.com/nodejs/node-gyp/blob/master/LICENSE

node-mongodb-native

Apache License, Version 2.0, January 2004
Download: https://github.com/mongodb/node-mongodb-native
License: https://github.com/mongodb/node-mongodb-native/blob/2.2/LICENSE

node-mysql2

The MIT License (MIT)
Copyright (c) 2016 Andrey Sidorov (sidorares@yandex.ru) and contributors

PrizmDoc Viewer v13.17 27

©2021 My Company. All Rights Reserved.

https://github.com/netty/netty/
https://github.com/netty/netty/blob/4.1/LICENSE.txt
http://www.ninject.org/download.html
https://www.apache.org/licenses/LICENSE-2.0
mailto:jaak@jkowalski.net
http://nlog-project.org/download/
https://github.com/mcavage/node-assert-plus
https://github.com/mcavage/node-assert-plus
https://github.com/trentm/node-bunyan
https://github.com/silas/node-consul
mailto:nathan@tootallnate.net
https://www.npmjs.com/package/node-gyp
https://github.com/nodejs/node-gyp/blob/master/LICENSE
https://github.com/mongodb/node-mongodb-native
https://github.com/mongodb/node-mongodb-native/blob/2.2/LICENSE
mailto:sidorares@yandex.ru

Download: https://github.com/sidorares/node-mysql2
License: <install directory>/licenses/node-mysql2/License

node-remove

The MIT License (MIT)
Download: https://github.com/dsc/node-remove
License: <install directory>/licenses/node-remove/package.json

node-retry

Copyright: (c) 2011:
Tim Koschützki (tim@debuggable.com)
Felix Geisendörfer (felix@debuggable.com)
download: https://github.com/tim-kos/node-retry
license: MIT https://github.com/tim-kos/node-retry/blob/master/License

node-schedule

The MIT License (MIT)
Copyright (C) 2015 Matt Patenaude
Download: https://www.npmjs.com/package/node-schedule
License: https://github.com/node-schedule/node-schedule/blob/master/LICENSE

node-statsd

The MIT License (MIT)
Copyright 2011 Steve Ivy. All rights reserved.
Download: https://www.npmjs.com/package/node-statsd
License: https://github.com/sivy/node-statsd/blob/master/LICENSE

node-stream

The MIT License (MIT)
Copyright (c) 2016 Stephen Zuniga
Download: https://github.com/stezu/node-stream
License: https://github.com/stezu/node-stream/blob/master/LICENSE

node-stream-meter

The MIT License (MIT)
Copyright (c) Bryce B. Baril <bryce@ravenwall.com>
Download: https://github.com/brycebaril/node-stream-meter
License: <install directory>/licenses/node-stream-meter/LICENSE

node-uuid

The MIT License (MIT)
Copyright (c) 2010-2012 Robert Kieffer
Download: https://github.com/broofa/node-uuid
License: <install directory>\licenses\node-uuid\LICENSE

Node.js v4.4.5

Copyright (c) Node.js contributors. All rights reserved.
Download: http://nodejs.org/dist/v4.4.5/

PrizmDoc Viewer v13.17 28

©2021 My Company. All Rights Reserved.

mailto:sidorares@yandex.ru
https://github.com/sidorares/node-mysql2
https://github.com/dsc/node-remove
mailto:tim@debuggable.com
mailto:felix@debuggable.com
https://github.com/tim-kos/node-retry
https://github.com/tim-kos/node-retry/blob/master/License
https://www.npmjs.com/package/node-schedule
https://github.com/node-schedule/node-schedule/blob/master/LICENSE
https://www.npmjs.com/package/node-statsd
https://github.com/sivy/node-statsd/blob/master/LICENSE
https://github.com/stezu/node-stream
https://github.com/stezu/node-stream/blob/master/LICENSE
mailto:bryce@ravenwall.com
https://github.com/brycebaril/node-stream-meter
https://github.com/broofa/node-uuid
http://nodejs.org/dist/v4.4.5/

License: <install directory>\licenses\Node.js 4\LICENSE

Node.js v8.9.0

Copyright (c) Node.js contributors. All rights reserved.
Download: http://nodejs.org/dist/v8.9.0/
License: <install directory>\licenses\Node.js 8\LICENSE

Node.js v10.15.3

Copyright (c) Node.js contributors. All rights reserved.
Download: http://nodejs.org/dist/v10.15.3/
License: <install directory>\licenses\Node.js 10\LICENSE

npm

The Artistic License 2.0
Copyright (c) npm, Inc. and Contributors
Download: https://www.npmjs.com/package/npm
License: https://github.com/npm/cli/blob/latest/LICENSE

once

ISC license
Copyright (c) Isaac Z. Schlueter and Contributors
Download: https://github.com/isaacs/once
License: <install directory>\licenses\once\LICENSE

OpenJPEG library (http://www.openjpeg.org)

Copyrights: <install directory>/licenses/openjpeg/LICENSE
Download: https://github.com/uclouvain/openjpeg/releases/
License: <install directory>/licenses/openjpeg/LICENSE

org-everit/json-schema (https://github.com/everit-org/json-schema)

Apache License Version 2.0
Version 2.0, January 2004
Download: https://github.com/everit-org/json-schema
License: http://www.apache.org/licenses/LICENSE-2.0

Pango (http://www.pango.org)

Authors: <install directory>/licenses/pango/AUTHORS, <install
directory>/licenses/pango/THANKS
Download: http://ftp.gnome.org/pub/gnome/sources/pango/
License: <install directory>/licenses/pango/COPYING

PDFOne - v5.4.877.546

Copyright (c) 2002-2018 Gnostice Information Technologies Private Limited. All rights reserved.
License: https://www.gnostice.com/PDFOne_Java.asp?show=licensing

Pixman (http://www.pixman.org)

Copyrights: <install directory>/licenses/pixman/COPYING

PrizmDoc Viewer v13.17 29

©2021 My Company. All Rights Reserved.

http://nodejs.org/dist/v4.4.5/
http://nodejs.org/dist/v8.9.0/
http://nodejs.org/dist/v10.15.3/
https://www.npmjs.com/package/npm
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/isaacs/once
http://www.openjpeg.org/
https://github.com/uclouvain/openjpeg/releases/
https://github.com/everit-org/json-schema
https://github.com/everit-org/json-schema
https://www.apache.org/licenses/LICENSE-2.0
http://www.pango.org/
http://ftp.gnome.org/pub/gnome/sources/pango/
https://www.gnostice.com/PDFOne_Java.asp?show=licensing
http://www.pixman.org/

Copyrights: <install directory>/licenses/pixman/COPYING
Download: https://cairographics.org/releases/
License: <install directory>/licenses/pixman/COPYING

pm2 (http://pm2.keymetrics.io/)

Copyright (c) 2013-2015 Strzelewicz Alexandre
Download: https://github.com/Unitech/PM2
License: https://github.com/Unitech/pm2/blob/master/GNU-AGPL-3.0.txt

pmx

The MIT License (MIT)
Download: https://www.npmjs.com/package/pmx
License: https://github.com/keymetrics/pmx#license

Poppler

Copyright (c) 2005-2018 The Poppler Developers
Copyright (c) 1996-2011 Glyph & Cog, LLC
Download: http://poppler.freedesktop.org
License: <install directory>\licenses\poppler\COPYING

Poppler-data

Copyright 1990-2009 Adobe Systems Incorporated.
Copyright Glyph & Cog, LLC
Download: http://poppler.freedesktop.org
Licenses: <install directory>\licenses\poppler-data

ps-node

The MIT License (MIT)
Copyright (c) 2015 Neekey
Download: https://github.com/neekey/ps
License: https://github.com/neekey/ps/blob/master/LICENSE.txt

pump

The MIT License (MIT)
Copyright (c) 2014 Mathias Buus
Download: https://github.com/mafintosh/pump
License: https://github.com/mafintosh/pump/blob/master/LICENSE

qs

BSD license
Copyright (c) 2014 Nathan LaFreniere and other contributors
Download: https://github.com/hapijs/qs
License: <install directory>\licenses\qs\LICENSE

rapidjson

Copyright (c) 2011 Milo Yip (miloyip@gmail.com)
Download: https://github.com/miloyip/rapidjson
Version: v0.11
License: <install directory>/licenses/rapidjson/license.txt

PrizmDoc Viewer v13.17 30

©2021 My Company. All Rights Reserved.

https://cairographics.org/releases/
http://pm2.keymetrics.io/
https://github.com/Unitech/PM2
https://github.com/Unitech/pm2/blob/master/GNU-AGPL-3.0.txt
https://www.npmjs.com/package/pmx
https://github.com/keymetrics/pmx#license
http://poppler.freedesktop.org/
http://poppler.freedesktop.org/
https://github.com/neekey/ps
https://github.com/neekey/ps/blob/master/LICENSE.txt
https://github.com/mafintosh/pump
https://github.com/mafintosh/pump/blob/master/LICENSE
https://github.com/hapijs/qs
mailto:miloyip@gmail.com
https://github.com/miloyip/rapidjson

ref

The MIT License (MIT)
Copyright (c) 2012 Nathan Rajlich <nathan@tootallnate.net>
Download: https://www.npmjs.com/package/ref
License: https://github.com/TooTallNate/ref#license

ref-struct

The MIT License (MIT)
Copyright (c) 2012 Nathan Rajlich <nathan@tootallnate.net>
Download: https://www.npmjs.com/package/ref-struct
License: https://github.com/TooTallNate/ref-struct#license

reflections - v0.9.10

Download: https://repo.maven.apache.org/maven2/org/reflections/reflections/0.9.10/
License: https://opensource.org/licenses/BSD-2-Clause

request

Apache License Version 2.0
Version 2.0, January 2004
Download: https://github.com/request/request
License: http://www.apache.org/licenses/

restify

The MIT License (MIT)
Copyright (c) 2011 Mark Cavage, All rights reserved.
Download: https://github.com/restify/node-restify
License: <install directory>\licenses\restify\LICENSE

rimraf

ISC license
Copyright (c) Isaac Z. Schlueter and Contributors
Download: https://github.com/isaacs/rimraf
License: <install directory>\licenses\rimraf\LICENSE

RTF Parser Kit (https://github.com/joniles/rtfparserkit)

Copyright (c) 2013 Jon Iles
Download: https://github.com/joniles/rtfparserkit
License: Apache License Version 2.0 (<install directory>/licenses/RTF Parser Kit/licence.txt)

sequelize

The MIT License (MIT)
Copyright (c) 2014-present Sequelize contributors
Download: https://github.com/sequelize/sequelize
License: <install directory>/licenses/sequelize/LICENSE

statsd-csharp-client

The MIT License (MIT)

PrizmDoc Viewer v13.17 31

©2021 My Company. All Rights Reserved.

mailto:nathan@tootallnate.net
https://www.npmjs.com/package/ref
https://github.com/TooTallNate/ref#license
mailto:nathan@tootallnate.net
https://www.npmjs.com/package/ref-struct
https://github.com/TooTallNate/ref-struct#license
https://repo.maven.apache.org/maven2/org/reflections/reflections/0.9.10/
https://opensource.org/licenses/BSD-2-Clause
https://github.com/request/request
http://www.apache.org/licenses/
https://github.com/restify/node-restify
https://github.com/isaacs/rimraf
https://github.com/joniles/rtfparserkit
https://github.com/joniles/rtfparserkit
https://github.com/sequelize/sequelize

Copyright (c) 2015 Kyle West (kwest2123@yahoo.com) and all contributors
Download: https://github.com/kyle2123/statsd-csharp-client
License: https://github.com/Kyle2123/statsd-csharp-client/blob/master/MIT-LICENCE.md

String Search (https://johannburkard.de/software/stringsearch/)

StringSearch - high-performance pattern matching algorithms in Java
Copyright (c) 2003-2010 Johann Burkard
Download: https://johannburkard.de/software/stringsearch/
License: https://johannburkard.de/software/stringsearch/copying.txt

The Legion of the Bouncy Castle

Copyright (c) 2000-2009 The Legion Of The Bouncy Castle (http://www.bouncycastle.org)
Download: http://bouncycastle.org/latest_releases.html
License: http://www.bouncycastle.org/licence.html
Note: The Linux Server component of the Program also uses the following software, installed separately:
OpenOffice.org (http://www.openoffice.org/)

through2 (https://github.com/rvagg/through2)

Copyright (c) 2013, Rod Vagg (the "Original Author")
Download: https://github.com/rvagg/through2
License: https://github.com/rvagg/through2

Touch.exe (https://www.codeproject.com/Articles/3258/Touch-for-Windows)

Copyright (c) 2002 by Jorgen Sigvardsson
Download: https://www.codeproject.com/KB/applications/touch_win/touch_win_demo.zip
License: https://www.codeproject.com/Articles/3258/Touch-for-Windows

TRE, a regex matching library with support for approximate matching (http://laurikari.net/tre/)

Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi>. All rights reserved.
Download: https://github.com/laurikari/tre/
License: 2-clause BSD-like license (<install directory>/licenses/tre/LICENSE)

tree-kill

The MIT License (MIT)
Download: https://github.com/pkrumins/node-tree-kill
License: https://spdx.org/licenses/MIT.html

tunnel-agent

Apache License Version 2.0
Download: https://github.com/mikeal/tunnel-agent
License: <install directory>\licenses\tunnel-agent\LICENSE

uuid

The MIT License (MIT)
Copyright (c) 2010-2020 Robert Kieffer and other contributors Download: https://github.com/uuidjs/uuid
License: https://github.com/uuidjs/uuid/blob/master/LICENSE.md

WixWPF

PrizmDoc Viewer v13.17 32

©2021 My Company. All Rights Reserved.

mailto:kwest2123@yahoo.com
https://github.com/kyle2123/statsd-csharp-client
https://github.com/Kyle2123/statsd-csharp-client/blob/master/MIT-LICENCE.md
https://johannburkard.de/software/stringsearch/
https://johannburkard.de/software/stringsearch/
https://johannburkard.de/software/stringsearch/copying.txt
http://www.bouncycastle.org/
http://bouncycastle.org/latest_releases.html
http://www.bouncycastle.org/licence.html
http://www.openoffice.org/
https://github.com/rvagg/through2
https://github.com/rvagg/through2
https://github.com/rvagg/through2
https://www.codeproject.com/Articles/3258/Touch-for-Windows
https://www.codeproject.com/KB/applications/touch_win/touch_win_demo.zip
https://www.codeproject.com/Articles/3258/Touch-for-Windows
http://laurikari.net/tre/
mailto:vl@iki.fi
https://github.com/laurikari/tre/
https://github.com/pkrumins/node-tree-kill
https://spdx.org/licenses/MIT.html
https://github.com/mikeal/tunnel-agent
https://github.com/uuidjs/uuid
https://github.com/uuidjs/uuid/blob/master/LICENSE.md

Copyright (c) 2013 by Troy Palacino
Download: http://wixwpf.codeplex.com/releases/view/615076
License: http://wixwpf.codeplex.com/license

wkhtmltopdf (http://wkhtmltopdf.org/)

Copyright (c) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Download: http://wkhtmltopdf.org/downloads.html
License: <install directory>/licenses/wkhtmltopdf/LICENSE
Uses Qt (www.qt.io) with modifications by Accusoft.
Copyright (c) 2015 The Qt Company Ltd.
License: <install directory>/licenses/wkhtmltopdf/qt/LICENSE.LGPLv3
Please contact Accusoft support at support@accusoft.com about the Qt source code distribution with
modifications by Accusoft.

wrappy

ISC License
Copyright (c) Isaac Z. Schlueter and Contributors
Download: https://github.com/npm/wrappy
License: <install directory>\licenses\wrappy\LICENSE

ws

The MIT License (MIT)
Copyright (c) 2011 Einar Otto Stangvik <einaros@gmail.com>
Download: https://github.com/websockets/ws
License: https://github.com/websockets/ws#license

xml2js

The MIT License (MIT)
Copyright (c) 2010, 2011, 2012, 2013. All rights reserved.
Download: https://github.com/Leonidas-from-XIV/node-xml2js
License: <install directory>\licenses\xml2js\LICENSE

xmlbuilder-js

The MIT License (MIT)
Copyright (c) 2013 Ozgur Ozcitak
Download: https://github.com/oozcitak/xmlbuilder-js
License: <install directory>\licenses\xmlbuilder-js\LICENSE

xsp - (*Linux Server Only)

Copyright (c) 2002, 2003, 2004 Novell, Inc. and the individuals listed on the ChangeLog entries
License: <install directory>\licenses\ xsp\COPYING

yargs

Copyright (c) 2010 James Halliday (mail@substack.net)
Download: https://github.com/bcoe/yargs
License: MIT/X11 https://github.com/bcoe/yargs/blob/master/LICENSE

zlib - 1.2.8

PrizmDoc Viewer v13.17 33

©2021 My Company. All Rights Reserved.

http://wixwpf.codeplex.com/releases/view/615076
http://wixwpf.codeplex.com/license
http://wkhtmltopdf.org/
http://fsf.org/
http://wkhtmltopdf.org/downloads.html
http://www.qt.io/
mailto:support@accusoft.com
https://github.com/npm/wrappy
mailto:einaros@gmail.com
https://github.com/websockets/ws
https://github.com/websockets/ws#license
https://github.com/Leonidas-from-XIV/node-xml2js
https://github.com/oozcitak/xmlbuilder-js
mailto:mail@substack.net
https://github.com/bcoe/yargs
https://github.com/bcoe/yargs/blob/master/LICENSE

Copyright (c) 1995-2010 Jean-loup Gailly and Mark Adler
Download: http://sourceforge.net/projects/libpng/files/zlib/
License: <install directory>\licenses\zlib\README

Windows Fonts

AC Kaisyo (https://www.ac-font.com)

Copyright (c) by Font AC
Download: https://www.ac-font.com/jp/detail_jb_007.php
License: https://www.ac-font.com/jp/terms.php

Noto Sans (https://www.google.com/get/noto/)

Copyright (c) 2012 Google Inc. All Rights Reserved.
Download: https://www.google.com/get/noto/
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Noto Sans JP (https://www.google.com/get/noto/help/cjk/)

Copyright (c) 2014, 2015 Adobe Systems Incorporated (http://www.adobe.com/)
Download: https://www.google.com/get/noto/help/cjk/
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Noto Sans JP Accusoft (part of Noto Sans CJK modified by Accusoft)

Copyright (c) 2016 Accusoft Corporation, 2014, 2015 Adobe Systems Incorporated (http://www.adobe.com/)
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Linux Fonts

AC Kaisyo (https://www.ac-font.com)

Copyright (c) by Font AC
Download: https://www.ac-font.com/jp/detail_jb_007.php
License: https://www.ac-font.com/jp/terms.php

Economica (https://www.fontsquirrel.com/fonts/economica)

Copyright (c) 2012, Vicente Lamonaca (produccion.taller@gmail.com)
Download: https://www.fontsquirrel.com/fonts/economica
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

FreeMono (http://savannah.gnu.org/projects/freefont/)

Copyright (c) 2002, 2003, 2005, 2008, 2009, 2010, 2012 GNU Freefont contributors.
Download: http://ftp.gnu.org/gnu/freefont/
License: <install directory>/licenses/fonts/freefont/COPYING (GPLv3)

IPAexMincho (https://moji.or.jp/ipafont/)

Copyright (c) IPA Information-technology Promotion Agency, Japan.
Download: https://moji.or.jp/ipafont/ipafontdownload/
License: https://moji.or.jp/ipafont/license/ (IPA Font License Agreement v1.0)

PrizmDoc Viewer v13.17 34

©2021 My Company. All Rights Reserved.

http://sourceforge.net/projects/libpng/files/zlib/
https://www.ac-font.com/
https://www.ac-font.com/jp/detail_jb_007.php
https://www.ac-font.com/jp/terms.php
https://www.google.com/get/noto/
https://www.google.com/get/noto/
http://scripts.sil.org/OFL
https://www.google.com/get/noto/help/cjk/
http://www.adobe.com/
https://www.google.com/get/noto/help/cjk/
http://scripts.sil.org/OFL
http://www.adobe.com/
http://scripts.sil.org/OFL
https://www.ac-font.com/
https://www.ac-font.com/jp/detail_jb_007.php
https://www.ac-font.com/jp/terms.php
https://www.fontsquirrel.com/fonts/economica
mailto:produccion.taller@gmail.com
https://www.fontsquirrel.com/fonts/economica
http://scripts.sil.org/OFL
http://savannah.gnu.org/projects/freefont/
http://ftp.gnu.org/gnu/freefont/
https://moji.or.jp/ipafont/
https://moji.or.jp/ipafont/ipafontdownload/
https://moji.or.jp/ipafont/license/

Josefin Sans (https://www.fontsquirrel.com/fonts/josefin-sans)

Copyright (c) 2010 by Typemade. All rights reserved.
Download: https://www.fontsquirrel.com/fonts/josefin-sans
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Microsoft TrueType core fonts for the Web

Copyright (c) 2001 Microsoft Corporation. All rights reserved.
License: http://corefonts.sourceforge.net/eula.htm (TrueType core fonts for the Web EULA)

Noto Sans (https://www.google.com/get/noto/)

Copyright (c) 2012 Google Inc. All Rights Reserved.
Download: https://www.google.com/get/noto/
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Noto Sans JP (https://www.google.com/get/noto/help/cjk/)

Copyright (c) 2014, 2015 Adobe Systems Incorporated (http://www.adobe.com/)
Download: https://www.google.com/get/noto/help/cjk/
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

Noto Sans JP Accusoft (part of Noto Sans CJK modified by Accusoft)

Copyright (c) 2016 Accusoft Corporation, 2014, 2015 Adobe Systems Incorporated (http://www.adobe.com/)
License: http://scripts.sil.org/OFL (SIL Open Font License v1.1)

TeX Gyre Adventor (http://www.gust.org.pl/projects/e-foundry/tex-gyre/adventor)

Copyright (c) 2007-2009 for TeX Gyre extensions by B. Jackowski
and J.M. Nowacki (on behalf of TeX Users Groups). Vietnamese
characters were added by Han The Thanh.
Download: http://www.gust.org.pl/projects/e-foundry/tex-gyre/adventor
License: <install directory>/licenses/fonts/tex-gyre-adventor/GUST-FONT-LICENSE.txt (GUST Font
License)

TeX Gyre Adventor Accusoft (TXGAAccusoft, Tex Gyre Adventor font modified by Accusoft)

Copyright (c) 2016 Accusoft, 2007-2009 for TeX Gyre extensions by B. Jackowski
and J.M. Nowacki (on behalf of TeX Users Groups).
Vietnamese characters were added by Han The Thanh.
License: <install directory>/licenses/fonts/tex-gyre-adventor/GUST-FONT-LICENSE.txt (GUST Font
License)

TeX Gyre Pagella (http://www.gust.org.pl/projects/e-foundry/tex-gyre/pagella)

Copyright (c) 2007-2009 for TeX Gyre extensions by B. Jackowski
and J.M. Nowacki (on behalf of TeX Users Groups). Vietnamese
characters were added by Han The Thanh.
Download: http://www.gust.org.pl/projects/e-foundry/tex-gyre/pagella
License: <install directory>/licenses/fonts/tex-gyre-pagella/GUST-FONT-LICENSE.txt (GUST Font License)

TeX Gyre Pagella Accusoft (TXGAAccusoft, Tex Gyre Pagella font modified by Accusoft)

PrizmDoc Viewer v13.17 35

©2021 My Company. All Rights Reserved.

https://www.fontsquirrel.com/fonts/josefin-sans
https://www.fontsquirrel.com/fonts/josefin-sans
http://scripts.sil.org/OFL
http://corefonts.sourceforge.net/eula.htm
https://www.google.com/get/noto/
https://www.google.com/get/noto/
http://scripts.sil.org/OFL
https://www.google.com/get/noto/help/cjk/
http://www.adobe.com/
https://www.google.com/get/noto/help/cjk/
http://scripts.sil.org/OFL
http://www.adobe.com/
http://scripts.sil.org/OFL
http://www.gust.org.pl/projects/e-foundry/tex-gyre/adventor
http://www.gust.org.pl/projects/e-foundry/tex-gyre/adventor
http://www.gust.org.pl/projects/e-foundry/tex-gyre/pagella
http://www.gust.org.pl/projects/e-foundry/tex-gyre/pagella

Copyright (c) 2016 Accusoft, 2007-2009 for TeX Gyre extensions by B. Jackowski
and J.M. Nowacki (on behalf of TeX Users Groups).
Vietnamese characters were added by Han The Thanh.
License: <install directory>/licenses/fonts/tex-gyre-pagella/GUST-FONT-LICENSE.txt (GUST Font License)

PrizmDoc Server Docker Image

fontconfig - 2.11.94-0ubuntu1.1

Copyright (c) 2001, 2003 Keith Packard
Download: http://archive.ubuntu.com/ubuntu/pool/main/f/fontconfig/fontconfig_2.11.94.orig.tar.bz2
License: http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-
0ubuntu1.1/copyright

libcups2 - 2.1.3-4ubuntu0.11

GNU General Public License, version 2 with Apple Operating System Development License Exception
GNU Library General Public License, version 2 with Apple Operating System Development License Exception
Zlib license
BSD 2-clause
Copyright (c) 2007-2015, Apple Inc.
Copyright (c) 2007-2013, Apple Inc.
Copyright (c) 2005, Easy Software Products
Copyright (c) 1999, Aladdin Enterprises.
Copyright (c) 2011, Red Hat, Inc
Copyright (c) 2007-2014, Apple Inc
Copyright (c) 1997-2007, Easy Software Products
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/cups/cups_2.1.3.orig.tar.bz2
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/cups/cups_2.1.3-4ubuntu0.11/copyright with
references to the full text of GPL-2.0 and LGPL-2.0

libdbus-glib-1-2 - 0.106-1

GNU General Public License, version 2 or any later version
Expat license
Copyright (c) 2002-2010 Red Hat, Inc
Copyright (c) 2002-2003 CodeFactory AB
Copyright (c) 2004 Ximian, Inc
Copyright (c) 2005-2011 Nokia Corporation
Copyright (c) 2006 Steve Frécinaux
Copyright (c) 2007 Codethink Ltd
Copyright (c) 2009-2014 Collabora Ltd
Copyright (c) 2013 Intel Corporation
Copyright (c) 2008 David Zeuthen
Copyright (c) 2009 Collabora Ltd
Copyright (c) 2009-2011 Nokia Corporation
Copyright (c) 2011 Nokia Corporation
Copyright (c) 2013 Collabora Ltd
Download: http://archive.ubuntu.com/ubuntu/pool/main/d/dbus-glib/dbus-glib_0.106.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/d/dbus-glib/dbus-glib_0.106-1/copyright with
references to the full text of GPL-2+

libexif12 - 0.6.21-2ubuntu0.6

PrizmDoc Viewer v13.17 36

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/f/fontconfig/fontconfig_2.11.94.orig.tar.bz2
http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-0ubuntu1.1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-0ubuntu1.1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/c/cups/cups_2.1.3.orig.tar.bz2
http://changelogs.ubuntu.com/changelogs/pool/main/c/cups/cups_2.1.3-4ubuntu0.11/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://archive.ubuntu.com/ubuntu/pool/main/d/dbus-glib/dbus-glib_0.106.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/d/dbus-glib/dbus-glib_0.106-1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU General Public License, version 2 or any later version
GNU Lesser General Public License, version 2.1 or any later version
BSD 2-clause
Copyright (c) 2001-2009, Lutz Müller urc8@rz.uni-karlsruhe.de
Copyright (c) 2004-2009, Jan Patera patera@users.sourceforge.net
Copyright (c) 2004, Joerg Hoh joerg@devone.org
Copyright (c) 2005-2006, Hubert Figuiere hub@figuiere.net
Copyright (c) 2002-2005, Hans Ulrich Niedermann gp@n-dimensional.de
Copyright (c) 2007-2010, Dan Fandrich dan@coneharvesters.com
Copyright (c) 2002, Fredrik fredrik@krixor.xy.org
Copyright (c) 2002, Javier Achirica achirica@ttd.net
Copyright (c) 2002, Semyon Sosin sem@best.com
Copyright (c) 2002, Guido Ostkamp guido.ostkamp@t-online.de
Copyright (c) 2002, Takuro Ashie makeinu@users.sourceforge.net
Copyright (c) 2002, Jason Sodergren jason@taiga.com
Copyright (c) 2002, Renchi Raju renchi@pooh.tam.uiuc.edu
Copyright (c) 2003, Torgeir Hansen torgeir@trenger.ro
Copyright (c) 2003, Roberto Costa roberto.costa@ensta.org
Copyright (c) 2004, Angela Wrobel
Copyright (c) 2002, Basil Dias basil.dias@wipro.com
Copyright (c) 2003, Ralph Heidelberg RHeidelberg@Pinnaclesys.com
Copyright (c) 2002, Javier Achirica achirica@ttd.net
Copyright (c) 2003, Gernot Jander gernot@bigpond.com
Copyright (c) 2004, Antonio Scuri scuri@tecgraf.puc-rio.br
Copyright (c) 2002, Mark Pulford mark@kyne.com.au
Copyright (c) 2002, Semyon Sosin sem@best.com
Copyright (c) 2002, Marcus Meissner marcus@jet.franken.de
Copyright (c) 2003, Jens Finke jens@triq.net
Copyright (c) 2007, Meder Kydyraliev
Copyright (c) 2008, Mika Raento mikie@google.com
Copyright (c) 2003, Peter Bieringer pb@bieringer.de
Copyright (c) 2004, Antonio Scuri scuri@tecgraf.puc-rio.br
Copyright (c) 2008-2010, Erwin Poeze
Copyright (c) 2008-2010, Marcus Meissner
Copyright (c) 2008-2010, Jakub Bogusz
Copyright (c) 2008, Ivan Masár
Copyright (c) 2008-2010, Clytie Siddall
Copyright (c) 2009, Daniel Nylander
Copyright (c) 2009, Jan Patera
Copyright (c) 2009-2010, Marko Uskokovic
Copyright (c) 2009-2010, Tao Wei weitao1979@gmail.com
Copyright (c) 2009-2010, Vilson Gjeci vilsongjeci@gmail.com
Copyright (c) 2009, nglnx
Copyright (c) 2010, Launchpad Translators
Copyright (c) 2009, Shushi Kurose
Copyright (c) 2009-2010, Tadashi Jokagi
Copyright (c) 2009-2010, Sergio Zanchetta
Copyright (c) 2009, Bruce Cowan
Copyright (c) 2009-2010, Iryna Nikanchuk defragbrain@gmail.com
Copyright (c) 2009-2010, Joe Hansen
Copyright (c) 2010, Enes Ateş e.n.3.s@hotmail.com
Copyright (c) 2010, Launchpad Translators
Copyright (c) 2010, Robert Readman
Copyright (c) 2010, André Gondim andregondim@ubuntu.com

PrizmDoc Viewer v13.17 37

©2021 My Company. All Rights Reserved.

mailto:urc8@rz.uni-karlsruhe.de
mailto:patera@users.sourceforge.net
mailto:joerg@devone.org
mailto:hub@figuiere.net
mailto:gp@n-dimensional.de
mailto:dan@coneharvesters.com
mailto:fredrik@krixor.xy.org
mailto:achirica@ttd.net
mailto:sem@best.com
mailto:guido.ostkamp@t-online.de
mailto:makeinu@users.sourceforge.net
mailto:jason@taiga.com
mailto:renchi@pooh.tam.uiuc.edu
mailto:torgeir@trenger.ro
mailto:roberto.costa@ensta.org
mailto:basil.dias@wipro.com
mailto:RHeidelberg@Pinnaclesys.com
mailto:achirica@ttd.net
mailto:gernot@bigpond.com
mailto:scuri@tecgraf.puc-rio.br
mailto:mark@kyne.com.au
mailto:sem@best.com
mailto:marcus@jet.franken.de
mailto:jens@triq.net
mailto:mikie@google.com
mailto:pb@bieringer.de
mailto:scuri@tecgraf.puc-rio.br
mailto:weitao1979@gmail.com
mailto:vilsongjeci@gmail.com
mailto:defragbrain@gmail.com
mailto:e.n.3.s@hotmail.com
mailto:andregondim@ubuntu.com

Copyright (c) 2010, Alexey Ivanov alexey.ivanes@gmail.com
Copyright (c) 2009, André Gondi
Copyright (c) 2002-2004, Christophe Barbe christophe@debian.org
Copyright (c) 2004-2007, Frederic Peters fpeters@debian.org
Copyright (c) 2009-2011, Emmanuel Bouthenot kolter@debian.org
Download: http://archive.ubuntu.com/ubuntu/pool/main/libe/libexif/libexif_0.6.21.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libe/libexif/libexif_0.6.21-2ubuntu0.6/copyright
with references to the full text of GPL-2+ and LGPL-2.1+

libexpat1 - 2.1.0-7ubuntu0.16.04.5

The MIT License (MIT)
Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers
Download: http://archive.ubuntu.com/ubuntu/pool/main/e/expat/expat_2.1.0.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/e/expat/expat_2.1.0-7ubuntu0.16.04.5/copyright

libfreetype6 - 2.6.1-0.1ubuntu2.5

GNU General Public License, version 2 or any later version
Zlib license
BSD 2-clause
BSD 3-clause
The Catharon Open Source LICENSE
The OpenGroup BSD-like license Copyright (c) 1996-2012 David Turner, Robert Wilhelm, and Werner Lemberg
Copyright (c) 1996-2009 Just van Rossum
Copyright (c) 2002-2012 Roberto Alameda
Copyright (c) 2003 Huw D M Davies for Codeweavers
Copyright (c) 2003-2012 Masatake YAMATO, Redhat K.K.
Copyright (c) 2004-2012 Albert Chin-A-Young
Copyright (c) 2004-2012 Suzuki Toshiya
Copyright (c) 2007 Dmitry Timoshkov for Codeweavers
Copyright (c) 2007-2011 Rahul Bhalerao rahul.bhalerao@redhat.com
Copyright (c) 2007-2012 Derek Clegg, Michael Toftdal
Copyright (c) 2009-2011 Oran Agra, Mickey Gabel
Copyright (c) 2010, 2012 Joel Klinghed
Copyright (c) 1996-2012 Christoph Lameter clameter@waterf.org, Anthony Fok foka@debian.org, Steve
Langasek vorlon@debian.org, et al.
Copyright (c) 2001, 2002 Catharon Productions Inc.
Copyright (c) 1995-2002 Jean-loup Gailly and Mark Adler
Copyright (c) 2002-2006, 2009-2012 David Turner, Robert Wilhelm, Werner Lemberg
Copyright (c) 2005-2008 George Williams
Copyright (c) 2000-2012 Francesco Zappa Nardelli francesco.zappa.nardelli@ens.fr
Copyright (c) 2000 Computing Research Labs, New Mexico State University
Copyright (c) 1990, 1994, 1998 The Open Group
Download: http://archive.ubuntu.com/ubuntu/pool/main/f/freetype/freetype_2.6.1.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/f/freetype/freetype_2.6.1-0.1ubuntu2.5/copyright
with references to the full text of GPL-2+

libjpeg62 - 1:6b2-2

Copyright (C) 1991-1998, Thomas G. Lane.
The Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated.
GIF(sm) is a Service Mark property of CompuServe Incorporated.

PrizmDoc Viewer v13.17 38

©2021 My Company. All Rights Reserved.

mailto:andregondim@ubuntu.com
mailto:alexey.ivanes@gmail.com
mailto:christophe@debian.org
mailto:fpeters@debian.org
mailto:kolter@debian.org
http://archive.ubuntu.com/ubuntu/pool/main/libe/libexif/libexif_0.6.21.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libe/libexif/libexif_0.6.21-2ubuntu0.6/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://archive.ubuntu.com/ubuntu/pool/main/e/expat/expat_2.1.0.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/e/expat/expat_2.1.0-7ubuntu0.16.04.5/copyright
mailto:rahul.bhalerao@redhat.com
mailto:clameter@waterf.org
mailto:foka@debian.org
mailto:vorlon@debian.org
mailto:francesco.zappa.nardelli@ens.fr
http://archive.ubuntu.com/ubuntu/pool/main/f/freetype/freetype_2.6.1.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/f/freetype/freetype_2.6.1-0.1ubuntu2.5/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Download: http://archive.ubuntu.com/ubuntu/pool/main/libj/libjpeg6b/libjpeg6b_6b2.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/universe/libj/libjpeg6b/libjpeg6b_6b2-2/copyright

libpixman-1-0 - 0.33.6-1

The MIT License (MIT)
Copyright (c) 1987, 1988, 1989, 1998 The Open Group
Copyright (c) 1987, 1988, 1989 Digital Equipment Corporation
Copyright (c) 1999, 2004, 2008 Keith Packard
Copyright (c) 2000 SuSE, Inc.
Copyright (c) 2000 Keith Packard, member of The XFree86 Project, Inc.
Copyright (c) 2004, 2005, 2007, 2008, 2009, 2010 Red Hat, Inc.
Copyright (c) 2004 Nicholas Miell
Copyright (c) 2005 Lars Knoll & Zack Rusin, Trolltech
Copyright (c) 2005 Trolltech AS
Copyright (c) 2007 Luca Barbato
Copyright (c) 2008 Aaron Plattner, NVIDIA Corporation
Copyright (c) 2008 Rodrigo Kumpera
Copyright (c) 2008 AndrÃ© TupinambÃ¡ Copyright (c) 2008 Mozilla Corporation
Copyright (c) 2008 Frederic Plourde
Copyright (c) 2009, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2009, 2010 Nokia Corporation
Download: http://archive.ubuntu.com/ubuntu/pool/main/p/pixman/pixman_0.33.6.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/p/pixman/pixman_0.33.6-1/copyright

libx11-6 - 2:1.6.3-1ubuntu2.2

The MIT License (MIT)
Copyright (c) 2003-2006,2008 Jamey Sharp, Josh Triplett
Copyright (c) 2009 Red Hat, Inc.
Copyright (c) 1990-1992,1999,2000,2004,2009,2010 Oracle and/or its affiliates. All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libx11/libx11_1.6.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libx11/libx11_1.6.3-1ubuntu2.2/copyright

libxau6 - 1:1.0.8-1

Copyright (c) 1988, 1998 The Open Group
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxau/libxau_1.0.8.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxau/libxau_1.0.8-1/copyright

libxext6 - 2:1.3.3-1

Copyright (c) 1986, 1987, 1988, 1989, 1994, 1998 The Open Group
Copyright (c) 1996 Digital Equipment Corporation, Maynard, Massachusetts.
Copyright (c) 1997 by Silicon Graphics Computer Systems, Inc.
Copyright (c) 1992 Network Computing Devices
Copyright (c) 1991,1993 by Digital Equipment Corporation, Maynard, Massachusetts, and Olivetti Research
Limited, Cambridge, England.
Copyright (c) 1986, 1987, 1988 by Hewlett-Packard Corporation
Copyright (c) 1994, 1995 Hewlett-Packard Company
Copyright (c) Digital Equipment Corporation, 1996
Copyright (c) 1999, 2005, 2006, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 1989 X Consortium, Inc. and Digital Equipment Corporation.
Copyright (c) 1992 X Consortium, Inc. and Intergraph Corporation.

PrizmDoc Viewer v13.17 39

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/libj/libjpeg6b/libjpeg6b_6b2.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/universe/libj/libjpeg6b/libjpeg6b_6b2-2/copyright
http://archive.ubuntu.com/ubuntu/pool/main/p/pixman/pixman_0.33.6.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/p/pixman/pixman_0.33.6-1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libx11/libx11_1.6.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libx11/libx11_1.6.3-1ubuntu2.2/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxau/libxau_1.0.8.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxau/libxau_1.0.8-1/copyright

Copyright (c) 1993 X Consortium, Inc. and Silicon Graphics, Inc.
Copyright (c) 1994, 1995 X Consortium, Inc. and Hewlett-Packard Company.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxext/libxext_1.3.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxext/libxext_1.3.3-1/copyright

libxinerama1 - 2:1.1.3-1

Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2003 The Open Group
Copyright (c) 1991, 1997 Digital Equipment Corporation, Maynard, Massachusetts.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxinerama/libxinerama_1.1.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxinerama/libxinerama_1.1.3-1/copyright

libxrender1 - 1:0.9.9-0ubuntu1

Copyright (c) 2001,2003 Keith Packard
Copyright (c) 2000 SuSE, Inc.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxrender/libxrender_0.9.9.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-
0ubuntu1/copyright

libxtst6 - 2:1.2.2-1

Copyright (c) 1990, 1991 by UniSoft Group Limited
Copyright (c) 1992, 1993, 1995, 1998 The Open Group
Copyright (c) 1995 Network Computing Devices
Copyright (c) 2005 Red Hat, Inc.
Copyright (c) 1992 by UniSoft Group Ltd.
Copyright (c) 1992, 1994, 1995 X Consortium
Copyright (c) 1994 Network Computing Devices, Inc.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxtst/libxtst_1.2.2.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxtst/libxtst_1.2.2-1/copyright

libssl1.0.0 - 1.0.2g-1ubuntu4.19

BSD License
Copyright (c) 1998-2004 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson
Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved.
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_1.0.2g.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-
1ubuntu4.19/copyright

libxslt1.1 - 1.1.28-2.1ubuntu0.3

Copyright (c) 2001-2002 Daniel Veillard. All Rights Reserved.
Copyright (c) 2001-2002 Thomas Broyer, Charlie Bozeman and Daniel Veillard. All Rights Reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxslt/libxslt_1.1.28.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxslt/libxslt_1.1.28-2.1ubuntu0.3/copyright

libglu1-mesa - 9.0.0-2.1

GNU General Public License, version 2, or any later version

PrizmDoc Viewer v13.17 40

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/libx/libxext/libxext_1.3.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxext/libxext_1.3.3-1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxinerama/libxinerama_1.1.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxinerama/libxinerama_1.1.3-1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxrender/libxrender_0.9.9.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-0ubuntu1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-0ubuntu1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxtst/libxtst_1.2.2.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxtst/libxtst_1.2.2-1/copyright
mailto:eay@cryptsoft.com
http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_1.0.2g.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-1ubuntu4.19/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-1ubuntu4.19/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxslt/libxslt_1.1.28.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxslt/libxslt_1.1.28-2.1ubuntu0.3/copyright

GNU Library General Public License, version 2, or any later version
SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
Copyright (c) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
Copyright (c) 1995-1998 Brian Paul
Copyright (c) 2012 Timo Aaltonen
Download: http://archive.ubuntu.com/ubuntu/pool/main/libg/libglu/libglu_9.0.0.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libg/libglu/libglu_9.0.0-2.1/copyright with
references to the full text of GPL-2 and LGPL-2

lsof - 4.89+dfsg-0.1

SENDMAIL LICENSE
BSD 4-clause
Purdue license
GNU General Public License, version 2, or any later version
GNU Library General Public License, version 2, or any later version
Copyright (c) 1998 Sendmail, Inc. All rights reserved.
Copyright (c) Purdue Research Foundation, West Lafayette, Indiana 47907 2002 - 2011
Copyright (c) 1996, Dominik Kubla dominik@debian.org
Copyright (c) 1997, Michael Meskes meskes@debian.org
Copyright (c) 1998-2002, Jim Mintha jmintha@debian.org
Copyright (c) 2004-2009, Norbert Tretkowski nobse@debian.org
Copyright (c) 2012, Raoul Gunnar Borenius borenius@dfn.de
Copyright (c) 2012, Nicholas Bamber nicholas@periapt.co.uk
Copyright (c) 1993, Paul Kranenburg
Copyright (c) 2005-2007, Apple Computer, Inc. All rights reserved.
Copyright (c) 1983, 1993, The Regents of the University of California
Copyright (c) 1980, 1983, 1988, Regents of the University of California.
Copyright (c) 1983, 1988, 1993, Regents of the University of California.
Copyright (c) 2004, 2005, Fabian Frederick fabian.frederick@gmx.fr
Copyright (c) 1985, 1989-2000, Free Software Foundation, Inc.
Copyright (c) 1998, Sendmail, Inc. All rights reserved.
Copyright (c) 1997, Eric P. Allman. All rights reserved.
Copyright (c) 1988, 1993, The Regents of the University of California. All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/l/lsof/lsof_4.89+dfsg.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/l/lsof/lsof_4.89+dfsg-0.1/copyright

libcairo2 - 1.14.6-1

GNU Lesser General Public License, version 2.1 with additional copyright notice
Copyright (c) 1999 Tom Tromey
Copyright (c) 2002, 2003 University of Southern California, Information Sciences Institute (ISI)
Copyright (c) 2000, 2002, 2004, 2005 Keith Packard
Copyright (c) 2004 Calum Robinson
Copyright (c) 2004 Richard D. Worth
Copyright (c) 2004, 2005 Red Hat, Inc.
Copyright (c) 2004 David Reveman
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/cairo/cairo_1.14.6.orig.tar.xz
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/cairo/cairo_1.14.6-1/copyright with references
to the full text of LGPL-2.1

locales - 2.23-0ubuntu11.3

Copyright (c) 1991-2015 Free Software Foundation, Inc.

PrizmDoc Viewer v13.17 41

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/libg/libglu/libglu_9.0.0.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libg/libglu/libglu_9.0.0-2.1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
mailto:dominik@debian.org
mailto:meskes@debian.org
mailto:jmintha@debian.org
mailto:nobse@debian.org
mailto:borenius@dfn.de
mailto:nicholas@periapt.co.uk
mailto:fabian.frederick@gmx.fr
http://archive.ubuntu.com/ubuntu/pool/main/l/lsof/lsof_4.89 dfsg.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/l/lsof/lsof_4.89+dfsg-0.1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/c/cairo/cairo_1.14.6.orig.tar.xz
http://changelogs.ubuntu.com/changelogs/pool/main/c/cairo/cairo_1.14.6-1/copyright
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Copyright (c) 1991 Regents of the University of California. All rights reserved.
Portions Copyright (c) 1993 by Digital Equipment Corporation.
Portions Copyright (c) 1996-1999 by Internet Software Consortium.
Copyright (c) 2010, Oracle America, Inc. Copyright (c) 1991,1990,1989 Carnegie Mellon University All Rights
Reserved.
Copyright (c) 2000, Intel Corporation. All rights reserved.
Copyright (c) 1996 by Craig Metz, All Rights Reserved.
Copyright (c) 1992 Eric Young
Copyright (c) 2002, 2003, 2004, 2011 Simon Josefsson
Copyright (c) 1999, 2000 Tom Tromey
Copyright (c) 2000 Red Hat, Inc.
Copyright (c) The Internet Society (2003). All Rights Reserved.
Copyright (c) 1998 WIDE Project. All rights reserved.
Copyright (c) 1995 by Tom Lord
Copyright (c) 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved.
Copyright (c) 1997-2003 University of Cambridge
Copyright (c) 1993 by Sun Microsystems, Inc. All rights reserved.
(C) Copyright C E Chew
Copyright (c) 2001 by Stephen L. Moshier moshier@na-net.ornl.gov
Download: http://archive.ubuntu.com/ubuntu/pool/main/g/glibc/glibc_2.23.orig.tar.xz
License: http://changelogs.ubuntu.com/changelogs/pool/main/g/glibc/glibc_2.23-0ubuntu11.3/copyright with
references to the full text of GPL-2 and LGPL-2.1

ca-certificates - 20210119~16.04.1

GNU General Public License, version 2, or any later version
Mozilla Public License Version 2.0
Copyright (c) 2003 Fumitoshi UKAI ukai@debian.or.jp
Copyright (c) 2009 Philipp Kern pkern@debian.org
Copyright (c) 2011 Michael Shuler michael@pbandjelly.org
Copyright (c) Various Debian Contributors
Copyright (c) Mozilla Contributors
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-
certificates_20210119~16.04.1.tar.xz
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-
certificates_20210119~16.04.1/copyright with references to the full text of GPL-2+

PrizmDoc Application Services (PAS)

aws-sdk-js

Apache License Version 2.0
Copyright (c) 2012-2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Download: https://github.com/aws/aws-sdk-js
License: http://www.apache.org/licenses/LICENSE-2.0

azure-storage

Apache License Version 2.0
Download: https://github.com/Azure/azure-storage-node
License: https://github.com/Azure/azure-storage-node/blob/master/LICENSE.txt

body-parser (https://github.com/expressjs/body-parser)

PrizmDoc Viewer v13.17 42

©2021 My Company. All Rights Reserved.

mailto:moshier@na-net.ornl.gov
http://archive.ubuntu.com/ubuntu/pool/main/g/glibc/glibc_2.23.orig.tar.xz
http://changelogs.ubuntu.com/changelogs/pool/main/g/glibc/glibc_2.23-0ubuntu11.3/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
mailto:ukai@debian.or.jp
mailto:pkern@debian.org
mailto:michael@pbandjelly.org
http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1.tar.xz
http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1.tar.xz
http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://github.com/aws/aws-sdk-js
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/Azure/azure-storage-node
https://github.com/Azure/azure-storage-node/blob/master/LICENSE.txt
https://github.com/expressjs/body-parser

Copyright (c) 2014 Jonathan Ong <me@jongleberry.com>
Copyright (c) 2014-2015 Douglas Christopher Wilson <doug@somethingdoug.com>
Download: https://github.com/expressjs/body-parser
License: https://github.com/expressjs/body-parser/blob/master/LICENSE

caolan/async

The MIT License (MIT)
Copyright (c) 2010-2018 Caolan McMahon
Download: https://github.com/caolan/async
License: https://github.com/caolan/async/blob/v1.4.2/LICENSE

captains-log

The MIT License (MIT)
Copyright (c) 2012-present, Mike McNeil
Download: https://www.npmjs.com/package/captains-log
License: https://github.com/balderdashy/sails/blob/master/LICENSE.md

cors

The MIT License (MIT)
Copyright (c) 2013 Troy Goode troygoode@gmail.com
Download: https://github.com/expressjs/cors
License: https://github.com/expressjs/cors/blob/master/LICENSE

Duration.js

Copyright (c) 2013 Ilia Choly
Download: https://github.com/icholy/Duration.js
License: MIT https://github.com/icholy/Duration.js/blob/master/LICENSE

express (http://expressjs.com/)

Copyright (c) 2009-2014 TJ Holowaychuk <tj@vision-media.ca>
Copyright (c) 2013-2014 Roman Shtylman <shtylman+expressjs@gmail.com>
Copyright (c) 2014-2015 Douglas Christopher Wilson <doug@somethingdoug.com>
Download: https://github.com/strongloop/express
License: https://github.com/strongloop/express/blob/master/LICENSE

js-yaml (https://github.com/nodeca/js-yaml)

Copyright (c) 2011-2015 by Vitaly Puzrin
Download: https://github.com/nodeca/js-yaml
License: https://github.com/nodeca/js-yaml/blob/master/LICENSE

lodash

The MIT License (MIT)
Copyright (c) JS Foundation and other contributors <https://js.foundation/>
Copyright (c) OpenJS Foundation and other contributors <https://openjsf.org/>
Download: https://github.com/lodash/lodash
License: https://github.com/lodash/lodash/blob/4.17/LICENSE

lodash-node

PrizmDoc Viewer v13.17 43

©2021 My Company. All Rights Reserved.

mailto:me@jongleberry.com
mailto:doug@somethingdoug.com
https://github.com/expressjs/body-parser
https://github.com/expressjs/body-parser/blob/master/LICENSE
https://github.com/caolan/async
https://github.com/caolan/async/blob/v1.4.2/LICENSE
https://www.npmjs.com/package/captains-log
https://github.com/balderdashy/sails/blob/master/LICENSE.md
mailto:troygoode@gmail.com
https://github.com/expressjs/cors
https://github.com/expressjs/cors/blob/master/LICENSE
https://github.com/icholy/Duration.js
https://github.com/icholy/Duration.js/blob/master/LICENSE
http://expressjs.com/
mailto:tj@vision-media.ca
mailto:shtylman expressjs@gmail.com
mailto:doug@somethingdoug.com
https://github.com/strongloop/express
https://github.com/strongloop/express/blob/master/LICENSE
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml/blob/master/LICENSE
https://js.foundation/
https://openjsf.org/
https://github.com/lodash/lodash
https://github.com/lodash/lodash/blob/4.17/LICENSE

Copyright jQuery Foundation and other contributors <https://jquery.org/>
Download: https://www.npmjs.com/package/lodash-node
License: https://github.com/lodash-archive/lodash-node/blob/master/LICENSE

mime-types

The MIT License (MIT)
Copyright (c) 2014 Jonathan Ong <me@jongleberry.com>
Copyright (c) 2015 Douglas Christopher Wilson <doug@somethingdoug.com>
Download: https://www.npmjs.com/package/mime-types
License: https://github.com/jshttp/mime-types/blob/master/LICENSE

mkdirp

The MIT License (MIT)
Copyright (c) 2010 James Halliday (mail@substack.net)
Download: https://github.com/substack/node-mkdirp
License: License: https://github.com/substack/node-mkdirp/blob/master/LICENSE

mv - 2.1.1

The MIT License (MIT)
Copyright (c) 2014 Andrew Kelley
Download: https://github.com/andrewrk/node-mv
License: https://github.com/andrewrk/node-mv/blob/master/LICENSE

node-bunyan

The MIT License (MIT)
Copyright (c) 2011-2012 Joyent Inc.
Download: https://github.com/trentm/node-bunyan
License: https://github.com/trentm/node-bunyan/blob/master/LICENSE.txt

node-mssql

Copyright (c) 2014 - 2016 Christopher Zotter
Download: https://github.com/patriksimek/node-mssql
License: https://www.npmjs.com/package/node-mssql-connector#the-mit-license-mit

node-mysql

The MIT License (MIT)
Copyright (c) 2012 Felix Geisendörfer (felix@debuggable.com) and contributors
Download: https://github.com/felixge/node-mysql
License: <install directory>/licenses/node-mysql/License

node-statsd

The MIT License (MIT)
Copyright 2011 Steve Ivy. All rights reserved.
Download: https://www.npmjs.com/package/node-statsd
License: https://github.com/sivy/node-statsd/blob/master/LICENSE

pm2 (http://pm2.keymetrics.io/)

Copyright (c) 2013-2015 Strzelewicz Alexandre

PrizmDoc Viewer v13.17 44

©2021 My Company. All Rights Reserved.

https://jquery.org/
https://www.npmjs.com/package/lodash-node
https://github.com/lodash-archive/lodash-node/blob/master/LICENSE
mailto:me@jongleberry.com
mailto:doug@somethingdoug.com
https://www.npmjs.com/package/mime-types
https://github.com/jshttp/mime-types/blob/master/LICENSE
mailto:mail@substack.net
https://github.com/substack/node-mkdirp
https://github.com/substack/node-mkdirp/blob/master/LICENSE
https://github.com/andrewrk/node-mv
https://github.com/andrewrk/node-mv/blob/master/LICENSE
https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan/blob/master/LICENSE.txt
https://github.com/patriksimek/node-mssql
https://www.npmjs.com/package/node-mssql-connector#the-mit-license-mit
mailto:felix@debuggable.com
https://github.com/felixge/node-mysql
https://www.npmjs.com/package/node-statsd
https://github.com/sivy/node-statsd/blob/master/LICENSE
http://pm2.keymetrics.io/

Download: https://github.com/Unitech/PM2
License: https://github.com/Unitech/pm2/blob/master/GNU-AGPL-3.0.txt

pump

The MIT License (MIT)
Copyright (c) 2014 Mathias Buus
Download: https://github.com/mafintosh/pump
License: https://github.com/mafintosh/pump/blob/master/LICENSE

request

Apache License Version 2.0
Version 2.0, January 2004
Download: https://github.com/request/request
License: http://www.apache.org/licenses/

rimraf

ISC license
Copyright (c) Isaac Z. Schlueter and Contributors
Download: https://github.com/isaacs/rimraf
License: https://github.com/isaacs/rimraf/blob/master/LICENSE

node-retry

Copyright: (c) 2011:
Tim Koschützki (tim@debuggable.com)
Felix Geisendörfer (felix@debuggable.com)
download: https://github.com/tim-kos/node-retry
license: MIT https://github.com/tim-kos/node-retry/blob/master/License

npm

The Artistic License 2.0
Copyright (c) npm, Inc. and Contributors
Download: https://www.npmjs.com/package/npm
License: https://github.com/npm/cli/blob/latest/LICENSE

sails-mssql

The MIT License (MIT)
Download: https://github.com/intel/sails-mssql
License: https://opensource.org/licenses/MIT

sails-mysql

The MIT License (MIT)
Copyright (c) 2016 Mike McNeil, Balderdash & contributors
Download: https://github.com/balderdashy/sails-mysql
License: https://github.com/balderdashy/sails/blob/v0.12.2/LICENSE.md

through2 (https://github.com/rvagg/through2)

Copyright (c) 2013, Rod Vagg (the "Original Author")
Download: https://github.com/rvagg/through2

PrizmDoc Viewer v13.17 45

©2021 My Company. All Rights Reserved.

https://github.com/Unitech/PM2
https://github.com/Unitech/pm2/blob/master/GNU-AGPL-3.0.txt
https://github.com/mafintosh/pump
https://github.com/mafintosh/pump/blob/master/LICENSE
https://github.com/request/request
http://www.apache.org/licenses/
https://github.com/isaacs/rimraf
https://github.com/isaacs/rimraf/blob/master/LICENSE
mailto:tim@debuggable.com
mailto:felix@debuggable.com
https://github.com/tim-kos/node-retry
https://github.com/tim-kos/node-retry/blob/master/License
https://www.npmjs.com/package/npm
https://github.com/npm/cli/blob/latest/LICENSE
https://github.com/intel/sails-mssql
https://opensource.org/licenses/MIT
https://github.com/balderdashy/sails-mysql
https://github.com/balderdashy/sails/blob/v0.12.2/LICENSE.md
https://github.com/rvagg/through2
https://github.com/rvagg/through2

License: https://github.com/rvagg/through2

underscore.string

The MIT License (MIT)
Copyright (c) 2011 Esa-Matti Suuronen esa-matti@suuronen.org
Download: https://www.npmjs.com/package/underscore.string
License: https://github.com/esamattis/underscore.string

waterline

Copyright (c) 2012-2016 Balderdash Design Co.
Download: https://github.com/balderdashy/waterline
License: MIT https://github.com/balderdashy/waterline/blob/master/LICENSE.md

waterline-cursor

The MIT License (MIT)
Copyright (c) 2012-present, Mike McNeil
Download: https://www.npmjs.com/package/waterline-cursor
License: https://github.com/balderdashy/sails/blob/master/LICENSE.md

yargs

Copyright (c) 2010 James Halliday (mail@substack.net)
Download: https://github.com/bcoe/yargs
License: MIT/X11 https://github.com/bcoe/yargs/blob/master/LICENSE

Viewer

jQuery (http://jquery.com/)

Copyright OpenJS Foundation and other contributors, https://openjsf.org/
Download: http://jquery.com/download/
Version: 3.6.0
License: https://github.com/jquery/jquery/blob/master/LICENSE.txt

jQuery Hotkeys

Copyright (c) 2010 by John Resig
Download: https://plugins.jquery.com/hotkeys/
License: https://github.com/jeresig/jquery.hotkeys/blob/0.1.0/jquery.hotkeys.js#L4

Normalize.css (http://necolas.github.io/normalize.css/)

Licensed under MIT license
Download: https://github.com/necolas/normalize.css/
Version: 3.0.0
License: https://github.com/necolas/normalize.css/blob/3.0.0/LICENSE.md

SVG - Material Design Icons

Licensed under the Pictogrammers Free License.
Download: https://github.com/Templarian/MaterialDesign-SVG
License: https://github.com/Templarian/MaterialDesign-SVG/blob/v5.6.55/LICENSE

PrizmDoc Viewer v13.17 46

©2021 My Company. All Rights Reserved.

https://github.com/rvagg/through2
https://github.com/rvagg/through2
mailto:esa-matti@suuronen.org
https://www.npmjs.com/package/underscore.string
https://github.com/esamattis/underscore.string
https://github.com/balderdashy/waterline
https://github.com/balderdashy/waterline/blob/master/LICENSE.md
https://www.npmjs.com/package/waterline-cursor
https://github.com/balderdashy/sails/blob/master/LICENSE.md
mailto:mail@substack.net
https://github.com/bcoe/yargs
https://github.com/bcoe/yargs/blob/master/LICENSE
http://jquery.com/
https://openjsf.org/
http://jquery.com/download/
https://github.com/jquery/jquery/blob/master/LICENSE.txt
https://plugins.jquery.com/hotkeys/
https://github.com/jeresig/jquery.hotkeys/blob/0.1.0/jquery.hotkeys.js#L4
http://necolas.github.io/normalize.css/
https://github.com/necolas/normalize.css/
https://github.com/necolas/normalize.css/blob/3.0.0/LICENSE.md
https://github.com/Templarian/MaterialDesign-SVG
https://github.com/Templarian/MaterialDesign-SVG/blob/v5.6.55/LICENSE

The HTML5 Shiv (https://code.google.com/p/html5shiv/)

Dual licensed under the MIT or GPL Version 2 licenses
Download: https://code.google.com/p/html5shiv/
Version: 3.7.0
License: https://github.com/aFarkas/html5shiv/blob/master/MIT and GPL2 licenses.md

Underscore (http://underscorejs.org/)

Copyright (c) 2009-2021 Jeremy Ashkenas, Julian Gonggrijp, and DocumentCloud and Investigative Reporters &
Editors
Underscore may be freely distributed under the MIT license.
Download: http://underscorejs.org/
Version: 1.13.1
License: https://github.com/jashkenas/underscore/blob/1.13.1/LICENSE

Viewer Fonts

All fonts are licensed under the SIL Open Font License, version 1.1 - http://scripts.sil.org/OFL

Cedarville Cursive:

Copyright (c) 2010, Kimberly Geswein www.kimberlygeswein.com

Dancing Script:

Copyright (c) 2010, Pablo Impallari https://github.com/impallari/DancingScript; impallari@gmail.com
Copyright (c) 2010, Igino Marini. www.ikern.com; mail@iginomarini.com

Fira Sans:

Copyright (c) 2012-2014, The Mozilla Foundation and Telefonica S.A.

Grand Hotel:

Copyright (c) 2012, by Brian J. Bonislawsky and Jim Lyles DBA Astigmatic (AOETI) (astigma@astigmatic.com)

Great Vibes:

Copyright (c) 2012, TypeSETit, LLC (typesetit@att.net)

Italianno:

Copyright (c) 2011, TypeSETit, LLC (typesetit@att.net)

La Belle Aurore:

Copyright (c) 2010, Kimberly Geswein (www.kimberlygeswein.com)

Pacifico:

Copyright (c) 2011, Vernon Adams (vern@newtypography.co.uk)

PT Mono:

PrizmDoc Viewer v13.17 47

©2021 My Company. All Rights Reserved.

https://code.google.com/p/html5shiv/
https://code.google.com/p/html5shiv/
https://github.com/aFarkas/html5shiv/blob/master/MIT and GPL2 licenses.md
http://underscorejs.org/
http://underscorejs.org/
https://github.com/jashkenas/underscore/blob/1.13.1/LICENSE
http://scripts.sil.org/OFL
http://www.kimberlygeswein.com/
https://github.com/impallari/DancingScript
mailto:impallari@gmail.com
http://www.ikern.com/
mailto:mail@iginomarini.com
mailto:astigma@astigmatic.com
mailto:typesetit@att.net
mailto:typesetit@att.net
http://www.kimberlygeswein.com/
mailto:vern@newtypography.co.uk

Copyright (c) 2011, ParaType Ltd. (http://www.paratype.com/public)

PT Serif:

Copyright (c) 2010, ParaType Ltd. All rights reserved.

Sacramento:

Copyright (c) 2012, Brian J. Bonislawsky DBA Astigmatic (AOETI) (astigma@astigmatic.com)

@prizmdoc/viewer-core

D3.js

Copyright (c) 2010-2014, Michael Bostock
Download: https://github.com/d3/d3/blob/2a7d873b3fadc4c808b2724db9b0663aa476583b/src/svg/line.js
License: https://github.com/d3/d3/blob/2a7d873b3fadc4c808b2724db9b0663aa476583b/LICENSE

David Chamber's base64 encoder and decoder

Copyright (c) 2011..2012 David Chambers dc@hashify.me
Download:
https://github.com/davidchambers/Base64.js/blob/8fe0eda2391db0e4a867753e0dd568e8fd0cfc31/base64.js
License:
https://github.com/davidchambers/Base64.js/blob/8fe0eda2391db0e4a867753e0dd568e8fd0cfc31/LICENSE

better-random-numbers-for-javascript

Copyright (c) 2010 by Johannes Baagøe baagoe@baagoe.org
Download: https://github.com/nquinlan/better-random-numbers-for-javascript-
mirror/blob/master/support/js/Alea.js
License: https://github.com/nquinlan/better-random-numbers-for-javascript-mirror/blob/master/LICENSE.md

PrizmDoc Viewer Eval Docker Image

ca-certificates - 20210119~16.04.1

GNU General Public License, version 2, or any later version
Mozilla Public License Version 2.0
Copyright (c) 2003 Fumitoshi UKAI ukai@debian.or.jp
Copyright (c) 2009 Philipp Kern pkern@debian.org
Copyright (c) 2011 Michael Shuler michael@pbandjelly.org
Copyright (c) Various Debian Contributors
Copyright (c) Mozilla Contributors
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-
certificates_20210119~16.04.1.tar.xz
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-
certificates_20210119~16.04.1/copyright with references to the full text of GPL-2+

consolidate

The MIT License (MIT)
Copyright (c) 2011-2016 TJ Holowaychuk tj@vision-media.ca
Download: https://www.npmjs.com/package/consolidate

PrizmDoc Viewer v13.17 48

©2021 My Company. All Rights Reserved.

http://www.paratype.com/public
mailto:astigma@astigmatic.com
https://github.com/d3/d3/blob/2a7d873b3fadc4c808b2724db9b0663aa476583b/src/svg/line.js
https://github.com/d3/d3/blob/2a7d873b3fadc4c808b2724db9b0663aa476583b/LICENSE
mailto:dc@hashify.me
https://github.com/davidchambers/Base64.js/blob/8fe0eda2391db0e4a867753e0dd568e8fd0cfc31/base64.js
https://github.com/davidchambers/Base64.js/blob/8fe0eda2391db0e4a867753e0dd568e8fd0cfc31/LICENSE
mailto:baagoe@baagoe.org
https://github.com/nquinlan/better-random-numbers-for-javascript-mirror/blob/master/support/js/Alea.js
https://github.com/nquinlan/better-random-numbers-for-javascript-mirror/blob/master/support/js/Alea.js
https://github.com/nquinlan/better-random-numbers-for-javascript-mirror/blob/master/LICENSE.md
mailto:ukai@debian.or.jp
mailto:pkern@debian.org
mailto:michael@pbandjelly.org
http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1.tar.xz
http://archive.ubuntu.com/ubuntu/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1.tar.xz
http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/c/ca-certificates/ca-certificates_20210119~16.04.1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
mailto:tj@vision-media.ca
https://www.npmjs.com/package/consolidate

License: https://github.com/tj/consolidate.js#license

curl - 7.47.0-1ubuntu2.19

curl License
ISC License
BSD 3-Clause
BSD 4-Clause
public-domain
Copyright (c) 1996-2015, Daniel Stenberg daniel@haxx.se
Copyright (c) 2010, DirecTV
 2010-2015, Daniel Stenberg daniel@haxx.se
Copyright (c) 2012-2014, Nick Zitzmann nickzman@gmail.com 2012-2015, Daniel Stenberg daniel@haxx.se
Copyright (c) 2010, Howard Chu hyc@highlandsun.com
Copyright (c) 2012-2014, Marc Hoersken info@marc-hoersken.de
 2012, Mark Salisbury mark.salisbury@hp.com
 2012-2015, Daniel Stenberg daniel@haxx.se
Copyright (c) 1996-2001 Internet Software Consortium
Copyright (c) 2004-2015 Daniel Stenberg
 1995-1999 Kungliga Tekniska Högskolan
Copyright (c) 2001, Solar Designer solar@openwall.com
Copyright (c) 2011-2015, Daniel Stenberg daniel@haxx.se
 2010, Howard Chu hyc@openldap.org
Copyright (c) 2010-2011, Hoi-Ho Chan hoiho.chan@gmail.com
 2012-2015, Daniel Stenberg daniel@haxx.se
Copyright (c) 2009, 2011, Markus Moeller, markus_moeller@compuserve.com
 2012-2015, Daniel Stenberg, daniel@haxx.se
Copyright (c) 2000-2009, EdelWeb for EdelKey and OpenEvidence
Copyright (c) 1983 Regents of the University of California
Copyright (c) 2010, Mandy Wu mandy.wu@intel.com
 2011-2013, Daniel Stenberg daniel@haxx.se
Copyright (c) 2003, Simtec Electronics
Copyright (c) 2011, Jim Hollinger
Copyright (c) 2003, The OpenEvidence Project
Copyright (c) 2001, Eric Lavigne
Copyright (c) 2000-2010, Domenico Andreoli cavok@debian.org
 2010-2011, Ramakrishnan Muthukrishnan rkrishnan@debian.org
 2011, Alessandro Ghedini ghedo@debian.org
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/curl/curl_7.47.0.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/curl/curl_7.47.0-1ubuntu2.19/copyright

express

The MIT License (MIT)
Copyright (c) 2009-2014 TJ Holowaychuk tj@vision-media.ca
Copyright (c) 2013-2014 Roman Shtylman shtylman+expressjs@gmail.com
Copyright (c) 2014-2015 Douglas Christopher Wilson doug@somethingdoug.com
Download: https://www.npmjs.com/package/express
License: https://cdn.jsdelivr.net/npm/express@4.16.4/LICENSE

fontconfig - 2.11.94-0ubuntu1.1

Copyright (c) 2001, 2003 Keith Packard
Download: http://archive.ubuntu.com/ubuntu/pool/main/f/fontconfig/fontconfig_2.11.94.orig.tar.bz2
License: http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-

PrizmDoc Viewer v13.17 49

©2021 My Company. All Rights Reserved.

https://www.npmjs.com/package/consolidate
https://github.com/tj/consolidate.js#license
mailto:daniel@haxx.se
mailto:daniel@haxx.se
mailto:nickzman@gmail.com
mailto:daniel@haxx.se
mailto:hyc@highlandsun.com
mailto:info@marc-hoersken.de
mailto:mark.salisbury@hp.com
mailto:daniel@haxx.se
mailto:solar@openwall.com
mailto:daniel@haxx.se
mailto:hyc@openldap.org
mailto:hoiho.chan@gmail.com
mailto:daniel@haxx.se
mailto:markus_moeller@compuserve.com
mailto:daniel@haxx.se
mailto:mandy.wu@intel.com
mailto:daniel@haxx.se
mailto:cavok@debian.org
mailto:rkrishnan@debian.org
mailto:ghedo@debian.org
http://archive.ubuntu.com/ubuntu/pool/main/c/curl/curl_7.47.0.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/c/curl/curl_7.47.0-1ubuntu2.19/copyright
mailto:tj@vision-media.ca
mailto:shtylman expressjs@gmail.com
mailto:doug@somethingdoug.com
https://www.npmjs.com/package/express
https://cdn.jsdelivr.net/npm/express@4.16.4/LICENSE
http://archive.ubuntu.com/ubuntu/pool/main/f/fontconfig/fontconfig_2.11.94.orig.tar.bz2
http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-0ubuntu1.1/copyright

0ubuntu1.1/copyright

handlebars

The MIT License (MIT)
Copyright (C) 2011-2017 by Yehuda Katz
Download: https://www.npmjs.com/package/handlebars
License: https://cdn.jsdelivr.net/npm/handlebars@4.7.6/LICENSE

http-errors

The MIT License (MIT)
Copyright (c) 2014 Jonathan Ong me@jongleberry.com
Copyright (c) 2016 Douglas Christopher Wilson doug@somethingdoug.com
Download: https://www.npmjs.com/package/http-errors
License: https://cdn.jsdelivr.net/npm/http-errors@1.6.3/LICENSE

http-proxy-middleware

The MIT License (MIT)
Copyright (c) 2015 Steven Chim
Download: https://www.npmjs.com/package/http-proxy-middleware
License: https://cdn.jsdelivr.net/npm/http-proxy-middleware@0.19.1/LICENSE

libcairo2 - 1.14.6-1

GNU Lesser General Public License, version 2.1 with additional copyright notice
Copyright (c) 1999 Tom Tromey
Copyright (c) 2002, 2003 University of Southern California, Information Sciences Institute (ISI)
Copyright (c) 2000, 2002, 2004, 2005 Keith Packard
Copyright (c) 2004 Calum Robinson
Copyright (c) 2004 Richard D. Worth
Copyright (c) 2004, 2005 Red Hat, Inc.
Copyright (c) 2004 David Reveman
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/cairo/cairo_1.14.6.orig.tar.xz
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/cairo/cairo_1.14.6-1/copyright with references
to the full text of LGPL-2.1

libcups2 - 2.1.3-4ubuntu0.11

GNU General Public License, version 2 with Apple Operating System Development License Exception
GNU Library General Public License, version 2 with Apple Operating System Development License Exception
Zlib license
BSD 2-clause
Copyright (c) 2007-2015, Apple Inc.
Copyright (c) 2007-2013, Apple Inc.
Copyright (c) 2005, Easy Software Products
Copyright (c) 1999, Aladdin Enterprises.
Copyright (c) 2011, Red Hat, Inc
Copyright (c) 2007-2014, Apple Inc
Copyright (c) 1997-2007, Easy Software Products
Download: http://archive.ubuntu.com/ubuntu/pool/main/c/cups/cups_2.1.3.orig.tar.bz2
License: http://changelogs.ubuntu.com/changelogs/pool/main/c/cups/cups_2.1.3-4ubuntu0.11/copyright with
references to the full text of GPL-2.0 and LGPL-2.0

libdbus-glib-1-2 - 0.106-1

PrizmDoc Viewer v13.17 50

©2021 My Company. All Rights Reserved.

http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-0ubuntu1.1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/f/fontconfig/fontconfig_2.11.94-0ubuntu1.1/copyright
https://www.npmjs.com/package/handlebars
https://cdn.jsdelivr.net/npm/handlebars@4.7.6/LICENSE
mailto:me@jongleberry.com
mailto:doug@somethingdoug.com
https://www.npmjs.com/package/http-errors
https://cdn.jsdelivr.net/npm/http-errors@1.6.3/LICENSE
https://www.npmjs.com/package/http-proxy-middleware
https://cdn.jsdelivr.net/npm/http-proxy-middleware@0.19.1/LICENSE
http://archive.ubuntu.com/ubuntu/pool/main/c/cairo/cairo_1.14.6.orig.tar.xz
http://changelogs.ubuntu.com/changelogs/pool/main/c/cairo/cairo_1.14.6-1/copyright
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://archive.ubuntu.com/ubuntu/pool/main/c/cups/cups_2.1.3.orig.tar.bz2
http://changelogs.ubuntu.com/changelogs/pool/main/c/cups/cups_2.1.3-4ubuntu0.11/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html

GNU General Public License, version 2 or any later version
Expat license
Copyright (c) 2002-2010 Red Hat, Inc
Copyright (c) 2002-2003 CodeFactory AB
Copyright (c) 2004 Ximian, Inc
Copyright (c) 2005-2011 Nokia Corporation
Copyright (c) 2006 Steve Frécinaux
Copyright (c) 2007 Codethink Ltd
Copyright (c) 2009-2014 Collabora Ltd
Copyright (c) 2013 Intel Corporation
Copyright (c) 2008 David Zeuthen
Copyright (c) 2009 Collabora Ltd
Copyright (c) 2009-2011 Nokia Corporation
Copyright (c) 2011 Nokia Corporation
Copyright (c) 2013 Collabora Ltd
Download: http://archive.ubuntu.com/ubuntu/pool/main/d/dbus-glib/dbus-glib_0.106.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/d/dbus-glib/dbus-glib_0.106-1/copyright with
references to the full text of GPL-2+

libexif12 - 0.6.21-2ubuntu0.6

GNU General Public License, version 2 or any later version
GNU Lesser General Public License, version 2.1 or any later version
BSD 2-clause
Copyright (c) 2001-2009, Lutz Müller urc8@rz.uni-karlsruhe.de
Copyright (c) 2004-2009, Jan Patera patera@users.sourceforge.net
Copyright (c) 2004, Joerg Hoh joerg@devone.org
Copyright (c) 2005-2006, Hubert Figuiere hub@figuiere.net
Copyright (c) 2002-2005, Hans Ulrich Niedermann gp@n-dimensional.de
Copyright (c) 2007-2010, Dan Fandrich dan@coneharvesters.com
Copyright (c) 2002, Fredrik fredrik@krixor.xy.org
Copyright (c) 2002, Javier Achirica achirica@ttd.net
Copyright (c) 2002, Semyon Sosin sem@best.com
Copyright (c) 2002, Guido Ostkamp guido.ostkamp@t-online.de
Copyright (c) 2002, Takuro Ashie makeinu@users.sourceforge.net
Copyright (c) 2002, Jason Sodergren jason@taiga.com
Copyright (c) 2002, Renchi Raju renchi@pooh.tam.uiuc.edu
Copyright (c) 2003, Torgeir Hansen torgeir@trenger.ro
Copyright (c) 2003, Roberto Costa roberto.costa@ensta.org
Copyright (c) 2004, Angela Wrobel
Copyright (c) 2002, Basil Dias basil.dias@wipro.com
Copyright (c) 2003, Ralph Heidelberg RHeidelberg@Pinnaclesys.com
Copyright (c) 2002, Javier Achirica achirica@ttd.net
Copyright (c) 2003, Gernot Jander gernot@bigpond.com
Copyright (c) 2004, Antonio Scuri scuri@tecgraf.puc-rio.br
Copyright (c) 2002, Mark Pulford mark@kyne.com.au
Copyright (c) 2002, Semyon Sosin sem@best.com
Copyright (c) 2002, Marcus Meissner marcus@jet.franken.de
Copyright (c) 2003, Jens Finke jens@triq.net
Copyright (c) 2007, Meder Kydyraliev
Copyright (c) 2008, Mika Raento mikie@google.com
Copyright (c) 2003, Peter Bieringer pb@bieringer.de
Copyright (c) 2004, Antonio Scuri scuri@tecgraf.puc-rio.br
Copyright (c) 2008-2010, Erwin Poeze

PrizmDoc Viewer v13.17 51

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/d/dbus-glib/dbus-glib_0.106.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/d/dbus-glib/dbus-glib_0.106-1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
mailto:urc8@rz.uni-karlsruhe.de
mailto:patera@users.sourceforge.net
mailto:joerg@devone.org
mailto:hub@figuiere.net
mailto:gp@n-dimensional.de
mailto:dan@coneharvesters.com
mailto:fredrik@krixor.xy.org
mailto:achirica@ttd.net
mailto:sem@best.com
mailto:guido.ostkamp@t-online.de
mailto:makeinu@users.sourceforge.net
mailto:jason@taiga.com
mailto:renchi@pooh.tam.uiuc.edu
mailto:torgeir@trenger.ro
mailto:roberto.costa@ensta.org
mailto:basil.dias@wipro.com
mailto:RHeidelberg@Pinnaclesys.com
mailto:achirica@ttd.net
mailto:gernot@bigpond.com
mailto:scuri@tecgraf.puc-rio.br
mailto:mark@kyne.com.au
mailto:sem@best.com
mailto:marcus@jet.franken.de
mailto:jens@triq.net
mailto:mikie@google.com
mailto:pb@bieringer.de
mailto:scuri@tecgraf.puc-rio.br

Copyright (c) 2008-2010, Marcus Meissner
Copyright (c) 2008-2010, Jakub Bogusz
Copyright (c) 2008, Ivan Masár
Copyright (c) 2008-2010, Clytie Siddall
Copyright (c) 2009, Daniel Nylander
Copyright (c) 2009, Jan Patera
Copyright (c) 2009-2010, Marko Uskokovic
Copyright (c) 2009-2010, Tao Wei weitao1979@gmail.com
Copyright (c) 2009-2010, Vilson Gjeci vilsongjeci@gmail.com
Copyright (c) 2009, nglnx
Copyright (c) 2010, Launchpad Translators
Copyright (c) 2009, Shushi Kurose
Copyright (c) 2009-2010, Tadashi Jokagi
Copyright (c) 2009-2010, Sergio Zanchetta
Copyright (c) 2009, Bruce Cowan
Copyright (c) 2009-2010, Iryna Nikanchuk defragbrain@gmail.com
Copyright (c) 2009-2010, Joe Hansen
Copyright (c) 2010, Enes Ateş e.n.3.s@hotmail.com
Copyright (c) 2010, Launchpad Translators
Copyright (c) 2010, Robert Readman
Copyright (c) 2010, André Gondim andregondim@ubuntu.com
Copyright (c) 2010, Alexey Ivanov alexey.ivanes@gmail.com
Copyright (c) 2009, André Gondi
Copyright (c) 2002-2004, Christophe Barbe christophe@debian.org
Copyright (c) 2004-2007, Frederic Peters fpeters@debian.org
Copyright (c) 2009-2011, Emmanuel Bouthenot kolter@debian.org
Download: http://archive.ubuntu.com/ubuntu/pool/main/libe/libexif/libexif_0.6.21.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libe/libexif/libexif_0.6.21-2ubuntu0.6/copyright
with references to the full text of GPL-2+ and LGPL-2.1+

libexpat1 - 2.1.0-7ubuntu0.16.04.5

The MIT License (MIT)
Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd and Clark Cooper
Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers
Download: http://archive.ubuntu.com/ubuntu/pool/main/e/expat/expat_2.1.0.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/e/expat/expat_2.1.0-7ubuntu0.16.04.5/copyright

libfreetype6 - 2.6.1-0.1ubuntu2.4

GNU General Public License, version 2 or any later version
Zlib license
BSD 2-clause
BSD 3-clause
The Catharon Open Source LICENSE
The OpenGroup BSD-like license Copyright (c) 1996-2012 David Turner, Robert Wilhelm, and Werner Lemberg
Copyright (c) 1996-2009 Just van Rossum
Copyright (c) 2002-2012 Roberto Alameda
Copyright (c) 2003 Huw D M Davies for Codeweavers
Copyright (c) 2003-2012 Masatake YAMATO, Redhat K.K.
Copyright (c) 2004-2012 Albert Chin-A-Young
Copyright (c) 2004-2012 Suzuki Toshiya
Copyright (c) 2007 Dmitry Timoshkov for Codeweavers
Copyright (c) 2007-2011 Rahul Bhalerao rahul.bhalerao@redhat.com
Copyright (c) 2007-2012 Derek Clegg, Michael Toftdal

PrizmDoc Viewer v13.17 52

©2021 My Company. All Rights Reserved.

mailto:weitao1979@gmail.com
mailto:vilsongjeci@gmail.com
mailto:defragbrain@gmail.com
mailto:e.n.3.s@hotmail.com
mailto:andregondim@ubuntu.com
mailto:alexey.ivanes@gmail.com
mailto:christophe@debian.org
mailto:fpeters@debian.org
mailto:kolter@debian.org
http://archive.ubuntu.com/ubuntu/pool/main/libe/libexif/libexif_0.6.21.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libe/libexif/libexif_0.6.21-2ubuntu0.6/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://archive.ubuntu.com/ubuntu/pool/main/e/expat/expat_2.1.0.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/e/expat/expat_2.1.0-7ubuntu0.16.04.5/copyright
mailto:rahul.bhalerao@redhat.com

Copyright (c) 2009-2011 Oran Agra, Mickey Gabel
Copyright (c) 2010, 2012 Joel Klinghed
Copyright (c) 1996-2012 Christoph Lameter clameter@waterf.org, Anthony Fok foka@debian.org, Steve
Langasek vorlon@debian.org, et al.
Copyright (c) 2001, 2002 Catharon Productions Inc.
Copyright (c) 1995-2002 Jean-loup Gailly and Mark Adler
Copyright (c) 2002-2006, 2009-2012 David Turner, Robert Wilhelm, Werner Lemberg
Copyright (c) 2005-2008 George Williams
Copyright (c) 2000-2012 Francesco Zappa Nardelli francesco.zappa.nardelli@ens.fr
Copyright (c) 2000 Computing Research Labs, New Mexico State University
Copyright (c) 1990, 1994, 1998 The Open Group
Download: http://archive.ubuntu.com/ubuntu/pool/main/f/freetype/freetype_2.6.1.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/f/freetype/freetype_2.6.1-0.1ubuntu2.4/copyright
with references to the full text of GPL-2+

libglu1-mesa - 9.0.0-2.1

GNU General Public License, version 2, or any later version
GNU Library General Public License, version 2, or any later version
SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
Copyright (c) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
Copyright (c) 1995-1998 Brian Paul
Copyright (c) 2012 Timo Aaltonen
Download: http://archive.ubuntu.com/ubuntu/pool/main/libg/libglu/libglu_9.0.0.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libg/libglu/libglu_9.0.0-2.1/copyright with
references to the full text of GPL-2 and LGPL-2

libjpeg62 - 1:6b2-2

Copyright (C) 1991-1998, Thomas G. Lane.
The Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated.
GIF(sm) is a Service Mark property of CompuServe Incorporated.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libj/libjpeg6b/libjpeg6b_6b2.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/universe/libj/libjpeg6b/libjpeg6b_6b2-2/copyright

libpixman-1-0 - 0.33.6-1

The MIT License (MIT)
Copyright (c) 1987, 1988, 1989, 1998 The Open Group
Copyright (c) 1987, 1988, 1989 Digital Equipment Corporation
Copyright (c) 1999, 2004, 2008 Keith Packard
Copyright (c) 2000 SuSE, Inc.
Copyright (c) 2000 Keith Packard, member of The XFree86 Project, Inc.
Copyright (c) 2004, 2005, 2007, 2008, 2009, 2010 Red Hat, Inc.
Copyright (c) 2004 Nicholas Miell
Copyright (c) 2005 Lars Knoll & Zack Rusin, Trolltech
Copyright (c) 2005 Trolltech AS
Copyright (c) 2007 Luca Barbato
Copyright (c) 2008 Aaron Plattner, NVIDIA Corporation
Copyright (c) 2008 Rodrigo Kumpera
Copyright (c) 2008 AndrÃ© TupinambÃ¡ Copyright (c) 2008 Mozilla Corporation
Copyright (c) 2008 Frederic Plourde
Copyright (c) 2009, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2009, 2010 Nokia Corporation
Download: http://archive.ubuntu.com/ubuntu/pool/main/p/pixman/pixman_0.33.6.orig.tar.gz

PrizmDoc Viewer v13.17 53

©2021 My Company. All Rights Reserved.

mailto:clameter@waterf.org
mailto:foka@debian.org
mailto:vorlon@debian.org
mailto:francesco.zappa.nardelli@ens.fr
http://archive.ubuntu.com/ubuntu/pool/main/f/freetype/freetype_2.6.1.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/f/freetype/freetype_2.6.1-0.1ubuntu2.4/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://archive.ubuntu.com/ubuntu/pool/main/libg/libglu/libglu_9.0.0.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libg/libglu/libglu_9.0.0-2.1/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html
http://archive.ubuntu.com/ubuntu/pool/main/libj/libjpeg6b/libjpeg6b_6b2.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/universe/libj/libjpeg6b/libjpeg6b_6b2-2/copyright
http://archive.ubuntu.com/ubuntu/pool/main/p/pixman/pixman_0.33.6.orig.tar.gz

License: http://changelogs.ubuntu.com/changelogs/pool/main/p/pixman/pixman_0.33.6-1/copyright

libssl1.0.0 - 1.0.2g-1ubuntu4.19

BSD License
Copyright (c) 1998-2004 The OpenSSL Project
Copyright (c) 1995-1998 Eric A. Young, Tim J. Hudson
Copyright (c) 1998-2004 The OpenSSL Project. All rights reserved.
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_1.0.2g.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-
1ubuntu4.19/copyright

libx11-6 - 2:1.6.3-1ubuntu2.2

The MIT License (MIT)
Copyright (c) 2003-2006,2008 Jamey Sharp, Josh Triplett
Copyright (c) 2009 Red Hat, Inc.
Copyright (c) 1990-1992,1999,2000,2004,2009,2010 Oracle and/or its affiliates. All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libx11/libx11_1.6.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libx11/libx11_1.6.3-1ubuntu2.2/copyright

libxau6 - 1:1.0.8-1

Copyright (c) 1988, 1998 The Open Group
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxau/libxau_1.0.8.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxau/libxau_1.0.8-1/copyright

libxext6 - 2:1.3.3-1

Copyright (c) 1986, 1987, 1988, 1989, 1994, 1998 The Open Group
Copyright (c) 1996 Digital Equipment Corporation, Maynard, Massachusetts.
Copyright (c) 1997 by Silicon Graphics Computer Systems, Inc.
Copyright (c) 1992 Network Computing Devices
Copyright (c) 1991,1993 by Digital Equipment Corporation, Maynard, Massachusetts, and Olivetti Research
Limited, Cambridge, England.
Copyright (c) 1986, 1987, 1988 by Hewlett-Packard Corporation
Copyright (c) 1994, 1995 Hewlett-Packard Company
Copyright (c) Digital Equipment Corporation, 1996
Copyright (c) 1999, 2005, 2006, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 1989 X Consortium, Inc. and Digital Equipment Corporation.
Copyright (c) 1992 X Consortium, Inc. and Intergraph Corporation.
Copyright (c) 1993 X Consortium, Inc. and Silicon Graphics, Inc.
Copyright (c) 1994, 1995 X Consortium, Inc. and Hewlett-Packard Company.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxext/libxext_1.3.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxext/libxext_1.3.3-1/copyright

libxinerama1 - 2:1.1.3-1

Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
Copyright (c) 2003 The Open Group
Copyright (c) 1991, 1997 Digital Equipment Corporation, Maynard, Massachusetts.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxinerama/libxinerama_1.1.3.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxinerama/libxinerama_1.1.3-1/copyright

libxrender1 - 1:0.9.9-0ubuntu1

PrizmDoc Viewer v13.17 54

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/p/pixman/pixman_0.33.6.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/p/pixman/pixman_0.33.6-1/copyright
mailto:eay@cryptsoft.com
http://archive.ubuntu.com/ubuntu/pool/main/o/openssl/openssl_1.0.2g.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-1ubuntu4.19/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/o/openssl/openssl_1.0.2g-1ubuntu4.19/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libx11/libx11_1.6.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libx11/libx11_1.6.3-1ubuntu2.2/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxau/libxau_1.0.8.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxau/libxau_1.0.8-1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxext/libxext_1.3.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxext/libxext_1.3.3-1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxinerama/libxinerama_1.1.3.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxinerama/libxinerama_1.1.3-1/copyright

Copyright (c) 2001,2003 Keith Packard
Copyright (c) 2000 SuSE, Inc.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxrender/libxrender_0.9.9.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-
0ubuntu1/copyright

libxslt1.1 - 1.1.28-2.1ubuntu0.3

Copyright (c) 2001-2002 Daniel Veillard. All Rights Reserved.
Copyright (c) 2001-2002 Thomas Broyer, Charlie Bozeman and Daniel Veillard. All Rights Reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxslt/libxslt_1.1.28.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxslt/libxslt_1.1.28-2.1ubuntu0.3/copyright

libxtst6 - 2:1.2.2-1

Copyright (c) 1990, 1991 by UniSoft Group Limited
Copyright (c) 1992, 1993, 1995, 1998 The Open Group
Copyright (c) 1995 Network Computing Devices
Copyright (c) 2005 Red Hat, Inc.
Copyright (c) 1992 by UniSoft Group Ltd.
Copyright (c) 1992, 1994, 1995 X Consortium
Copyright (c) 1994 Network Computing Devices, Inc.
Download: http://archive.ubuntu.com/ubuntu/pool/main/libx/libxtst/libxtst_1.2.2.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxtst/libxtst_1.2.2-1/copyright

locales - 2.23-0ubuntu11.3

Copyright (c) 1991-2015 Free Software Foundation, Inc.
Copyright (c) 1991 Regents of the University of California. All rights reserved.
Portions Copyright (c) 1993 by Digital Equipment Corporation.
Portions Copyright (c) 1996-1999 by Internet Software Consortium.
Copyright (c) 2010, Oracle America, Inc. Copyright (c) 1991,1990,1989 Carnegie Mellon University All Rights
Reserved.
Copyright (c) 2000, Intel Corporation. All rights reserved.
Copyright (c) 1996 by Craig Metz, All Rights Reserved.
Copyright (c) 1992 Eric Young
Copyright (c) 2002, 2003, 2004, 2011 Simon Josefsson
Copyright (c) 1999, 2000 Tom Tromey
Copyright (c) 2000 Red Hat, Inc.
Copyright (c) The Internet Society (2003). All Rights Reserved.
Copyright (c) 1998 WIDE Project. All rights reserved.
Copyright (c) 1995 by Tom Lord
Copyright (c) 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved.
Copyright (c) 1997-2003 University of Cambridge
Copyright (c) 1993 by Sun Microsystems, Inc. All rights reserved.
(C) Copyright C E Chew
Copyright (c) 2001 by Stephen L. Moshier moshier@na-net.ornl.gov
Download: https://packages.ubuntu.com/source/xenial/glibc
License: http://changelogs.ubuntu.com/changelogs/pool/main/g/glibc/glibc_2.23-0ubuntu11.3/copyright with
references to the full text of GPL-2 and LGPL-2.1

lsof - 4.89+dfsg-0.1

SENDMAIL LICENSE
BSD 4-clause

PrizmDoc Viewer v13.17 55

©2021 My Company. All Rights Reserved.

http://archive.ubuntu.com/ubuntu/pool/main/libx/libxrender/libxrender_0.9.9.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-0ubuntu1/copyright
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxrender/libxrender_0.9.9-0ubuntu1/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxslt/libxslt_1.1.28.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxslt/libxslt_1.1.28-2.1ubuntu0.3/copyright
http://archive.ubuntu.com/ubuntu/pool/main/libx/libxtst/libxtst_1.2.2.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/libx/libxtst/libxtst_1.2.2-1/copyright
mailto:moshier@na-net.ornl.gov
https://packages.ubuntu.com/source/xenial/glibc
http://changelogs.ubuntu.com/changelogs/pool/main/g/glibc/glibc_2.23-0ubuntu11.3/copyright
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

Purdue license
GNU General Public License, version 2, or any later version
GNU Library General Public License, version 2, or any later version
Copyright (c) 1998 Sendmail, Inc. All rights reserved.
Copyright (c) Purdue Research Foundation, West Lafayette, Indiana 47907 2002 - 2011
Copyright (c) 1996, Dominik Kubla dominik@debian.org
Copyright (c) 1997, Michael Meskes meskes@debian.org
Copyright (c) 1998-2002, Jim Mintha jmintha@debian.org
Copyright (c) 2004-2009, Norbert Tretkowski nobse@debian.org
Copyright (c) 2012, Raoul Gunnar Borenius borenius@dfn.de
Copyright (c) 2012, Nicholas Bamber nicholas@periapt.co.uk
Copyright (c) 1993, Paul Kranenburg
Copyright (c) 2005-2007, Apple Computer, Inc. All rights reserved.
Copyright (c) 1983, 1993, The Regents of the University of California
Copyright (c) 1980, 1983, 1988, Regents of the University of California.
Copyright (c) 1983, 1988, 1993, Regents of the University of California.
Copyright (c) 2004, 2005, Fabian Frederick fabian.frederick@gmx.fr
Copyright (c) 1985, 1989-2000, Free Software Foundation, Inc.
Copyright (c) 1998, Sendmail, Inc. All rights reserved.
Copyright (c) 1997, Eric P. Allman. All rights reserved.
Copyright (c) 1988, 1993, The Regents of the University of California. All rights reserved.
Download: http://archive.ubuntu.com/ubuntu/pool/main/l/lsof/lsof_4.89+dfsg.orig.tar.gz
License: http://changelogs.ubuntu.com/changelogs/pool/main/l/lsof/lsof_4.89+dfsg-0.1/copyright

node-fetch

The MIT License (MIT)
Copyright (c) 2016 David Frank
Download: https://www.npmjs.com/package/node-fetch
License: https://cdn.jsdelivr.net/npm/node-fetch@2.6.0/LICENSE.md

node-rsa

The MIT License (MIT)
Copyright (c) 2014 rzcoder
Copyright (c) 2003-2005 Tom Wu
Download: https://www.npmjs.com/package/node-rsa
License: https://github.com/rzcoder/node-rsa/blob/1.1.1/README.md

Node.js v12.22.1

Copyright Node.js contributors. All rights reserved.
Download: http://nodejs.org/dist/v12.22.1/
License: https://github.com/nodejs/node/blob/v12.22.1/LICENSE

Legacy Samples

ASP.NET MVC

Copyright (c) Microsoft Corporation
Download: https://www.nuget.org/packages/Microsoft.AspNet.Mvc/5.2.7/
License: https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm

ASP.NET Razor

PrizmDoc Viewer v13.17 56

©2021 My Company. All Rights Reserved.

mailto:dominik@debian.org
mailto:meskes@debian.org
mailto:jmintha@debian.org
mailto:nobse@debian.org
mailto:borenius@dfn.de
mailto:nicholas@periapt.co.uk
mailto:fabian.frederick@gmx.fr
http://archive.ubuntu.com/ubuntu/pool/main/l/lsof/lsof_4.89 dfsg.orig.tar.gz
http://changelogs.ubuntu.com/changelogs/pool/main/l/lsof/lsof_4.89+dfsg-0.1/copyright
https://www.npmjs.com/package/node-fetch
https://cdn.jsdelivr.net/npm/node-fetch@2.6.0/LICENSE.md
https://www.npmjs.com/package/node-rsa
https://github.com/rzcoder/node-rsa/blob/1.1.1/README.md
http://nodejs.org/dist/v12.22.1/
https://github.com/nodejs/node/blob/v12.22.1/LICENSE
https://www.nuget.org/packages/Microsoft.AspNet.Mvc/5.2.7/
https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm

Copyright (c) Microsoft Corporation
Download: https://www.nuget.org/packages/Microsoft.AspNet.Razor/3.2.2
License: https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm

ASP.NET Web Pages

Copyright (c) Microsoft Corporation
Download: https://www.nuget.org/packages/Microsoft.AspNet.WebPages/3.2.2
License: https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm

Font Awesome Free

Download: https://github.com/FortAwesome/Font-Awesome/
License: https://scripts.sil.org/OFL

dropzone.js

The MIT License (MIT)
Copyright (c) 2012 Matias Meno
Download: https://github.com/enyo/dropzone
License: https://github.com/enyo/dropzone/blob/master/LICENSE

infinity.js (http://airbnb.io/infinity/)

Copyright (c) 2012 Airbnb
Download: https://github.com/airbnb/infinity
License: https://github.com/airbnb/infinity/blob/master/LICENSE

Microsoft.Web.Infrastructure

Download: https://www.nuget.org/packages/Microsoft.Web.Infrastructure/1.0.0/
License: https://www.microsoft.com/web/webpi/eula/aspnetmvc3update-eula.htm

Newtonsoft.Json

Copyright (c) 2007 James Newton-King
Download: http://www.newtonsoft.com/json
License: https://github.com/JamesNK/Newtonsoft.Json/blob/7.0.1/LICENSE.md

pikaday

Copyright (c) 2014 David Bushell
Download: https://github.com/Pikaday/Pikaday/tree/1.3.2
License: https://github.com/Pikaday/Pikaday/blob/1.3.2/LICENSE

jQuery (http://jquery.com/)

Copyright OpenJS Foundation and other contributors, https://openjsf.org/
Download: http://jquery.com/download/
Version: 3.6.0
License: https://github.com/jquery/jquery/blob/master/LICENSE.txt

jQuery Hotkeys

Copyright (c) 2010 by John Resig
Download: https://plugins.jquery.com/hotkeys/

PrizmDoc Viewer v13.17 57

©2021 My Company. All Rights Reserved.

https://www.nuget.org/packages/Microsoft.AspNet.Razor/3.2.2
https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm
https://www.nuget.org/packages/Microsoft.AspNet.WebPages/3.2.2
https://www.microsoft.com/web/webpi/eula/net_library_eula_ENU.htm
https://github.com/FortAwesome/Font-Awesome/
https://scripts.sil.org/OFL
https://github.com/enyo/dropzone
https://github.com/enyo/dropzone/blob/master/LICENSE
http://airbnb.io/infinity/
https://github.com/airbnb/infinity
https://github.com/airbnb/infinity/blob/master/LICENSE
https://www.nuget.org/packages/Microsoft.Web.Infrastructure/1.0.0/
https://www.microsoft.com/web/webpi/eula/aspnetmvc3update-eula.htm
http://www.newtonsoft.com/json
https://github.com/JamesNK/Newtonsoft.Json/blob/7.0.1/LICENSE.md
https://github.com/Pikaday/Pikaday/tree/1.3.2
https://github.com/Pikaday/Pikaday/blob/1.3.2/LICENSE
http://jquery.com/
https://openjsf.org/
http://jquery.com/download/
https://github.com/jquery/jquery/blob/master/LICENSE.txt
https://plugins.jquery.com/hotkeys/

License: https://github.com/jeresig/jquery.hotkeys/blob/0.1.0/jquery.hotkeys.js#L4

JSP Sample

Json library: Json is a Java library that can be used to convert Java Objects into their JSON representation.
It can also be used to convert a JSON string to an equivalent Java object.
Download: https://code.google.com/p/google-son/
Version: 2.2.4
License: http://www.apache.org/licenses/LICENSE-2.0

SVG - Material Design Icons

Licensed under the Pictogrammers Free License.
Download: https://github.com/Templarian/MaterialDesign-SVG
License: https://github.com/Templarian/MaterialDesign-SVG/blob/v5.6.55/LICENSE

The HTML5 Shiv (https://code.google.com/p/html5shiv/)

Dual licensed under the MIT or GPL Version 2 licenses
Download: https://code.google.com/p/html5shiv/
Version: 3.7.0
License: https://github.com/aFarkas/html5shiv/blob/master/MIT and GPL2 licenses.md

Underscore (http://underscorejs.org/)

Copyright (c) 2009-2021 Jeremy Ashkenas, Julian Gonggrijp, and DocumentCloud and Investigative Reporters &
Editors
Underscore may be freely distributed under the MIT license.
Download: http://underscorejs.org/
Version: 1.13.1
License: https://github.com/jashkenas/underscore/blob/1.13.1/LICENSE

Windows Installer XML (Wi) toolset

Copyright (c) 2004, Outer Curve Foundation
Download: https://wix.codeplex.com/releases/view/99514
License: http://opensource.org/licenses/ms-url

PrizmDoc Viewer v13.17 58

©2021 My Company. All Rights Reserved.

https://plugins.jquery.com/hotkeys/
https://github.com/jeresig/jquery.hotkeys/blob/0.1.0/jquery.hotkeys.js#L4
https://code.google.com/p/google-gson/
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/Templarian/MaterialDesign-SVG
https://github.com/Templarian/MaterialDesign-SVG/blob/v5.6.55/LICENSE
https://code.google.com/p/html5shiv/
https://code.google.com/p/html5shiv/
https://github.com/aFarkas/html5shiv/blob/master/MIT and GPL2 licenses.md
http://underscorejs.org/
http://underscorejs.org/
https://github.com/jashkenas/underscore/blob/1.13.1/LICENSE
https://wix.codeplex.com/releases/view/99514
http://opensource.org/licenses/ms-rl

Release Notes
This section contains information on new features, improvements, fixes, and known issues for each release:

Release Notes v13.17
Release Notes v13.16
Release Notes v13.15
Release Notes v13.14
Release Notes v13.13
Release Notes v13.12
Release Notes v13.11
Release Notes v13.10
Release Notes v13.9
Release Notes v13.8
Release Notes v13.7
Release Notes v13.6
Release Notes v13.5
Release Notes v13.4
Release Notes v13.3
Release Notes v13.2
Release Notes v13.1
Release Notes v13.0
Known Issues

Release Notes v13.17
PrizmDoc Viewer v13.17 introduces the following:

New Features & Improvements
Product Updates & Fixes

13.17 New Features and Improvements
Content Conversion Service (CCS) now allows you to control the conversion of MS Word documents
with tracked changes when using the MSO rendering engine. If you are using PrizmDoc Server with
Microsoft Office, you can now use the Content Conversion Service to convert Microsoft Word documents
with accepted or rejected markup changes to view those documents in their final form. See the API guide
for more information.
Content Conversion Service (CCS) now allows you to control the conversion of MS PowerPoint
documents with speaker notes when using the MSO rendering engine. If you are using PrizmDoc Server
with Microsoft Office, you can now use the Content Conversion Service to convert Microsoft PowerPoint
documents with slides only (the default) or with included speaker notes to view those documents in their
final form. See the API guide for more information.
Improved support of signed PDF documents. Improved PDF rendering service to better support
signatures in encrypted PDF files.
CentOS 6 and Red Hat Enterprise Linux 6 are no longer supported. CentOS 6 support was deprecated in
PrizmDoc Viewer v13.14. Red Hat Enterprise Linux 6 support was deprecated in PrizmDoc Viewer v13.16. As
of PrizmDoc Viewer v13.17, support for CentOS 6 and Red Hat Enterprise Linux 6 has been dropped. Please
consider using PrizmDoc Viewer Docker images (PrizmDoc Server or PrizmDoc Application Services) or
upgrading your system.
Ubuntu 16.04 is no longer supported. Ubuntu 16.04 support was deprecated in PrizmDoc Viewer v13.16.
As of PrizmDoc Viewer v13.17, support for Ubuntu 16.04 has been dropped. Please consider using PrizmDoc

PrizmDoc Viewer v13.17 59

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-server
https://hub.docker.com/r/accusoft/prizmdoc-application-services

Viewer Docker images (PrizmDoc Server or PrizmDoc Application Services) or upgrading your system.
While we currently continue to offer and support traditional Linux packages for direct installation on a Linux
host, these have largely become obsolete now that Docker deployment is an option. We have announced
deprecation of our traditional Linux install packages with the release of PrizmDoc Viewer v13.17, and,
in a future product release, we intend to only offer our Docker-based deployment option.
PrizmDoc Viewer Microsoft Office conversion add-on option is now compatible with Microsoft Office
2019 for PrizmDoc Server running on Windows 2019 platform. Please refer to the Office Issues section
to review and understand Microsoft's known performance issue in Excel 2019 when considering migrating
your production environment to Microsoft Office 2019.

13.17 Product Updates and Fixes

Viewing

Addressed an issue where selecting a search result of another page did not bring the search result into view
while in single page view mode.
Addressed an issue where the redaction search results were not correctly updated when performing a
search that excluded the document.
Addressed an issue in the Viewer where the wrong search result was selected when selecting the previous or
next search result. This occurred while a search with multiple pages of results was in progress.
Addressed an issue in the Viewer where certain regular expression searches failed or caused the browser to
hang. The Viewer no longer modifies regular expression searches to handle finding phrases that span
multiple lines or contain variations of single or double quote characters. Lines of text in the Viewer typically
end with a space followed by a \n character, so to include phrases that span multiple lines in your regular
expression search results, you will need to provide a regular expression that accounts for words separated
by either a space or a space followed by a \n character.
Addressed an issue in the Viewer where searching for terms that include single or double quote characters
did not return the correct results.
Addressed an issue in the Viewer where using the search filter panel to exclude a search term did not
unhighlight the search result in a previously selected comment.
Addressed an issue when MSG document that contains an attachment with meeting info in it fails to load.
Addressed an issue where the Viewer was preserving search highlights on comments in the saved markup.
Addressed an issue where EML document with HTML body charset specified as empty string fails to load.

Redaction

Addressed an issue with the PrizmDoc Server markupBurners REST API where it was unable to apply markup
definitions to signed PDF files.

Fidelity

Addressed an issue where embedded cyrillic fonts in PDF documents were not being rendered.
Addressed a limitation where JBIG2 streams in some specific PDF documents were not being rendered.

Stability

Addressed an issue in the PrizmDoc Server where the Watchdog service was unable to restart the failed
microservices after an internal error.
Addressed an issue in the PrizmDoc Server where the PCCIS module of PrizmDoc Viewer failed with a
"System.OutOfMemoryException" error when processing large documents that were referenced as a URL
when creating a Viewing Session or uploaded with PUT
/PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile API. Also PrizmDoc Server
memory consumption was significantly reduced for scenarios mentioned above.
Improved the cache clean-up algorithms of PrizmDoc Server. Previously, it became permanently unhealthy

PrizmDoc Viewer v13.17 60

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-server
https://hub.docker.com/r/accusoft/prizmdoc-application-services

due to cache corruption with the MongoDB.
When installing or uninstalling the PrizmDoc Server for Windows, the checkbox Restart Now on the final
page of the product's Installer is now checked by default if the installer made modifications that require
system reboot, such as registry changes.
The Docker image accusoft/prizmdoc-application-services base has been updated to Ubuntu 18.04.
Addressed an issue in the PrizmDoc Server where the ms-office-conversion-service might not restore
Microsoft Word, Excel, or PowerPoint instances that had crashed.
Addressed an issue in the PrizmDoc Server where the child LibreOffice instances of the Office Conversion
Service (OCS) might continue to consume CPU resources in the background, while the service is idle. This
used to happen after viewing or conversion of large documents rendered by the PrizmDoc Viewer as a plain
text.
Addressed an issue in the PrizmDoc Server where load balancer may crash when GET /admin request is
sent during the product start.
Addressed an issue in the PrizmDoc Server with enabled MSO rendering engine where it either failed start,
or was not fully functional on the machines with more than 32 CPU cores. On such systems, initialization of a
large number of MSO instances either took too much time, or did not complete successfully at all - this is
related to the system resources usage by MSO. Now the PrizmDoc Server limits the max CPU core usage to
32 for Office documents processing, so if you need to utilize more CPU power for Office documents viewing
and conversion, please consider using PrizmDoc Server Clustering.

Security

Updated bundled version of Java included in our product to a newer version of AdoptOpenJDK (1.8.0_282),
taking advantage of recent security fixes and other changes in the JRE.
Updated MongoDB included in our product to version 4.2.14 on Windows platform, taking advantage of
recent security fixes.
Updated the client-side viewer and samples to the latest official version of Underscore (v1.13.1), taking
advantage of the most-recent updates and bug fixes.
Updated the client-side viewer and samples to the latest official version of jQuery (v3.6.0), taking advantage
of recent security fixes.

Release Notes v13.16
PrizmDoc Viewer v13.16 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.16 New Features and Improvements
Metered Licensing customers can now view their usage. Accusoft Customer Portal now provides the
ability for PrizmDoc Viewer Metered Licensing customers to download and view their usage statistics for
processed documents.
Content Conversion Service (CCS) can now convert XLS and CSV files to XLSX. If you are using
PrizmDoc Server with Microsoft Office, you can now use the Content Conversion Service to convert XLS and
CSV files to XLSX. See the API guide for more information.
Experimental option to render meeting information in email files. PrizmDoc Server has a new
experimental central configuration option for rendering meeting information associated with email files:
__experimental.fileTypes.email.renderMeetingInfo. See central configuration for more
information. NOTE: This feature is a work-in-progress that is not officially supported by Accusoft. Its behavior
may change at any time in a future release of the product. We are collecting and reviewing any feedback you
can provide about this feature at https://ideas.accusoft.com/ideas/PDV-I-745.

PrizmDoc Viewer v13.17 61

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-application-services
https://my.accusoft.com/
https://ideas.accusoft.com/ideas/PDV-I-745

13.16 Product Updates and Fixes

Viewing

Addressed an issue in the viewer UI where using the text selection tool (for redactions, highlights, and text
selection) sometimes selected unintended characters when starting the selection in the middle of a word.
Addressed an issue in the viewer UI where clearing a search or executing a new search did not always
remove the previously active and selected search result.
Addressed an issue where some pages failed to display if a large document was opened in
alwaysUseRaster mode and scrolled through.
Addressed an issue where text was not available for search or selection when viewing PDF files containing
TTF fonts with Kerning sub-table format 2.
Addressed an issue in the PrizmDoc Viewer API where using ViewerControl convertToHighlight or
convertToRedaction method added marks that did not appear correctly and could not be selected,
edited, or reloaded when saved. Additionally, convertToHighlight and convertToRedaction have
been deprecated; we recommend you use addMarkFromSearchResult instead.
Addressed an issue with the PAS GET /v2/viewingSessions/{viewingSessionId}/restrictions
REST API where it would fail with an HTTP 500 error if the viewing session had been created from a viewing
package.

Redaction

Addressed an issue with the PrizmDoc Server redactionCreators REST API where it was unable to create
redaction definitions for PDF files containing TTF fonts with Kerning sub-table format 2.
Addressed an issue with the PrizmDoc Server redactionCreators REST API for Linux and Docker
platforms where, if the source document contained certain 4-byte-long UTF-8 characters, the redactions
produced after those symbols were incorrectly shifted.
Addressed an issue in the PAS MarkupBurner and PrizmDoc Server MarkupBurner REST APIs where they
were unable to redact specific PDF files. This happened when the PDF document contained either specific
inline images, some complex objects, or an empty content stream in the Contents array of the page.
Addressed an issue in the PAS MarkupBurner and PrizmDoc Server MarkupBurner REST APIs where sending
a JSON body with a request Content-Type of application/json with an explicitly defined charset
(such as Content-Type: application/json; charset=utf-8) would fail.

Text Extraction

Addressed an issue where text could not be extracted from PDF files containing TTF fonts with Kerning sub-
table format 2.

Fidelity

Addressed an issue when rendering Excel files with MS Office would sometimes render too few or too many
pages.
Addressed an issue where some Ink Annotations in PDF documents were not being rendered.
Addressed an issue in the Content Conversion Service (CCS) where it produced a text-searchable PDF file
with an unexpected page orientation. This happened when the source PDF contained raster images with the
Rotate property.
Addressed an issue in the Content Conversion Service (CCS) API causing it to incorrectly apply DPI when
converting a document to TIFF with G4 compression, resulting in low-quality TIFF output.
Addressed an issue in MSG rendering when an email was sent by a software system on behalf of someone
else. Previously, PrizmDoc Server would render the "From" field with the name of the software system
instead of the name the person who had sent the email for MSG files.
Addressed an issue where PrizmDoc Server's automatic format detection incorrectly concluded that a text
file was a bitmap when the text file began with "BM" or "BA".

PrizmDoc Viewer v13.17 62

©2021 My Company. All Rights Reserved.

Addressed fidelity issues when rendering specific DICOM images.

Stability

Improved the MS Office rendering engine to properly detect a broken MS Office installation. Previously, if
the MSO rendering mode was enabled, the ms-office-conversion-service declared itself as "running" on the
Admin Page even if it was unable to start any MS Word, Excel, or PowerPoint instances.
Improved PrizmDoc Server's MS Office rendering engine to detect and gracefully fail when converting Office
documents that require some sort of human interaction via a popup window in the MS Office application.
Previously, processing of such documents was preventing other concurrent Office document conversions
from successful completion.
Addressed an issue with the Office Conversion Service (OCS) intermittently crashing and restarting when
using a hybrid of Linux and Windows clusters for MSO rendering and there were processing delays of more
than 5 minutes in the Windows cluster.
Addressed an issue in PrizmDoc Server on Windows where one of the microservices might have mistakenly
terminated other microservices during peak load periods, making PrizmDoc Server unhealthy and unable to
restart.
Addressed an issue where viewing document pages with widths greater than approximately 3500 mm or
21000 pixels in alwaysUseRaster mode caused the Raster Conversion Service worker threads to hang,
occupying up to 10 CPU Cores.
Addressed an issue where viewing specific GIF images caused PrizmDoc Server to become unhealthy.
Addressed an issue with running multiple Redaction Creators in concurrent requests.
Addressed an issue where the PrizmDoc Server "ms-office-conversion-service" log files were not being
rotated, resulting in large log files which consumed unnecessary disk space.

Security

Addressed vulnerability when rendering specific JPEG, TIFF, DICOM and SGI images.

13.16 Documentation Updates
Updated the Customizing the Styles topic for accuracy and clarity.
Updated the Troubleshooting section by adding the new Memory Consumption Issues topic to help you
workaround possible unexpected memory consumption by PrizmDoc Java services.

Release Notes v13.15
PrizmDoc Viewer v13.15 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.15 New Features and Improvements
New Metered Licensing option. We now offer a new kind of Metered License which allows you to use all of
the features of PrizmDoc Viewer without any limits as long as your license is current. At runtime, the number
of documents you process is automatically reported back to Accusoft. And renewal is easier than ever:
simply pay to extend your license and your PrizmDoc Server instances will automatically detect your new
license expiration date (no new license key to adopt or servers to redeploy). See Metered Licensing for more
information.
Deprecation of Cloud Licensing and Node-Locked Licensing. While currently still supported, with the
introduction of Metered Licensing we are announcing the deprecation of the older Cloud License and Node-

PrizmDoc Viewer v13.17 63

©2021 My Company. All Rights Reserved.

Locked License types. Support for these kinds of licenses will be removed in a future release. See Licensing
for more information.
New Angular samples on GitHub. We’ve published two new Angular samples to GitHub, one with a .NET
backend and one with a Java backend. These samples are deliberately minimal, designed to give developers
a clear, concise example of how to use PrizmDoc Viewer in an Angular context.
New markup burning REST API option allows you to only include certain kinds of marks. When
making a request to the Markup Burner API, you can now request that only annotations, redactions, and/or
signatures be included.
PrizmDoc Server no longer changes the default Windows printer at runtime. Previously, when using
Microsoft Office for rendering, PrizmDoc Server required the Windows default printer be set to "Microsoft
XPS Document Writer" and, if necessary, would forcibly change the default printer to be the "Microsoft XPS
Document Writer" at runtime. This is no longer the case. While the "Microsoft XPS Document Writer" printer
does still need to be installed and available, it no longer needs to be set as the default printer and PrizmDoc
Server will no longer change which printer is set as the default.

13.15 Product Updates and Fixes
Improved logging for the PrizmDoc PDF Processing Service to eliminate redundant warnings about a
structure of PDF documents and to help reduce log file size.
Addressed an issue with the PrizmDoc Viewer public-request-service failing to communicate with external
resources (like image references from emails) over HTTPS and making it impossible to view the associated
documents.
Addressed an issue in the ViewerControl where it displayed the page loading indicator improperly when
used in the standalone (chrome-less) mode (without the PrizmDoc Viewer Client.)
Changed the level of opacity when previewing redactions in the PrizmDoc Viewer Client UI. The opacity level
in the client viewer UI is now 20%, which is consistent with the default opacity level used for draft
(transparent) redactions. Previously the opacity level in the client viewer UI was 50%.
Addressed an issue in the PrizmDoc Viewer Plain Tеxt Redactor API where redacting a document failed if the
markup JSON contained Text Annotations.
Addressed low-performance issue on Windows when converting or viewing PDF documents that extensively
use embedded fonts.
Addressed an issue with the PrizmDoc Viewer Office Conversion Service (OCS) intermittently failing to start
and becoming 'Unhealthy' on the Admin Page in AWS Fargate or other Linux environments with NFS shares
when there are network connection delays.
Addressed an issue in the PrizmDoc Viewer where opening an EML document attachment failed when
Content-Disposition header was not defined for the attachment.
Addressed an issue with the PrizmDoc Viewer on Windows where it could leave dangling wkhtmltopdf.exe
processes when the service was running or after shutdown.
Addressed an issue in the ViewerControl where clicking to dismiss a menu would add a mark if a text-based
mark tool is selected. When using the text selection, highlight, strikethrough, hyperlink, or text selection
redaction tool, clicking will no longer select text or add a mark. You must now click and drag to select text
or add a mark.
Addressed an issue in the ViewerControl where using the "begins with" or "ends with" search matching
option would not find instances of the search term itself. Instances of the search term are now returned
when performing a search using the "begins with" or "ends with" search matching option.
Addressed an issue in the Viewer where multiple comment search results were selected in the search results
panel when filtering output.
Addressed an issue with the PrizmDoc Viewer Workfile Service where it sporadically failed to clean up work
files and then bloated logs with error messages on being unable to delete those work files.
Addressed an issue in the ViewerControl where marks were added in the wrong location on a page. This
happened when the addMarkFromSearchResult method was used (to add marks from search results),
the page was out-of-view, and the page was a different size than the first page.
Addressed an issue in the ViewerControl where using the scrollTo or scrollToAsync method did not
scroll to the correct position.

PrizmDoc Viewer v13.17 64

©2021 My Company. All Rights Reserved.

https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-angular
https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-angular
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-angular

Addressed a vulnerability when rendering specific CSV documents in the LibreOffice rendering mode.
Addressed an issue with the restart of the PrizmDoc Redaction Service that was caused by an out of memory
exception when the plainTextRedactors functionality was used for source files containing hundreds of
pages.
Addressed an issue in the PrizmDoc Viewer where its micro service restart was delayed on Windows when
WMIC was not responding.
Improved the PrizmDoc Service health detection to allow it to become healthy again as soon as a backend
service is back up and running. Previously, the PrizmDoc service would become permanently unhealthy
when a backend service could not be restarted within 2 minutes.
Introduced new parameters in Central Configuration to control Java Virtual Machine (JVM) settings when
starting PrizmDoc Server Java-based services (PDF Processing Service and Email Processing Service). For
more information, refer to the JVM Options section of the Central Configuration topic.
Addressed an issue that allowed "Ends With" and "Begins With" to be selected in the Viewer at the same
time.

13.15 Documentation Updates
Re-organized the Known Issues section of the Release Notes to make it easier to locate relevant
information.
Updated the Troubleshooting section to make it easier to locate information on resolving PrizmDoc Server
health issues and log file issues. Added content to the Troubleshooting > Document Viewing Issues section
for a workaround when viewing a document with more than 10,000 pages.
Corrected documentation issues and updated content in supported file formats, working with viewing
packages, and code examples.

Release Notes v13.14
PrizmDoc Viewer v13.14 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.14 New Features and Improvements
PrizmDoc Viewer Markup Burner API and Viewer Client API now provide the ability to apply draft
redactions without actually obscuring the content. The Markup Burner API and the Viewer Client API
now allow you to produce PDF documents with transparent (draft mode) redactions that display the
document content underneath the redaction rectangles.
The Content Conversion Service (CCS) now provides the ability to convert documents to raster TIFF
using specific DPI (Dots Per Inch) image resolution. When choosing TIFF as the output file format, the
Content Conversion Service (CCS) API now allows you to set a specific resolution on the output raster image
- it will have the requested DPI value and will be scaled if necessary.
PrizmDoc Redaction Creators API now provides support of multiple redaction reasons. When creating
redactions using the Redaction Creators API, you can now specify multiple redaction reasons to be
associated with redaction marks.
New React sample on GitHub. We’ve published a new React sample on GitHub. This sample is deliberately
minimal, designed to give developers a clear, concise example of how to use PrizmDoc Viewer in a React
context.
The ability to retain configuration settings when upgrading PrizmDoc Server. Starting with version
13.14, when upgrading version 13.3 or higher, PrizmDoc Server is preserving the server side configuration
available in prizm-services-config.yml and pcc.config configuration files.
The ability to retain configuration settings when upgrading PrizmDoc Application Services. Starting

PrizmDoc Viewer v13.17 65

©2021 My Company. All Rights Reserved.

https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://github.com/Accusoft/hello-prizmdoc-viewer-with-nodejs-and-react

with version 13.14, when upgrading version 13.8 or higher, PrizmDoc Application Services are preserving the
configuration available in the pcc.nix.yml and pcc.win.yml configuration files.
PrizmDoc Viewer Client API now provides support for opening email attachments in the same viewer
window. You can now configure PrizmDoc Viewer Client to open email attachments in the same Viewer
window where you are viewing the original email.
New PrizmDoc Viewer Client UI for browsing email attachments. PrizmDoc Viewer Client UI has been
improved to show email attachments in a compact dropdown menu instead of a panel. Click the paperclip
icon to view the list of email attachments and switch between the email and its attachments without
shrinking the document viewing area.
Improved PrizmDoc Viewer performance when viewing specific CAD-like PDF documents. PrizmDoc
Server has been updated to produce more optimal SVG content for CAD-like PDF documents which contain
a lot of small consecutive elements having the same style and transform. This optimization leads to much
higher browser responsiveness while zooming, panning, and annotation drawing operations in PrizmDoc
Viewer. It also slightly improves the thickness level of the rendered lines making it more accurate on display.

13.14 Product Updates and Fixes
Addressed an issue in the PrizmDoc Content Conversion Service (CCS) where footer text was misplaced
outside of the visible content in the output document. This happened when it was applied to a rotated PDF
page that had the Art, Bleed, or Trim boxes defined partially outside of a Media box.
Addressed an issue in the Markup Burner API where garbage text showed in the output PDF instead of
Unicode text. This happened when text annotations were applied with different encodings (ASCII and
Unicode) from one markup file for the same embedded font.
Addressed an issue in the Markup Burner API where redacting a document failed when the source PDF
document had a newline character as a delimiter for internal PDF stream elements.
Addressed a PrizmDoc limitation of the MSO rendering engine causing inability to process Word 95 binary
documents and templates.
Addressed an issue in the PrizmDoc Content Conversion Service (CCS) where the diagonal watermark in the
output PDF document was not correctly centered compared to the rendered content in the Viewer.
Аddressed an issue in the Markup Burner API where redacting a PDF document containing specific JBIG2-
encoded images would apply over the raster image as expected; however, when the output was saved to
PDF, the redacted part of the image was not removed.
Improved PrizmDoc Viewer Client immediate menu customization. You can now configure the maximum
height of the menu as described in the How to adjust immediate menu size section for a better user
experience when working with multiple redaction reasons.
Addressed an issue in the Redaction Creators API where the redactions it created were usually too small to
show redaction reasons after the burning. The size of rectangle redactions created by the Redaction
Creators API is now consistent with the size of the text selection redaction rectangles created in PrizmDoc
Viewer.
The Microsoft Office Conversion connectivity for PrizmDoc Servers running on Linux now performs a retry of
the failed operation when the connection to the Windows server/cluster fails. This type of situation may
happen upon the recycling of Windows servers in a cloud environment.
Addressed an issue in the Microsoft Office Conversion connectivity for PrizmDoc Servers running on Linux
where the conversion of large Office documents failed if it took more than 2 minutes.
Addressed an issue in PrizmDoc Server where the PCCIS module of PrizmDoc Viewer consumed a lot of
memory and would be terminated by OOM on the Linux platform. This happened when processing large
documents (about 380 MB and more) that were referenced as a URL when creating a Viewing Session.
Addressed an issue with rendering specific email (EML) files in the Viewer that contained HTML body
content with a character set that was not specified in the Content Type field which prevented users from
seeing the content of such email files.
Addressed an issue with rendering nested MSG attachments from specific MSG files in the Viewer which
prevented users from seeing the attachments. Now when you view the emails, you can also view the
attachments.
Support for Internet Explorer was deprecated with PrizmDoc Viewer v13.14. Support for Internet Explorer

PrizmDoc Viewer v13.17 66

©2021 My Company. All Rights Reserved.

will be removed in PrizmDoc Viewer v14.0 which is currently planned for mid-late 2021.
Addressed an issue in the PrizmDoc Viewer Client UI where the Redact Full Pages dialog was displaying an
incorrect list of default multiple redaction reasons. The incorrect list was based on a previous list of
redaction reasons that were used for the Rectangle Redaction or Text Selection Redaction.
Addressed an issue in the PrizmDoc Viewer services (when running on Linux and using a PrizmDoc Cloud
License), that caused the services to fail after a system reboot.
Addressed an issue in ViewerControl that caused an error during burning request generation and didn't
allow users to burn in documents with more than 2000 pages from PrizmDoc Viewer Client UI.
Addressed PrizmDoc Viewer WorkFile service crash when uploading about one thousand files concurrently.
This update has improved the throughput of the concurrent uploads of small files (up to 50 KB) up to 3
times.
Аddressed an issue in the Markup Burner API where redacting a document containing internal PDF stream
with text and new line characters would apply over the document as expected; however, when the output
was saved to PDF, the text was not removed.
Support for CentOS 6 is deprecated with the release of PrizmDoc Viewer v13.14, as CentOS End of Lifetime
was announced for November 30th, 2020.
Addressed an issue in the Markup Burner API where redacting a document with a text selection redaction
over text smaller than 8 points would display the redaction reason text in the viewer as expected; however,
when the output was saved to PDF, the redaction reason text was removed.
Addressed an issue in the PrizmDoc Viewer Client where search result highlight was not restored after Text
Selection Redaction, Highlight Annotation or Strikethrough Annotation was created from the toolbar.
Addressed an issue in the PrizmDoc Viewer, where Redaction Creators API did not redact all occurrences of
a text string in the document, when the extracted text of the document contains NULL (U+0000) characters.
Addressed an issue in the PrizmDoc Viewer Client where a search result message was incorrect, when the
search was using wildcards and had incorrect term.

13.14 Documentation Updates
We improved the Troubleshooting section by reorganizing the content and adding a list of technical
questions and solutions to help you identify and troubleshoot the most frequently occurring issues.

Release Notes v13.13
PrizmDoc Viewer v13.13 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.13 New Features and Improvements
PrizmDoc Viewer Client API now provides support of multiple redaction reasons. When creating a
redaction in the PrizmDoc Viewer Client UI, you can now apply multiple redaction reasons to be associated
with the selected redaction. These reasons will be visible in the Viewer and saved to PDF along with the rest
of the redaction content.
The Content Conversion Service (CCS) now provides the ability to convert documents to 1-bit raster,
8-bit grayscale, 8-bit indexed or 24-bit RGB raster TIFF. When choosing TIFF as the output file format,
the Content Conversion Service (CCS) API now allows you to set a Bitonal, a Grayscale, an Indexed or a RGB
color mode to convert every page of a document to a 1-bit raster, a 8-bit grayscale, an 8-bit indexed or a
24-bit RGB raster image.
The Content Conversion Service (CCS) now provides the ability to convert documents to raster TIFF
using LZW, G4 and JPEG compressions. When choosing TIFF as the output file format, the Content
Conversion Service (CCS) API now allows you to set a LZW, a G4 or a JPEG compression type to convert

PrizmDoc Viewer v13.17 67

©2021 My Company. All Rights Reserved.

https://wiki.centos.org/About/Product

every page of a document to a compressed raster image.
Improved PrizmDoc Viewer performance when viewing multi-page DWF documents. In this release we
significantly reduced the conversion time and memory consumption when viewing multi-page DWF
documents containing 10 or more pages. The performance gain to display such documents is roughly
proportional to the number of pages and can be 10 times and more comparing to the previous version of
the product.
Improved PrizmDoc Viewer performance when retrieving revision data for Document Compare
feature which produces hundreds or thousands of differences between original and revised documents.
Improved PrizmDoc Viewer client responsiveness when viewing and scrolling through document
comparison results containing hundreds or thousands of differences between original and revised
documents.

13.13 Product Updates and Fixes
Addressed an issue in the PAS create-tables tool which, when exporting an initialization SQL script for
MySQL, produced a .sql file which was not directly executable due to a missing semicolon.
Addressed an issue for Linux users using the MSO rendering engine. PrizmDoc Viewer was not able to
display a document when it was reloaded and viewed again after the workfile lifetime interval expired (the
workfile lifetime interval is specified by the workFiles.lifetime central configuration parameter).
Addressed a vulnerability when rendering specific Excel documents in the LibreOffice rendering mode.
PrizmDoc Application Services (PAS) Amazon S3 storage provider now supports loading credentials by
assuming an Identity and Access Management (IAM) role via an OpenID Connect (OIDC) web identity token
file.
Addressed an issue where environment variable expansion on Windows was not being applied for the
logs.path property in the PrizmDoc Application Services configuration file.
Addressed an issue with the LibreOffice-based rendering engine where MS Word documents with
paragraphs that had the line spacing rule set to "Auto" and also had contextual spacing enabled, were
rendered with incorrect spacing between the lines.
Addressed a problem with opening specific MSG files in the Viewer that contained HTML embedded into
the RTF body (with RTF encoding, code pages: cp20127 and cp50220).
Addressed an issue in the ViewerControl where the CSS style that is defined for the HTML body element
caused the Rectangle Redaction, Text Annotation, or Text Signature to be displayed incorrectly.
Updated the Client-side Viewer to hide the "Select" and "Cancel" immediate menu items by default when
creating an annotation or redaction. To add these menu items back, use the
immediateActionMenuActionsFilter property.
Addressed incorrect behavior within the PrizmDoc Application Services (PAS) Viewing Session API.
Previously, when creating a Viewing Session for a source URL which responds with a non HTTP-200 status
code, it was rendering HTTP response body content indicating a successful creation of the viewing session,
instead of reporting an error. With this update, the PAS will now return an error, ensuring that a Viewing
Session will not be successfully created due to incorrect source URL.
Addressed an issue where the environment variable expansion on Windows was not being applied correctly
to paths in the PrizmDoc Application Services (PAS) config file when a path contained more than one
environment variable.
Addressed vulnerability issues when rendering specific ICO, PNG, TIFF, DICOM and XBM images.
Addressed a race condition in the PCCIS module of PrizmDoc Viewer. Previously, when the original and
revised documents were uploaded for the comparison process in parallel, it caused the Viewing Session to
return a CouldNotCompareDocuments error.
Addressed an issue where a sequential upload of original and revised source files to the PrizmDoc
Application Services (PAS) comparison viewing session was taking longer than expected due to a mutual
lock.
Updated PrizmDoc Cloud Licensing to properly handle the case when the prizmdoc-server container uses a
subset of the host's logical cores, specified via the CPU affinity mask. This allows the use of Cloud Licensing
for running multiple prizmdoc-server containers on the same host.
Addressed an issue with incorrect, less than expected "Content-Length" header value returned by the

PrizmDoc Viewer v13.17 68

©2021 My Company. All Rights Reserved.

PrizmDoc Application Services (PAS) Viewing Session restrictions API.
Updated the PrizmDoc Viewer startup logic on the Windows platform to check whether the system's non-
interactive heap size corresponds to the CPU core count and report the product as 'Unhealthy' on the
Admin Page in case of a discrepancy. This will help you know immediately when there is a server
configuration error. Please visit the Registry Changes page for more information.
Updated the PrizmDoc Viewer Client UI to automatically adjust the redaction reasons dropdown height, and
thus minimize the scrolling through the list of reasons.

13.13 Documentation Updates
Improved ability to view methods in the Viewer API by displaying them in the right-hand navigation panel.

Release Notes v13.12
PrizmDoc Viewer v13.12 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.12 New Features and Improvements
Improved performance of PrizmDoc Server on servers which have 8 or more cores by adjusting the
number of concurrent PDF conversion processes according to the number of available cores.
Improved stability of PrizmDoc Server when concurrent requests for viewing complex PDF documents
exceed the server capacity by making the PDF Conversion Service skip conversions for timed out requests
and survive the excess load, instead of becoming unhealthy and restarting.
Content Conversion Service (CCS) now provides the ability to apply diagonal text watermarks when
converting to PDF. When choosing PDF as the output file format, the Content Conversion Service (CCS) API
now allows you to apply a diagonal text watermark to every page of the output document.
New Evaluation Docker Image. The new prizmdoc-viewer-eval Docker image provides a simple PrizmDoc
Viewer backend and demo, making it easy to evaluate the product on a single machine.

13.12 Product Updates and Fixes
Addressed an issue in PrizmDoc Viewer that caused an unlicensed version of PrizmDoc Viewer Self-Hosted
to suppress notifications about the evaluation limitations in IE browsers.
Addressed an issue in ViewerControl that caused an error during markup deserialization when
creationDateTime or modificationDateTime field didn't have milliseconds (a second fraction)
specified.
Addressed an issue in PrizmDoc Viewer where an annotation layer selected for merge was not showing a
checkmark indicating it was selected.
Addressed an issue in PrizmDoc Viewer which caused an error when merging annotation layers if some of
the layers referenced pages that were not yet loaded by the viewer.
Addressed an issue in the Markup Burner API where redacting a page with the use of the
TextSelectionRedaction mark would apply the redaction mark over the area and remove text as expected
but did not remove raster, vector, or hyperlinks content from the burned PDF output of the redacted
document.
Addressed an issue in the MSO rendering engine with inconsistent rendering of non-trustworthy digital
signatures as trustworthy.
Addressed an issue in PrizmDoc Viewer services that caused PrizmDoc Viewer to duplicate or skip pages
when rendering TIFF images with old-style JPEG encoding and inconsistent StripOffsets and

PrizmDoc Viewer v13.17 69

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-viewer-eval

JPEGInterchangeFormat tags.
Addressed an issue in PrizmDoc Viewer services that caused PrizmDoc Viewer to render 2-bit LZW-
compressed TIFF images incorrectly on Windows.
Addressed a vulnerability when rendering specific PNG images.
Legacy PHP Sample has been removed from PrizmDoc Viewer.
Addressed an issue in PrizmDoc Viewer services where PrizmDoc Viewer could not display untitled
attachments in EML files.
Addressed a DOM-based XSS vulnerability when viewing documents in PrizmDoc Viewer.
Addressed an issue in PrizmDoc Viewer that caused a viewing session watermark text to be rendered 30%
larger than the expected font size.
Addressed an issue in ViewerControl where the character encoding information of the annotation and
redaction markup being saved was not specified as UTF-8 in the Content-Type HTTP header for the HTTP
request causing the text to be incorrectly interpreted.
Addressed a potential Java workflow vulnerability when viewing or processing specific documents in
PrizmDoc Viewer.

13.12 Documentation Updates
The online help has been updated with a new look & feel for easier navigation which includes: a left panel
which outlines the section you are viewing, a right-side "mini table of contents" in each topic to help you
jump to the information you need instead of scrolling, and a web-inspired search bar at the top.
The Getting Started section has been updated so it's easier for you to evaluate PrizmDoc.
We've added the Initial Integration section to help you easily transition to the next step after evaluation.
The Administrator Guide section has been reorganized so that you can find the information you need
quickly and easily. The section contains everything you need to install, license, configure, cluster, and
troubleshoot the PrizmDoc Server and PAS backend services.
Added a table to the PAS Configuration topic that provides a list of storage entities and supported storage
providers.
Improved introductory content for the PAS and PrizmDoc Server REST APIs.
Updated Security Guidance with recommendations on avoiding the Server Side Request Forgery
vulnerability.

Release Notes v13.11
PrizmDoc Viewer v13.11 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.11 New Features and Improvements
Docker Images - In addition to our traditional installers, we are now making PAS and PrizmDoc Server
available as Docker images, making setting up a PrizmDoc Viewer backend dramatically easier. Refer to the
following topics for more information:

Evaluation with Docker
Deploying PrizmDoc Server with Docker
Deploying PAS with Docker

PrizmDoc Server .NET SDK - For .NET developers doing backend document processing with PrizmDoc
Server, we now offer an official PrizmDoc Server .NET SDK as an open source NuGet package.
Installer Updates - The Prizmdoc Server installer now allows in-place upgrades so that you no longer need
to uninstall the previous version of PrizmDoc Server before installing the newest version.
Evaluate PrizmDoc Viewer Self-Hosted - You can now evaluate PrizmDoc Viewer Self-Hosted without an

PrizmDoc Viewer v13.17 70

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/

installed license, making it easier to evaluate the product. PrizmDoc Server now automatically runs in
evaluation mode with a fixed feature set if started without a license. For more information, refer to the
Product Evaluation section of the documentation.
PrizmDoc Viewer Raster Conversion Service - Improved the PrizmDoc Viewer Raster Conversion Service
to significantly reduce memory consumption and reduce the time it takes to generate raster tiles when
viewing large image files.

13.11 Product Updates and Fixes
Addressed an issue in the Email Processing Service (EPS) causing PrizmDoc Viewer to fail when converting or
viewing MSG files with multiple levels of MSG attachments.
Addressed an issue with the PCCViewer.Viewer destroy() method throwing an error when it was used before
the ViewerReady event was fired.
Re-enabled in-place upgrades for the PrizmDoc Server so that you no longer need to uninstall the previous
version of PrizmDoc Server before installing the newest version.
Addressed an issue in the Raster Conversion Service (RCS) that caused PrizmDoc Viewer to fail when viewing
huge 1-bit image files with more than 500,000,000 pixels.
Addressed an issue in the Markup Burner API where applying TextSelectionRedaction markup with
redactions located on several pages resulted in applying redaction rectangle mark(s) to the first page only in
the PDF output as opposed to applying them to all affected pages as specified in the JSON markup.
Support for Windows Server 2008 R2 was deprecated with PrizmDoc Viewer v13.7 and will soon be
completely removed. PrizmDoc Viewer v13.11 is the final release to claim deprecated support for Windows
Server 2008 R2. Future releases will no longer support Windows Server 2008 R2.
Support for Ubuntu 14.04 LTS was deprecated with PrizmDoc Viewer v13.6 and will soon be completely
removed. PrizmDoc Viewer v13.11 is the final release to claim deprecated support for Ubuntu 14.04 LTS.
Future releases will no longer support Ubuntu 14.04 LTS.
Addressed an issue in PrizmDoc Viewer services that caused PrizmDoc Viewer to render tiled TIFF images
incorrectly, showing only the top left tile.
Addressed an issue in PrizmDoc Viewer services that caused PrizmDoc Viewer to render 2-bit LZW-
compressed TIFF images incorrectly on Linux.
Addressed a vulnerability when rendering specific malformed TIFF, PNG, BMP and GEM images.

13.11 Documentation Updates
Updates to the Administrator Guide (Self-Hosted) section:

New overview content
New topics about deploying with Docker:

PrizmDoc Server with Docker
PAS with Docker
Minimal Backend Quick Start

Replaced the "Get an Evaluation License" section with the new Evaluating section which describes how
PrizmDoc Viewer Self-Hosted can be used for evaluation.

Release Notes v13.10
PrizmDoc Viewer v13.10 introduces the following:

New Features & Improvements
Product Updates & Fixes
Documentation Updates

13.10 New Features and Improvements

PrizmDoc Viewer v13.17 71

©2021 My Company. All Rights Reserved.

New viewing option! Accusoft has built an advanced spreadsheet viewer called PrizmDoc Cells to give
PrizmDoc Viewer users the ability to review Excel files exactly as they would appear in the native application.
You can analyze formulas, view charts and graphs, view multiple spreadsheets in a single workbook, search
for content, and navigate without pagination. For more detailed information on how to integrate PrizmDoc
Cells, click here.
Improved PrizmDoc Viewer performance when viewing specific CAD-like PDF documents. PrizmDoc
Server has been updated to produce more optimal SVG content for specific CAD-like PDF documents so
that browsers will not freeze while rendering the content. The improvements lead to much higher browser
responsiveness while zooming, panning, and annotation drawing operations in PrizmDoc Viewer. This
optimization also slightly improves the thickness level of the rendered lines making it more accurate on
display.
Updated client-side viewer to the latest version of jQuery. We have updated the client-side viewer and
samples to the latest official version of jQuery (v3.4.1), taking advantage of the most-recent updates and
bug fixes.

13.10 Product Updates and Fixes
Improved the download filename when a PAS viewing session displayName does not include a file
extension. PrizmDoc Viewer will now add an automatically generated extension to the name specified by
displayName if it does not include a file extension.
Removed potential for broken PAS viewing session when displayName does not include a file extension.
Addressed an issue in the Text Extraction service causing PrizmDoc Viewer text search to fail when viewing
PDF documents containing Type 3 fonts that specify default font metrics and attributes using a font
descriptor dictionary.
Updated PrizmDoc Viewer services to predictively generate fully optimized SVG content ("svgb") when
viewing files from the Chrome browser, instead of the partially-optimized SVG content ("svga"). This
improves responsiveness of the viewer in the Chrome browser and reduces disk space usage on the server.
Removed PrizmDoc Server RPM package dependency on urw-fonts containing incorrect configuration
which led to inappropriate font substitution for the 'fantasy' font family on CentOS 7.

13.10 Documentation Updates
The PrizmDoc Viewer End User Guide is now available in both PDF and Microsoft Word formats on our
website so that you can customize and redistribute it to your end users as needed.
Added the new Attachments topic to the PrizmDoc PAS API Reference documentation.
Added the new How to upgrade PrizmDoc Viewer topic to the Administrator Guide.
Added the following note to the Viewing Sessions > POST /PCCIS/V1/ViewingSession > Request Body > file
section: > NOTE: By default, "file" is not enabled as a valid documentSource. Enable "file" by adding
it to the viewing.sessionConstraints.documentSource.allowedValues array in Central
Configuration.
Updated the Viewing Sessions topic with a complete list of available URLs in the PrizmDoc PAS API
Reference documentation.
Updated the following topics by adding introductory content: Administrator Guide, API Reference, PrizmDoc
Server Configuration, PAS Configuration, and Security Guidance.
Updated the ViewerControl.deserializeMarks(values) method description with an Example section.

Release Notes v13.9
PrizmDoc Viewer v13.9 introduces the following:

New Features & Improvements
Product Updates & Fixes

PrizmDoc Viewer v13.17 72

©2021 My Company. All Rights Reserved.

https://api.accusoft.com/cells/docs/
https://www.accusoft.com/products/prizmdoc/documentation/

Documentation Updates

13.9 New Features and Improvements
The Viewer now gracefully falls back to non-optimized SVG when web fonts cannot be used.
PrizmDoc Viewer makes extensive use of dynamically-generated web fonts to optimize the SVG we send to
the browser for viewing. In some customer environments, the browser is forbidden from using web fonts. In
these environments, our viewer used to render a document with what looked like “garbled text.” In this
update, our viewer now automatically detects if font loading is possible and, if not, gracefully falls back to
non-optimized SVG which does not require any fonts.

Improved text selection boundaries of OCR conversion output. Previously, when using PrizmDoc
Server’s Content Conversion Service REST API to OCR a document and produce a text-searchable PDF, the
bounding boxes of detected characters in the output document were sometimes too short. If text-based
redactions were later applied to the output PDF document, the selected text may not have been entirely
removed. With this update, the Content Conversion Service REST API will now OCR a document and
produce bounding boxes of the correct height for detected characters, ensuring that subsequent text-based
redactions are properly applied.

Updated bundled version of Java, now using AdoptOpenJDK instead of Oracle Java. We have updated
the bundled version of Java included in our product from Oracle Java 1.8.0_181 to AdoptOpenJDK 1.8.0_212,
taking advantage of the most-recent security fixes in the JRE and moving to a Java runtime whose license
will continue to permit unrestricted redistribution. Starting with version 13.9, Oracle Java will no longer be
bundled with the product.

13.9 Product Updates and Fixes
Addressed an issue in the Markup Burner API where a required font from the PrizmDoc Viewer installation
(that is used by the text markup being burned) could not be found. This font initialization issue was specific
to a case where the text markup (with that font) was burning for the first time after the PrizmDoc services
initialization and resulted in the Markup Burner API failure.
Addressed a PrizmDoc limitation of the MSO rendering engine (when viewing or converting specific Excel
documents with a defined PrintArea), which produced an incorrect output with the default value of
fileTypes.excel.renderOnlyPrintArea central config parameter.
Addressed an issue within the Markup Burner API that was causing an unexpected grey background in the
output PDF after burning in a Rectangle Redaction. This could occur when a Filled Rectangle redaction was
applied over a PDF page that had a JPEG 2000 compressed image and the transparency area was set by the
image mask (i.e a mask entry in the image dictionary).
Addressed an issue in PrizmDoc Viewer which caused documents to display unreadable text when web fonts
were disabled in the browser or ad blocker settings. PrizmDoc Viewer will now switch to a fallback mode in
this case, which allows displaying of the document text correctly. Please note that fallback mode for
disabled web fonts will result in slower document rendering and scrolling, so we highly recommend to keep
the web fonts enabled in the browser.
Addressed an issue in the PrizmDoc Content Conversion Service (CCS) (when performing optical character
recognition (OCR) to convert a raster file to a searchable PDF document) that resulted in the height of the
recognized text within the PDF output to be smaller and not match its image counterpart.
Addressed an issue in the PrizmDoc Content Conversion Service (CCS) (when performing optical character
recognition (OCR) to convert a GIF file with an unspecified resolution to a searchable PDF document) that
caused the resulting PDF document to have incorrect page rotation.
The "hosting options" dialog has been removed from the PrizmDoc Viewer client installer. The PrizmDoc
Viewer client installer now always uses a Self-Hosted hosting option. Please see Choosing a Backend
Hosting Option for more information about different options for hosting the backend.

PrizmDoc Viewer v13.17 73

©2021 My Company. All Rights Reserved.

13.9 Documentation Updates
Updated the topic to clarify How to Enable Content Encryption in the Viewer.
Updated the PAS Configuration topic with additional code examples under the Configuring Storage section.
Updated the topic Work with Viewing Packages to clarify the Raster Content and Watermark properties.
Updated all of the Linux and Windows installation and Licensing topics to include the following: > NOTE: If
you have an updated license, you must restart PAS and PrizmDoc Server in order to use the new license.
Updated the Adjust Caching Parameters and Implement Caching Strategies topics with new steps on how to
manually delete the cache and the following: > NOTE: If you set the cache to 1 day, the timer will start over if
someone accesses a file that is in the cache.
Updated the Getting Started topic with the following: > IMPORTANT: Scripts must be loaded in the specified
order as shown below.

Release Notes v13.8
PrizmDoc Viewer v13.8 introduces the following enhancements/improvements and product updates/fixes:

New Features
Product Improvements
Product Updates & Fixes
Beta Features
Documentation Updates

13.8 New Features
Support for Windows Server 2019.
New Plain Text Redactors API. The PrizmDoc Server REST API has long supported the ability to burn-in
redactions to a document, producing a redacted PDF via the markupBurners REST API. In this release, we're
introducing a plainTextRedactors REST API which allows you to similarly produce plain text output. In the
output plain text, a special <Text Redacted> placeholder is used to denote that one or more characters
of the original plain text has been redacted. Any document you've been redacting with the markupBurners
API can be similarly redacted to plain text with the new plainTextRedactors API.

13.8 Product Improvements
New and improved getting started guide. We’ve completely re-written our getting started guide, making
it easier than ever to understand how PrizmDoc Viewer works and how to integrate it into your web
application. Additionally, this new getting started guide explains how you can leverage PrizmDoc Cloud to
accelerate your evaluation, avoiding the need to install any of the backend server-side software when all you
want to do is evaluate the viewer.
New samples on GitHub. We’ve published great new introductory samples for node.js, ASP.NET, and Java /
Spring on GitHub. These samples are deliberately minimal, designed to give developers a clear, concise
example of how PrizmDoc Viewer actually integrates with a web application.
Client-side viewer resources now available on GitHub. The client-side viewer resources are now available
outside of the “Client Installer.” If you need to download the pre-built viewer assets (JavaScript, CSS, fonts,
etc.), or if you need to make deep customizations to the viewer UI and rebuild it yourself, you can now get
all of these resources on GitHub at https://github.com/Accusoft/prizmdoc-viewer.
Support for Japanese Reiwa era in OpenDocument file formats as well as in LibreOffice rendering
mode.

13.8 Product Updates and Fixes

PrizmDoc Viewer v13.17 74

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/
https://github.com/Accusoft/hello-prizmdoc-viewer-with-nodejs-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-html
https://github.com/Accusoft/prizmdoc-viewer

Addressed an issue where the expected cursor did not display when hovering over marks on pages scrolled
into view.
Addressed a low-performance issue with reading PDF documents having hexadecimal characters in their
dictionary objects.
Addressed an issue in the Markup Burner API where redacting a rotated raster image would apply the
redaction mark over the image as expected but did not remove the image from the burned PDF output of
the redacted document.
Addressed an issue in the Markup Burner API with the following criteria: if you were redacting a raster image
on a PDF page that had been rotated and cropped for display, the redaction would apply over the raster
image as expected; however, when the output was saved to PDF, the redacted part of the image was not
removed.
Addressed an issue where JSON markup generated by PrizmDoc Server Redaction Creator API could not be
loaded into the viewer.

13.8 Beta Features
Added support for controlling the default minimum time for the created viewing package content to remain
available via a new property defaults.viewingPackageLifetime in PAS Configuration. This is a beta
feature that is not officially supported by Accusoft and its behavior can be changed at any time in a future
version of the product.
Added Microsoft Azure Blob Storage support for documents, image stamps, markups, form definitions and
viewing packages in PAS Configuration. This is a beta feature that is not officially supported by Accusoft and
its behavior can be changed at any time in a future version of the product.

13.8 Documentation Updates
PrizmDoc Cloud non-default system configuration values are now documented. The PrizmDoc Server
Central Configuration documentation and the PAS Configuration documentation now note whenever
Accusoft's PrizmDoc Cloud is using a value which differs from the out-of-box product default and what the
custom value is.
Removed legacy configuration information from the documentation. All legacy configuration topics
that were deprecated in v13.7 have been removed in this release: Format Detection Configuration & Use,
Adjust Vector Conversion Settings for Optimal Performance, and Customize Text File Encoding for PrizmDoc
Server.

Release Notes v13.7
PrizmDoc Viewer v13.7 introduces the following enhancements/improvements and product updates/fixes:

New Features
Product Improvements
Product Updates & Fixes
Beta Features
Documentation Updates

13.7 New Features
Support for Ubuntu 18.04 LTS.
JSON support in the PrizmDoc Server Redaction Creator API. Previously, the Redaction Creator API only
created the PrizmDoc legacy XML format for text matching a Regular Expression. This was inconsistent since
JSON markup layer is used in all other areas of PrizmDoc. For more information on how to use JSON
redaction markup created by the new functionality, review the following topics: Use the Markup JSON

PrizmDoc Viewer v13.17 75

©2021 My Company. All Rights Reserved.

Schema and Markup JSON Specification.

13.7 Product Improvements
Improved stability of PrizmDoc Server running on Linux by updating Mono run-time components to
address possible unresponsiveness of PCC Imaging Services when loading configuration settings on start
up.
Improved MSO conversion service's resistance to faulty conversion transactions by properly detecting
and recycling its child processes without having to become unhealthy and restart the service.
Improved the consistency of the burn-in operation performed over the text redaction markup for
every character regardless of its glyph outline. Now, a character becomes redacted if the redaction area
overlaps the character's glyph area (calculated by width * height) by 40% or more.
Improved the cursor behavior in the viewer to better indicate the effect of using the mouse. In
supported browsers, the grab cursor is now displayed when the hand pan tool is selected. The cursor no
longer changes when hovering over a mark if the selected mouse tool does not support mark selection. If
the selected mouse tool does support mark selection, the move cursor is displayed over a mark only if the
mark is selectable.

13.7 Product Updates and Fixes
Support for Windows Server 2008 R2 was deprecated with PrizmDoc Viewer v13.7 and will soon be
completely removed. Future releases will no longer support Windows Server 2008 R2.
Addressed an issue where the installed samples are not able to build when following the provided README
steps due to a missing folder and misplaced assets.
Addressed the Markup Burner issue with text annotations containing tabulation characters that were
incorrectly converted to white square characters in the output PDF upon burn in. We are now replacing
tabulations with spaces for more accurate fidelity in the output PDF.
Addressed a PrizmDoc limitation of the MSO rendering engine causing the conversion process to fail on any
PowerPoint document once the MS PowerPoint instance becomes unresponsive.
Addressed issues where PrizmDoc's file downloading APIs failed to download files which had non-ASCII
characters in file names, or corrupted filenames during the downloading. These APIs now use an RFC 8187
compliant Content-Disposition header in their responses to correctly support such file names. The only
exception is GET /PCCIS/V1/WorkFile/{fileId}, which continues to use the simpler ASCII-only syntax when
using an automatically generated file name. This was done to preserve backward compatibility for
customers who use PrizmDoc Client package v13.6 or older.
Addressed incorrect recycling of MSO conversion service's child processes upon the service's startup, which
could result in a faulty conversion transaction making the entire MSO conversion service permanently
unhealthy.
Addressed incorrect location of text redaction markups over bulleted text in PDF output to match what
appears in the viewer.
Addressed an issue within the Markup Burner API that resulted in a duplicate Redaction Rectangle mark in
the output PDF. This would occur when applying a Filled Rectangle redaction over a PDF with the
transparency area defined by the image mask (a mask entry in the image dictionary).
Addressed PAS host header translation issue which made it impossible to route requests from PAS to
PrizmDoc when there is a load balancer in between them. Now, PAS sets the outgoing request host header
to PrizmDoc host value.
Corrected an issue in the Viewer UI that allowed the user to select the "Exact Phrase" option which is not a
viable option for Wildcard search. The Exact Phrase option is now disabled in Wildcard search.
Updated the Search Tasks API to accept a JSON body of up to 1MB in size. Previously, this value was set to
100KB which could have resulted in "Invalid JSON" errors for valid JSON bodies that were greater than this
value.
Addressed the Markup Burner API issue occurring when attempting to redact text in the text block
immediately following a previously redacted block in the source PDF document.

PrizmDoc Viewer v13.17 76

©2021 My Company. All Rights Reserved.

Addressed an issue where in some cases the last page of a document was blank when printed.

13.7 Beta Feature for Evaluation
Content Conversion Service (CCS) now provides the ability to convert PDF documents to MS Word
(DOCX) documents. This functionality requires the Microsoft Office rendering mode to be enabled by the
MSO feature in your license key. This is a beta feature that is not officially supported by Accusoft and its
behavior can be changed at any time in a future version of the product, but we are happy to collect and
review any feedback you can provide about this feature. The API to convert to MS Word (DOCX) documents
should be used for evaluation purposes only and should not be used in production deployments. Note that
this API may undergo change prior to feature completion. Please refer to the API guide for the details on
how to evaluate this feature.

13.7 Documentation Updates
Legacy PrizmDoc Server configuration documentation has been removed. This legacy documentation
information had been marked as deprecated for many releases. We strongly recommend that you use
Central Configuration. If you need to access legacy configuration documentation, please refer to an archived
version of the documentation.

Release Notes v13.6
PrizmDoc Viewer v13.6 introduces the following enhancements/improvements and product updates/fixes:

New Features
Product Improvements
Product Updates & Fixes

13.6 New Features
JSON support in the PrizmDoc PAS MarkupBurner API and PrizmDoc Server MarkupBurner API.
Previously, the MarkupBurner API only accepted the PrizmDoc legacy XML format for annotations and
redactions. This was not very convenient and sometimes confusing since we use JSON markup layer in all
other areas of PrizmDoc. For more information on the new functionality, review the following topics: Use the
Markup JSON Schema and Markup JSON Specification.

13.6 Product Improvements
Smoother page scrolling, faster page loading in the viewer. When a user is scrolling through a
document, sometimes pages will delay loading causing the user to wait for the next/previous page to load.
With this update, the document scrolling is smooth and next/previous pages load immediately providing a
more responsive user experience.
Faster conversion with Microsoft Office. We've rewritten the task scheduler inside the Microsoft Office
Conversion Service (MSOCS) to improve performance. The Office Conversion Service uses MSOCS to
process its requests when the MSO option has been licensed, using multiple workers that execute in parallel.
There are now a larger number of workers in both services, keeping more documents resident in memory
simultaneously, while continuing to have the same amount of execution concurrency (so as to not
overwhelm the server). This means that document reloading by the workers happens less frequently, gaining
performance overall.
Improved PDF fidelity. Improved PDF rendering service to address multiple PDF rendering fidelity issues
including, but not limited to: more accurate color rendering, raster images rendering, text rendering

PrizmDoc Viewer v13.17 77

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc/documentation

(including math symbols), rendering of linearized PDF documents, as well as rendering of write protected
PDF documents.

13.6 Product Updates and Fixes
Addressed an issue where the Document Compare API detected an inaccurate number of differences in
documents containing tracked changes that were unaccepted.
Addressed a PrizmDoc limitation of the MSO rendering engine causing the conversion process to fail when
converting an empty Excel document.
Modified PrizmDoc logging so that the header and footer data is not recorded in the log files when
appending a specified header or footer to a document's pages with the use of PrizmDoc CCS API for
enhanced security and user privacy.
Modified PrizmDoc PAS logging so that email attachment names are not recorded in the log files (when
rendering email documents with attachments) for enhanced security and user privacy.
Addressed PrizmDoc PAS issue that caused the viewingPackageCreator process to hang when uploading the
output page artifacts to S3 storage (when the size of the artifacts exceeds 20 MB).
Support for Ubuntu 14.04 LTS has been deprecated with PrizmDoc Viewer v13.6 and will soon be completely
removed. Future releases will no longer support Ubuntu 14.04 LTS.
Addressed an XSS vulnerability when displaying the context menu for Text Hyperlink Annotations in the
Viewer. Prior to the fix, a malicious script could be injected into the URL value for a Text Hyperlink
Annotation and executed when the context menu for the annotation was displayed. The fix ensures that the
URL value is properly escaped during construction of the HTML to display the context menu for the Text
Hyperlink Annotation in the Viewer.

Release Notes v13.5
PrizmDoc Viewer v13.5 introduces the following enhancements/improvements and product updates/fixes:

New Product Name
Enhancements & Improvements
Product Updates & Fixes
Documentation Updates

New Product Name
Product name changed from PrizmDoc to PrizmDoc Viewer. To accommodate our growing number of
products, we have changed the name of this product to PrizmDoc Viewer. And we are excited to announce
that PrizmDoc is now a suite of products which includes PrizmDoc Viewer and the all-new PrizmDoc Editor!

13.5 Enhancements and Improvements
Improved visual rendering of 1-bit raster documents by adding upscale image dimensions preventing
quality degradation for files with asymmetric resolutions.
Smaller PrizmDoc Server log files. We have updated PrizmDoc Server logging to eliminate redundant
information from console logs, decreasing their size.
Support for Unicode filenames in email attachments. We have improved support for detecting and
listing email attachments with names using RFC 8187 encoding in EML documents to provide broader
support of email attachment types.
Added rendering support for UTF-7-encoded email. Added rendering for UTF-7-encoded email
document content that includes email message body, headers, and attachment names to support a broader
range of UTF encoding types.
PAS now accepts a full database connection string, allowing Microsoft SQL Server customers the ability

PrizmDoc Viewer v13.17 78

©2021 My Company. All Rights Reserved.

https://owasp.org/www-community/attacks/xss/
https://www.accusoft.com/products/prizmdoc-editor/overview/

to enable database-specific features like connection encryption.
Security improvements:

Addressed XXE vulnerability in PrizmDoc Server.
Upgraded PrizmDoc Server to the latest version of Java 8 to take advantage of security fixes within
the JRE.

13.5 Product Updates and Fixes
Addressed the issue with all conversions from raster to searchable PDF that failed at the same time (when
reaching a certain number of concurrent conversions).
Addressed incorrect rendering of Pantone colors on Windows when viewing PDF documents.
Updated PrizmDoc Viewer installation instructions to ensure accuracy (see details below under
Documentation Updates section).
Addressed an issue where PrizmDoc Viewer was unable to load OpenXML Word documents (containing
invalid external file references) when running in LibreOffice rendering mode.
Resolved an issue where burning a document using XML annotations for hyperlinks and setting the fillColor
value to 0, for black, would instead render the hyperlink in a default blue color.
Addressed PrizmDoc Viewer email processing service, PDF processing service and MS Office converter
logging to rotate the corresponding log files according to the logging.daysToKeep setting in the Central
Config file.
Addressed an issue to prevent freehand annotations with a width and height of 0 from being created.
Previously, a user could create an empty annotation that would cause errors when the document is
downloaded and opened in Adobe Viewer.
Updated ViewerControl API double-click handling to use the dblclick event (instead of the mouseup event
and a timer) to fix issues with double-click handling in IE v11.

13.5 Documentation Updates

The "What's New?" section is now called Release Notes

The "What's New" section has been renamed and updated to include sections for Product Updates/Fixes,
Enhancements, and Known Issues (formerly located in the Release Notes on the website).

New Topics

What's New? > Known Issues

Updated Topics

Troubleshooting > PrizmDic Server Health Issues
PrizmDoc Overview > Legal > Third-Party Attributions
Fixed misspelling in topic: API Reference > PrizmDoc E-Signature Viewer API > Module: event-store.
Removed extra characters that were not needed in topic: API Reference > PrizmDoc E-Signature Viewer API
> Module: template-name-header.
Fixed incorrect formatting in topic: API Reference > Viewer API > PCCViewer.Mark.

Release Notes v13.4
PrizmDoc Viewer v13.4 introduces the following enhancements/improvements and product updates/fixes:

Enhancements & Improvements
Product Updates & Fixes

PrizmDoc Viewer v13.17 79

©2021 My Company. All Rights Reserved.

13.4 Enhancements and Improvements
Improved stability under load. Conversion performance has been enhanced to avoid system degradation
in high-volume periods.
Lower CPU usage when converting large Microsoft Excel documents.
Faster conversion of Microsoft Office documents. We've optimized the system to more efficiently
convert multiple Office documents, even in periods of heavy usage.

13.4 Product Updates and Fixes
Addressed an issue where vector content was not completely removed when a document was redacted and
downloaded as a PDF.
Addressed a PDF redaction issue that was causing the grid lines (representing tables in the PDF document)
to disappear.
Addressed potential XSS vulnerability concerns with the Viewer.
Addressed potential XSS vulnerability concerns with the PDF Processing Service.
Addressed a PDF redaction issue that was causing parts of a document to disappear.
Fixed an issue where images within a document were having redactions applied to them when they should
not been applied. This occurred when burning redactions into documents on machines using LibreOffice
and when the redaction overlaid any portion of a referenced image (on a page within the document) in
which the image was not displayed.
Addressed an Office document conversion issue (running in the LibreOffice rendering mode) to disallow non
HTTP and HTTPS protocols when rendering content of WEBSERVICE formula in Excel and OpenDocument
Spreadsheet documents.
Addressed a rendering fidelity issue with semi-transparent PDF elements that were previously rendered
opaque.
Addressed a rendering fidelity issue with PDF highlighter annotations that were previously rendered
opaque.
Updated Office Conversion Service to fix a bug related to document affinity that would sometimes prevent a
worker from switching to a new document at the correct time. This would result in new tasks waiting until all
work on a particular document was completed.
Addressed a problem with internal links that were not clickable in a recurring Word document footer when
rendered using LibreOffice mode.
Addressed a PDF redaction issue that caused parts of a document to disappear.
Significantly improved loading time for certain PDF documents created by a third-party recognition server
previously resulting in a page load timeout.
Addressed a rendering fidelity issue with MSG files (with an RTF body) causing an extra line of text to show
up in the message body.
Addressed an issue with missing libjpeg dependency in PrizmDoc Viewer RPM package when installing on
the CentOS 7 platform.
Resolved an issue in handling miter operators used within PDFs that could cause some redactions to fail to
burn into the document.
Addressed an issue with the rendering of email files that contain Rich Text body (with embedded content)
stored in raw binary format.

Release Notes v13.3
PrizmDoc Viewer v13.3 introduces the following new features and product updates/fixes:

New Features
Product Updates & Fixes

PrizmDoc Viewer v13.17 80

©2021 My Company. All Rights Reserved.

13.3 New Features

Improved Rendering of Microsoft Excel Documents

New Excel rendering and pagination options. PrizmDoc Viewer can now paginate and render Microsoft
Excel documents while preserving the original page dimensions and margins specified in the document
(matching the Page Layout rendering mode of Microsoft Excel). This is a non-default rendering option,
which needs to be explicitly turned on. For more information, refer to the Central Configuration topic.

Improved Customization and Integration

Easier initialization of the viewer. We've updated the Viewer's gulp build to produce a new
viewerCustomizations.js that contains the required customization objects to instantiate the viewer
control. This allows you to build the customizations once and then easily integrate them into your web app,
regardless of the server-side language you're using. Previously, our Viewer samples dynamically built these
objects at runtime in the particular server-side language of the sample. This approach made it hard to
integrate this code into your own web application (especially if you used a language not covered by our
samples).

Improved Office Conversion Service Task Scheduler Performance for LibreOffice Users

Faster conversion of Office documents. We've rewritten the task scheduler inside the Office Conversion
Service (OCS) to improve performance. OCS processes its requests with multiple workers that execute in
parallel. There are now a larger number of workers, keeping more documents resident in memory
simultaneously, while continuing to have the same amount of execution concurrency (so as to not
overwhelm the server). This means that document reloading by the workers happens less frequently, gaining
performance overall.

13.3 Product Updates and Fixes
Improved redaction area text wrapping. Previously, text that did not fit within the redaction area
overflowed beneath the redaction upon downloading (burning). Now, when downloading a document,
PrizmDoc Viewer will wrap the text, breaking the line on the space characters in the text and attempting to
center the text both vertically and horizontally within the redaction area. When there is a single line of text
without spaces, it will truncate the characters of the line of text that do not fit. All of these alterations are
designed to mirror the behavior of the redaction reason text seen in the Viewer when viewing, previewing,
or printing.
Added instructions to the online help for how to customize Excel document view settings to match
rendering in PrizmDoc Cloud.
Implemented rendering for inline attachments embedded in the binary HTML body of MSG email files.
Addressed incorrect rendering of email body content and attachments stored as an encapsulated message
with the syntax of "RFC 822 message".
Updated the MongoDB service, used internally for text searching, to respect the Central Configuration
cache.directory property. The old cache location can be safely deleted to free disk space if desired:

The Windows directory is: C:\Prizm\services\mongo-manager-
service\bin\mongodb\data
The Linux directory is: /usr/share/prizm/services/mongo-manager-
service/bin/mongodb/data

Improved the cache cleanup algorithm to be more predictable.
Modified the MongoDB installation that we use internally to no longer use the default password.
Addressed incorrect page count calculation specific to the rendering of Excel files (with the disabled "Show
Page Breaks" display option) using MSO rendering mode.
Increased concurrency of Office Conversion Service when processing tasks with LibreOffice on Linux

PrizmDoc Viewer v13.17 81

©2021 My Company. All Rights Reserved.

platforms. Response times now degrade more gradually after the service load reaches full capacity.

Release Notes v13.2
PrizmDoc Viewer v13.2 introduces the following new features and product updates/fixes:

New Features
Product Updates & Fixes

13.2 New Features

Security Features

PrizmDoc Server now supports TLS 1.1 and TLS 1.2 for outgoing HTTPS requests.
Option to disable rendering of externally-referenced HTML content. We've added a server-side
configuration option called, security.htmlRendering.blockExternalContent, to control whether or not
externally-referenced HTML content, such as images and iframes, will be blocked. This option affects any
source document file type which uses HTML, including HTML, EML, and MSG.

Full Redaction of Vector Images

Support for full redaction of vector images by removing the vector content completely from the output
document.

Online Help

The PrizmDoc Cloud License & AWS topic has been updated to better explain this licensing option.

13.2 Product Updates and Fixes

Fidelity

Improved rendering of email. Corrected fidelity issues when rendering plain text EML files with non UTF-8
encoded message body.
Improved rendering of Microsoft Word documents using merge fields. Corrected a fidelity issue when
rendering Microsoft Word documents with merge fields used for dynamic document creation. Merge field
placeholders would be rendered instead of the actual field data.
Improved rendering of Microsoft Word Table of Contents. Addressed a fidelity issue where incorrect
rendering of Table of Contents for specific Microsoft Word files with table of contents titles that do not have
heading styles applied.
Improved rendering of Microsoft Word figure numbers. Corrected a fidelity issue when rendering
Microsoft Word documents with figure numbers containing automatic sequence number fields.
Improved rendering of Microsoft Word documents with chart links to external files. Corrected a
rendering issue where Microsoft Word documents that contain charts with links to external files would not
render for viewing or convert to JPEG.

Performance

Faster merging of PDF documents. Improved the performance of merging PDF documents (which now
take 4-5 seconds instead of taking up to 10 minutes previously).
Faster rendering of Microsoft Word documents under load. Improved the performance of rendering and
viewing Microsoft Word documents with fields by 12% over PrizmDoc Viewer v13.1 for high volume runs.
Faster restart time. Improved PDF Conversion Service restart logic for faster recycle and restoration of its

PrizmDoc Viewer v13.17 82

©2021 My Company. All Rights Reserved.

dependency processes which previously could take as long as 5 minutes.

Security

Corrected a security issue where PrizmDoc Viewer would capture information that could be sensitive when
processing emails and record that information in the PrizmDoc Viewer service log files.
Addressed a service recovery issue when converting an Excel document with a very high number of rows
fails to render (millions of rows).
Corrected a conversion issue where certain Microsoft Word and PowerPoint documents that were converted
to PDF using PrizmDoc Viewer would generate a PDF that had issues with text (so that selecting, copying
and pasting into another document would produce partial text of the original document).

Release Notes v13.1
PrizmDoc Viewer v13.1 introduces the following new features and product updates/fixes:

New Features
Product Updates & Fixes

13.1 New Features

Document Compare

Support for Document Comparison feature for Linux platforms. It is important to note that the Microsoft Word
document comparison feature uses the Microsoft Office Conversion (MSO) add-on option for PrizmDoc Server
running on Windows and therefore requires the PrizmDoc Server running on Linux to be configured to connect to
PrizmDoc Server running on Windows.

Content Conversion Service

OCR option to produce text-searchable PDF. Content Conversion Service (CCS) now provides the ability to
perform optical character recognition (OCR) to convert a raster file or a scanned PDF file to a searchable PDF
document. The resulting PDF document will contain the original image and the recognized text in a separate
invisible layer, with each text character position matching its image counterpart. This will allow you to search, select
and copy the text in the resulting PDF document.

The Content Conversion Service's feature that performs OCR (to convert a raster file to a searchable PDF
document) does not support CentOS 6 and Red Hat Enterprise Linux 6 platforms.

Rendering Updates

Email contents now rendered with time zone information. We've updated the rendering of email to support the
Date and Time header fields of MSG and EML files with the corresponding time zone. When an end user views
emails in the Viewer, they will be able to see what time zone the date and time correspond to.

Performance Improvements

Faster first page load times in the viewer. First page of content in the Viewer loads faster now, especially
for large Microsoft Office documents.
Faster page loading when scrolling. Page content loads more quickly when scrolling through a document
in the Viewer.
Faster retrieval of document text. Eliminated the occasional slowness in getting document text.

Viewer Touch Experience Improvements

PrizmDoc Viewer v13.17 83

©2021 My Company. All Rights Reserved.

Improved touch support. The Viewer touch experience (for phones, tablets, and other touch devices) has
been improved with product updates and behavioral improvements.

PrizmDoc Application Services (PAS)

S3 support. PAS now supports Amazon S3 for storage of all of its artifacts, including viewing packages and
annotation layers.

Documentation Updates

With PrizmDoc Viewer v13.1, the PrizmDoc Cloud documentation has been added to the PrizmDoc Viewer help file.
You can see the new updates here:

Cloud Authentication

13.1 Product Updates and Fixes

Viewer

Improved memory usage. Memory usage in the Viewer has been improved in situations where the same
web page is used to view multiple documents without recycling the Viewer.

PAS

Stability improvements. The stability of viewing package creation has been improved due to architectural
changes.

PrizmDoc Server

Addressed incorrect rendering of Chinese/Taiwanese date format fields within Excel documents when
running through LibreOffice rendering mode.
Addressed problem with opening specific Outlook Email attachments with explicitly specified "filename"
fields as .msg.
Addressed problem with opening specific MSG files (with raw HTML body) in the Viewer.

Release Notes v13.0
PrizmDoc Viewer v13.0 introduces the following new features and product updates/fixes:

New Features
Product Updates & Fixes

13.0 New Features

Document Comparison Overview

Comparison rendering of two Microsoft Word documents. We now provide the ability to compare Microsoft
Word documents. You can now create a viewing session using two different Microsoft Word documents as input
and see a single comparison view of the two documents in the viewer. This comparison view will note whenever
text has been added, changed, or removed, when formatting as changed, etc., just as Microsoft Word does with its
"Track Changes" feature. For more information on how to use the new Document Compare functionality, refer to
the following topics:

Overview of Document Compare

PrizmDoc Viewer v13.17 84

©2021 My Company. All Rights Reserved.

Work with Document Comparison Programmatically
Perform Document Comparison

Image Tools

Image tools in the viewer. We've added new image tools to the viewer, allowing you to adjust things like contrast
or line darkness right in the browser.

Support for New Operating Systems

Support for Ubuntu 16.04 LTS.
Support for Windows Server 2016.

Native SVG Icons

Native SVG icon support. The Viewer has been upgraded to support native SVG icons. This will simplify replacing
default icons with your own versions.

Online Help

The Deployment Licensing section has been updated and clarified to help you understand all of your
licensing options. A new topic covers the purpose of the Prizm Licensing Utility.

13.0 Product Updates and Fixes

PrizmDoc Server

Addressed incorrect page count and rendering content issues with MS Word documents (with track changes
turned on when using the MSO rendering engine).
Resolved incorrect rendering of AAA/AAAA Excel date/time formatting when using the LibreOffice rendering
engine.

Known Issues
The following items are either currently under investigation by the Accusoft Engineering organization or provide
further information regarding PrizmDoc Viewer. Should you require an updated status on any of these items,
please contact Accusoft Customer Support.

Installation & Upgrade Issues
Browser-Specific Issues
PDF Issues
CAD Issues
Office Issues
E-Signature Issues
Annotation & Redaction Issues
Miscellaneous Viewer Issues
Content Conversion Service Issues
Miscellaneous Server Issues

Installation and Upgrade Issues
Currently, the path PrizmDoc Viewer is installed to on Windows cannot exceed 64 characters total. Longer
paths are rejected by the installer.
When installing PrizmDoc Viewer on Windows, the account used to start the PrizmDoc service requires a

PrizmDoc Viewer v13.17 85

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/support/

password to be defined. Without a password, the Installer will not be able to proceed.
The ext3 file system limits the number of subdirectories within a single directory to 31,998. Because
PrizmDoc Viewer creates a directory for each viewing session and/or work file, systems with high traffic
combined with longer cache expiration periods may encounter request errors with ERROR_GEN_FAILURE.
The ext3 file system is the default for ephemeral drives in AWS as well as many current Linux distributions.
Consequently, the possibility of encountering this error exists for these systems unless ext4 was specifically
chosen at installation. To enable directories containing greater than the 32K subdirectory limit, ext4 turns on
HTree indexes (a specialized version of a B-tree) by default. For systems with extraordinarily high traffic
coupled with extended cache expiration times, it is recommended the product be installed on Linux systems
with ext4 file systems or at least to configure caching to utilize an ext4 file system.
If you are using Viewing Packages in PAS and upgrading from a version prior to 13.1, you must upgrade
your database schema. See the setting up your database topic for more information on how to upgrade
PAS.
PrizmDoc Viewer relies on a fontconfig package that is not shipped with the product and that might be
missing from some distributions of Ubuntu. This was resolved by adding automated checks in the PrizmDoc
Viewer 13.0 installation scripts. As a workaround for older versions of PrizmDoc Viewer, we recommend
installing the fontconfig package manually by using sudo apt-get install fontconfig.
You must have Microsoft Office installed on the server when using the Microsoft Office Conversion license.
If you do not have Microsoft Office installed, you will get an error when converting Office documents or
displaying them in the Viewer.
Always keep your PrizmDoc Viewer Windows server updated with the latest Windows and MS Office
updates when using the MSO rendering option. If you don't have the latest updates, you may see rendering
issues.

Browser-Specific Issues
The Safari browser may truncate long file names (containing 96 or more ASCII characters or 27 or more non-
ASCII characters) when downloading source files from PrizmDoc viewer. This issue only exists when
connecting to PrizmDoc Viewer via http/1.1 protocol (with or without https). Setting up an http/2 proxy in
front of the PrizmDoc Viewer avoids the issue. See also the Safari bug report 47914517.
If you print large documents (100+ pages) from the Viewer, you may run into browser memory constraints
that are beyond our control. We recommend downloading large documents as a PDF and then printing
them.
When printing a document in Firefox or Safari, embedded images may be truncated or missing in some
cases.
When printing a document in Chrome, images may be printed with a black background when the
background should be transparent.
When printing documents with the Viewer in the Safari browser on Windows, blank pages are sometimes
created, causing extra pages in the document.

PDF Issues
Border of graphic elements may not render for specific PDF documents.
Starting from 13.6 release some PDF documents may render slightly shifted compared to previous versions
of PrizmDoc.
Raster images using CMYK colorspace in PDF documents may be rendered with a slightly different color.
Currently, burning markup into PDF documents that contain XFA fields is unsupported. Attempting to burn
markup into XFA documents will result in an error.
Burning markup into PDF documents that contain AcroForm fields is unsupported. Attempting to burn
AcroForm fields in PDF documents will leave those field values unchanged.
PDF files with embedded raster images in the Indexed color space using CMYK palette might not display
with the correct colors in the Viewing Client after conversion to SVG.
Search results returned in the Viewing Client for PDF documents may not be highlighted in cases where the

PrizmDoc Viewer v13.17 86

©2021 My Company. All Rights Reserved.

https://feedbackassistant.apple.com/feedback/5523194

PDF contains image over text results. In this case, content will be returned in the Search results tab, but the
highlighted search terms will not be displayed in the page view when navigating to the appropriate page. In
this case, a message will be displayed indicating that the page does not support text highlighting. This will
be improved in future versions.
PrizmDoc Viewer does not currently perform text-extraction and search on PDF annotation markup within
PDF documents. This annotation markup includes Text and FreeText annotation types as specified in the
PDF reference guide.
PrizmDoc Viewer does not support rendering of Dynamic XFA (XML Forms Architecture) PDF forms. Instead
of the actual forms content, a message such as "Please wait... If this message is not eventually replaced by
the proper contents of the document, your PDF viewer may not be able to display this type of document."
will be displayed.
If the PDFPS microservice exceeds the open file descriptor limit, then PrizmDoc Viewer will restart the PDFPS
microservice.
CMYK JPEG files may display as negative (or inverted) color images when converted to PDF or raster
formats.
Deep Image Redaction may not work as expected when the source PDF contains G32D encoded TIFF
images. PDF redactions will be created but any content on the G32D encoded content intended for
redaction will not be obscured by black pixel data.
When converting HTML to PDF using the Content Conversion Service, you may see poor performance on
larger documents when pdfOptions.forceOneFilePerPage is set to true. We recommend that
pdfOptions.forceOneFilePerPage be set to false when converting more than 20 pages.

CAD Issues
Embedded OLE objects in CAD files are not currently supported for rendering.
Watermarking is not supported for CAD files.
The MarkupBurner, responsible for the underlying process of annotation, redaction and e-signature, does
not currently support CAD based files.

Office Issues
Excel files may take more time to process when using PrizmDoc Server with Microsoft Office version 2019.
Increased processing time depends on the source document content, and may take up to three times longer
compared to Excel conversion performed by Microsoft Office version 2016.
The Document Compare feature is designed for comparing different revisions originating from the same MS
Word document. Using this feature for comparing any random MS Word documents is not recommended
and may lead to unexpected results.
Internal hyperlinks (like TOC bookmarks) within Office documents are not clickable when rendered or
converted to PDF with the use of the Microsoft Office Conversion option.
The following TTC font packages on Ubuntu might conflict with Tunga and Latha font substitution
implemented in PrizmDoc Viewer Office Converter causing inaccurate rendering. You may need to uninstall
those packages for better font substitution fidelity:

fonts-gubbi
ttf-indic-fonts-core
ttf-bengali-fonts
ttf-devanagari-fonts
ttf-gujarati-fonts
ttf-kannada-fonts
ttf-malayalam-fonts
ttf-oriya-fonts
ttf-punjabi-fonts
ttf-tamil-fonts
ttf-telugu-fonts

PrizmDoc Viewer v13.17 87

©2021 My Company. All Rights Reserved.

Excel worksheets will now be rendered with grid lines, headers, footers, and hidden content visible by
default causing the existing annotation and redaction markup to be not aligned with the old rendering
content. Customers wanting to redact the new output would need to re-create annotation and redaction
markups. Customers wanting to go back to the old style rendering can do that by changing the Excel
rendering properties available in the central configuration file.
Excel pagination causes the Office converter to generate more pages. This puts more stress on the server
and may cause the conversion to timeout.
Certain VML shapes from Word documents might not render properly to the client viewers.

E-Signature Issues
With some browsers the E-Signature Viewing Client performance could be impacted when the number of
fields in the document is more than 1,300.
There are known issues with E-Signing when working on iOS devices that can cause the screen to move
erratically when moving from field to field. This does not keep the experience from being usable, but it can
be disconcerting while using.

Annotation and Redaction Issues
There are known limitations when trying to use Quick Actions to redact large search result sets that are over
hundreds of results.
Note that we have modified the default properties for several marks when creating them via the API. As long
as you are setting mark properties, such as color and line width, this should not affect your code.
There are limitations to using the Full-Page Redactions mouse tool on a mobile device.
The Email Conversion Service fidelity improvements will result in shifting the rendered content (due to inline
image rendering support for more accurate rendering of the HTML body) and making the existing
annotation and redaction markup not aligned with the old rendered content. Customers wanting to redact
the new output would need to re-create the annotation and redaction markups.
There are some special symbols, such as '@', that cannot be properly processed in auto-redaction.
Burned annotations are shifted on PDF files with a non-standard PDF page Cropbox or Mediabox boxes.

Miscellaneous Viewer Issues
When requesting raster page content, a '500' error may appear in the network log. As part of performance
improvements, the Viewer now always requests SVG content first. If SVG content is not available, a '500'
error will be communicated and the client will then request raster content. Although this does not negatively
affect the Viewer behavior, this will be changed in a future release to handle the request differently.
It is recommended that the document cache be cleared prior to upgrading PrizmDoc Viewer. Failure to clear
the cache will result in the inability to search documents in the Viewer that have been cached in prior
versions of PrizmDoc Viewer.
PrizmDoc Viewer does not currently provide full support for searching and extracting text which reads from
right-to-left (like Arabic and Hebrew), which may cause the search and text extraction results to display such
text in wrong left-to-right direction.
If you print large documents (100+ pages) from the Viewer, you may run into browser memory constraints
that are beyond our control. We recommend downloading large documents as a PDF and then printing
them.
Watermarks appear in bold and are not transparent.
You may see space between the image tiles (when rendering raster images that are broken into tiles, within
HTML tables) if those tables do not fit into one page.
HTML conversion on Windows depends on system DPI. Higher system DPI results in smaller HTML content
size when viewing HTML.
When printing from within the Viewer using a browser other than Google Chrome, you will have to manually

PrizmDoc Viewer v13.17 88

©2021 My Company. All Rights Reserved.

set the page orientation and page size in the system's Print Dialog, even when a particular orientation
and/or page size has been set within the Viewer.

Content Conversion Service Issues
The Content Conversion Service does not support conversion of DICOM files to a searchable PDF document
format.
The Content Conversion Service does not support conversion of transparent TIFF files to a searchable PDF
document format.
The Content Conversion Service's feature that performs optical character recognition (OCR) to convert a
raster file to a searchable PDF document does not support CentOS 6 and Red Hat Enterprise Linux 6
platforms.

Miscellaneous Server Issues
All Server-Side configurations should be identical across all the servers in a cluster because documents are
frequently sent to a random server for processing. This also applies for the multi-server Microsoft Office
Conversion configuration that now supports connectivity to PrizmDoc Servers running on Linux.
The POST /v2/searchContexts/{contextId}/completed URL should not have a body. Though the request may
still succeed if a body is used in the v12.2 release, it can begin to fail in the future. Using any body with this
request should be avoided.
The PrizmDoc Server "GET Page" call requesting a JPEG thumbnail for a certain page hosted on Windows
might return HTTP error 500.
Abandoned Viewing Sessions - The text extraction process will continue if a user abandons a session before
the text extraction process completes. This will be improved in a future release, but it is important to know
that a user abandoning a document does not necessarily release conversion resources on the server.

PrizmDoc Viewer v13.17 89

©2021 My Company. All Rights Reserved.

Getting Started
This section will help you get started with evaluating PrizmDoc Viewer:

Try It! - we'll walk you through the quickest way to try out PrizmDoc Viewer
Sample Applications - check out our "Hello Viewer" samples for Node.js, C#, and Java on Github

Try It!
We have a public Docker image which makes it easy to evaluate PrizmDoc Viewer on a single machine:
accusoft/prizmdoc-viewer-eval.

Running this image will:

1. Start a demo web application at http://localhost:8888 where you can easily explore the viewer and
its features using your own documents.

2. Start a complete PrizmDoc Viewer backend which you can begin using for local development of your
application.

NOTE: The accusoft/prizmdoc-viewer-eval Docker image is only suitable for evaluation and
local development. It is not suitable for a production deployment. You'll want to use the
accusoft/prizmdoc-application-services and accusoft/prizmdoc-server Docker
images instead. See the Admin Guide for more information.

Minimum Required Hardware Resources
Before running, you MUST make sure that you've configured Docker to use the following minimum hardware
resources:

CPUs: 2
Memory: 7.50 GB

If you try to run the image with fewer CPUs or less memory, it may not function correctly.

Starting
First, pull the latest version of the accusoft/prizmdoc-viewer-eval image:

docker pull accusoft/prizmdoc-viewer-eval:latest

Then, start a running container:

docker run --rm -p 8888:8888 -p 3000:3000 -p 18681:18681 -e ACCEPT_EULA=YES --
name prizmdoc-viewer-eval accusoft/prizmdoc-viewer-eval:latest

Optional: Providing a License Key

The example above starts PrizmDoc Viewer without a license key in evaluation mode with a fixed feature set. If you
would like to do a full-featured evaluation of the product, please contact info@accusoft.com for a license. If you

PrizmDoc Viewer v13.17 90

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-viewer-eval
https://hub.docker.com/r/accusoft/prizmdoc-viewer-eval
https://hub.docker.com/r/accusoft/prizmdoc-application-services
https://hub.docker.com/r/accusoft/prizmdoc-server
https://hub.docker.com/r/accusoft/prizmdoc-viewer-eval
mailto:info@accusoft.com

have a license, you can provide it by setting two extra environment variables, LICENSE_SOLUTION_NAME and
LICENSE_KEY:

docker run --rm -p 8888:8888 -p 3000:3000 -p 18681:18681 -e ACCEPT_EULA=YES -e
LICENSE_SOLUTION_NAME=YOUR_SOLUTION_NAME -e LICENSE_KEY=YOUR_LICENSE_KEY --name
prizmdoc-viewer-eval accusoft/prizmdoc-viewer-eval:latest

Just replace YOUR_SOLUTION_NAME and YOUR_LICENSE_KEY with the actual values.

Wait for the Start-Up Process to Complete

It will take a minute or two for the PrizmDoc Viewer backend to fully start. Eventually, you should see something
like this:

==
 PrizmDoc Server is running at:
 http://localhost:18681

 PAS (PrizmDoc Application Services) is running at:
 http://localhost:3000

 Demo application will be started at:
 http://localhost:8888
==

Starting the demo application...

> prizmdoc-viewer-eval-demo@1.0.0 start /demo
> NODE_ENV=production node main.js

Application running at http://localhost:8888

Once you see this, the container is fully up and running.

Using the Demo
After starting, you can view the demo app at http://localhost:8888 and start exploring the viewer and its
features with your own documents.

Stopping
To stop the running Docker container, just use Ctrl+C in the same terminal where the container is running.

Alternately, you can stop the container by name: docker stop prizmdoc-viewer-eval

Next Steps
Take a look at our Sample Applications.

Sample Applications

PrizmDoc Viewer v13.17 91

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

Our "Hello Viewer" Samples
The "Hello Viewer" samples are introductory samples designed to help you understand the fundamentals of
integrating PrizmDoc Viewer into a web application. When they run, they show a simple page with a single viewer
displaying an example document, making it easy to see all of the pieces working together:

These are extremely simple web applications which do nothing more than load a single document in the browser with
PrizmDoc Viewer, but they make it easy to see all of the pieces working together in real code.

Traditional HTML Samples

Node.js
.NET
Java

React Samples

Node.js + React

Angular Samples

.NET + Angular
Java + Angular

Next Steps
For a detailed walk-through of how to integrate the Viewer into an existing web application, move on to part 1 of this
three-part guide.

PrizmDoc Viewer v13.17 92

©2021 My Company. All Rights Reserved.

https://github.com/Accusoft/hello-prizmdoc-viewer-with-nodejs-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-html
https://github.com/Accusoft/hello-prizmdoc-viewer-with-nodejs-and-react
https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-angular
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-angular

Initial Integration

Introduction
This initial integration guide will walk you through what it takes to integrate a viewer into your web application. When
you are through, you should be able to render a viewer in any page of your web application and have it display actual
document content.

Let's get started!

Architecture Overview
Illustrating the Viewing Sequence
1. Integrating the Viewer
2. Choosing a Backend and Creating a Viewing Session
3. Setting Up the Reverse Proxy

Architecture Overview

Introduction
There are two main sides of the PrizmDoc Viewer architecture:

1. The HTML viewer itself, running in the browser
2. A powerful backend which converts document pages to SVG for viewing in the browser

Sitting between these two pieces is your web server, acting as a reverse proxy for the viewer to ask the backend for the
pages it needs to display:

To integrate PrizmDoc Viewer into your web application, you’ll need all three of these pieces:

1. the HTML viewer itself (a collection of static JavaScript, CSS, font, and image files)

PrizmDoc Viewer v13.17 93

©2021 My Company. All Rights Reserved.

2. a PrizmDoc Viewer backend
3. a reverse proxy that allows the viewer to request content from the backend

We’ll walk you through setting all of this up in the rest of this guide. But first, it helps to have a more detailed
understanding of how the pieces work together.

For Viewing, Call PAS
The backend is made up of two tiers, PAS (PrizmDoc Application Services) and PrizmDoc Server:

PAS and PrizmDoc Server are independent. Each runs on its own host or port, and each has its own REST API.

PrizmDoc Server (on the far right) is the technical heart of the product, the actual engine that converts pages of a
document to SVG. It is compute intensive and has no permanent storage.

PAS does not do any conversion work. Instead, it is a layer in front of PrizmDoc Server which is responsible for
other viewing concerns, such as saving and loading of annotations or long-term caching of pre-converted content.
Like your web application, PAS has privileged access to storage that you own (like a file system or database).

For viewing, your web application should only make REST API calls to PAS. PAS will then make calls to PrizmDoc
Server on your behalf to ensure the conversion work is done. The only time your application should call PrizmDoc Server
directly is when you need to perform non-viewing work, such as converting a file or burning annotations into a document.

Next Steps
Next, let's take a closer look at how these pieces actually work together when your web application needs to display a
document to your user.

Illustrating the Viewing Sequence

Overview
When your web application needs to render an HTML page containing a viewer, there is a sort of “dance” that occurs
between the browser and the backend, with your web application sitting in the middle between the two. Here is how it
typically goes:

First, your web application POSTs to PAS to create a new viewing session:

PrizmDoc Viewer v13.17 94

©2021 My Company. All Rights Reserved.

PAS responds to your web application with a new viewingSessionId:

Now, at this point, the document conversion hasn’t even started yet. However, you have enough information that your
web application can go ahead and render the page HTML with the viewer, configuring it to use the viewingSessionId
that was returned:

This allows the browser to start rendering the viewer UI as soon as possible.

Next, your web application should upload the original source document to PAS so that the backend can start converting
the document:

As soon as the source document is received, PAS hands it off to PrizmDoc Server where the document pages are
converted, one by one, to SVG. And, as soon as a page is converted, it can be delivered to the browser (even if the

PrizmDoc Viewer v13.17 95

©2021 My Company. All Rights Reserved.

remaining pages are still being converted):

Meanwhile, as soon as it has been loaded in the browser, the viewer begins repeatedly asking PAS (proxied through your
web server) for the first page of document content (“Can I have the first page now? Can I have the first page now?”):

As soon as the first page of SVG content is available, PAS returns it and the viewer displays it to the end user:

Of course, all of this happens very quickly, allowing your users to start viewing and interacting with the document as fast
as possible.

As the end user continues to interact with the document, the viewer will make additional requests to PAS for document
content as needed:

PrizmDoc Viewer v13.17 96

©2021 My Company. All Rights Reserved.

Next Steps
To actually see this happening with real code, take a look at some of our “hello viewer” sample applications. These are
great starting points that you can easily set up and run on your own development machine.

If you're ready to start integrating the viewer into an existing web application, move on to part 1 of this three-part guide.

1. Integrating the Viewer

Overview
First, we’ll need to add the viewer itself into your web application:

By the end of this section your web application should be able to display an empty viewer.

Update Your Web Application to Serve the Static Files Needed by the
Viewer
There are a set of static JavaScript, CSS, font, and image files which define the viewer UI. You’ll need to add these to your
web application in such a way that the browser can GET them.

You can download the static files needed for the viewer here:

viewer-assets.zip

Unzip that file and move the unzipped viewer-assets directory and all of its contents into your web application at a
place where the files can be served statically. For example, perhaps you configure your web application to map the
route viewer-assets/ to the unzipped viewer-assets directory which you just added to your application. Make sure to
include all of the files and folders as defined in the ZIP file, including all of the fonts and images. This is important for all
the parts of the viewer UI to display correctly.

Integrate the Viewer Into a Page
To include the viewer in a particular page of your web application, you’ll need to:

1. Add boilerplate code in the <head> of your page to include the required JavaScript and CSS.
2. Declare a <div> somewhere in your HTML as the placeholder for the viewer.
3. Call a JavaScript function which creates the viewer at the location of the specified <div>.

1. Include the required JavaScript and CSS

IMPORTANT: Scripts must be loaded in the specified order as shown below.

PrizmDoc Viewer v13.17 97

©2021 My Company. All Rights Reserved.

https://github.com/Accusoft/prizmdoc-viewer/releases/download/v13.17/viewer-assets.zip

Assuming you have set up your web application to serve the static JavaScript and CSS files at viewer-assets/, you
would add the following to the <head> of your HTML:

<!-- Ensures the viewer works best across various browsers and devices -->
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1
user-scalable=no"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />

<!-- CSS required by the viewer -->
<link rel="stylesheet" href="viewer-assets/css/normalize.min.css">
<link rel="stylesheet" href="viewer-assets/css/viewer.css">

<!-- JS required by the viewer -->
<script src="viewer-assets/js/jquery-3.6.0.min.js"></script>
<script src="viewer-assets/js/jquery.hotkeys.min.js"></script>
<script src="viewer-assets/js/underscore.min.js"></script>
<script src="viewer-assets/js/viewercontrol.js"></script>
<script src="viewer-assets/js/viewer.js"></script>
<script src="viewer-assets/js/viewerCustomizations.js"></script>

NOTE: If your static files are hosted at a path other than viewer-assets/, adjust accordingly.

2. Declare a <div> placeholder for the viewer

Somewhere in your HTML, at the location where you want the viewer to appear, add a placeholder div with a unique id,
like this:

<div id="viewerContainer" />

Make sure you style the width and height of the div to be the dimensions you want used for the viewer.

3. Create the viewer

Finally, instantiate the viewer with a JavaScript call like this:

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 //documentID: 'TODO: We'll handle this in part 2',
 imageHandlerUrl: '/pas-proxy',
 viewerAssetsPath: 'viewer-assets',
 resourcePath: 'viewer-assets/img',
 language: viewerCustomizations.languages['en-US'],
 template: viewerCustomizations.template,
 icons: viewerCustomizations.icons,
 annotationsMode: "LayeredAnnotations"
 });
 });
</script>

NOTE: If your static files are hosted at a path other than viewer-assets/, adjust viewerAssetsPath and
resourcePath accordingly.

You’ll notice that the documentID has not been set yet. We’ll get to that soon.

PrizmDoc Viewer v13.17 98

©2021 My Company. All Rights Reserved.

What We Have So Far
At this point, if you run your web application and view the page in a browser, you should see the viewer UI with the
following error:

The error is occurring because we have not yet connected the viewer to a backend viewing session. We’ll do that now in
part 2.

2. Choosing a Backend & Creating a Viewing Session

Overview
Next, we need to work with the backend to create a viewing session: the "thing" on the backend that is responsible for
converting the document and the “thing” the viewer will ask for converted SVG.

In order to do that, we need access to a running backend:

In this section, we will explain:

the options you have for hosting a backend
how to create a new viewing session
how to connect a viewer to an associated viewing session
how to provide the source document to the viewing session

By the end of this section, the viewer will begin to show a loading indicator (though document content won’t load quite

PrizmDoc Viewer v13.17 99

©2021 My Company. All Rights Reserved.

yet).

Choosing a Backend Hosting Option
You have several options for hosting the backend:

1. Self-Hosted. You deploy and manage the backend yourself on your own hardware. Data never leaves your
network. You pay annually based on the number of machines you run PrizmDoc Server on. For more information,
see the Self-Hosted Backend Administrator Guide.

2. PrizmDoc Cloud. Accusoft fully-manages a backend which is shared by multiple customers. You pay only for
transactions which you use (e.g. documents viewed or processed). This is the easiest way to get started.

3. Private Cloud. Accusoft deploys a backend for your dedicated use in the cloud and then fully-manages the
backend for you. You pay annually for the average number of servers we run for you. This is another easy way to
get started. If you’re interested in this option, contact info@accusoft.com.

If you’re new to setting up a backend, PrizmDoc Cloud is the easiest way to get started. Just sign up, get your API key, and
you’re done. Your backend is ready. You can always switch to a private cloud or self-hosted option later if you need to.

About Viewing Sessions
Every viewer instance running in a browser must be associated with a backend viewing session. In other words, any time
you create a new viewer, you must first create a new backend viewing session.

The viewing session is the “thing” on the backend that is responsible for converting the original document to SVG for
viewing in the browser, and it is the “thing” the viewer talks to in order to ask for document content (“Hey backend, I need
page 9 for viewing session XYZ…”).

This is why, at the end of part 1, the viewer was giving us an error:

That error is the viewer’s way of saying “Hey, you forgot to give me the id of my viewing session! I have no way to ask the
backend for content.”

Let’s fix this.

Creating the Viewing Session
Before rendering HTML with the viewer and sending it to the browser, your web application must first send a POST request
to PAS to create a new viewing session:

PrizmDoc Viewer v13.17 100

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/
mailto:info@accusoft.com
https://cloud.accusoft.com/

If you’re using PrizmDoc Cloud, the HTTP request to create a viewing session looks like this:

POST https://api.accusoft.com/prizmdoc/ViewingSession
Acs-Api-Key: YOUR_API_KEY
Content-Type: application/json

{
 "source": {
 "type": "upload",
 "displayName": "UNIQUE_NAME_OF_THE_DOCUMENT_TO_BE_VIEWED"
 }
}

NOTE: If you’re using a self-hosted backend:

Replace https://api.accusoft.com/prizmdoc with your actual PAS base URL (such as
http://localhost:3000)
Omit the Acs-Api-Key request header (needed for PrizmDoc Cloud)

Let’s break this down:

The source object tells PAS information about the original source document.

source.type tells PAS how you intend to provide the source document. The value of "upload" means that you
will be uploading the source document to PAS in a subsequent HTTP request, associating it with this viewing session
(there are other options available, but "upload" is the one we recommend almost all of the time).

Finally, source.displayName is a required option when source.type is set to "upload", and it must be a
unique name for the document.

NOTE: To optimize backend performance, source.displayName must be unique for the binary contents of
the document you will upload. You should NEVER use the same "displayName" value for two different
source documents.

PAS will create a new viewing session and reply with its viewingSessionId:

PrizmDoc Viewer v13.17 101

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

HTTP/1.1 200 OK
Content-Type: application/json

{
 "viewingSessionId": "XYZ..."
}

Connecting the Viewer to the Viewing Session
At this point, we’ve created a new “empty” viewing session and we have its unique viewingSessionId. PAS is still
waiting on us to upload the source document. However, before we do that, we can go ahead and render the HTML with a
viewer, configuring it to use this new viewingSessionId:

We construct the viewer just as we did before in part 1, but this time we will provide a value for the required
documentID property which the viewer was complaining about (the viewer API calls it documentID and the PAS REST
API calls it viewingSessionId, but they are the same thing):

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 documentID: 'XYZ...',
 imageHandlerUrl: '/pas-proxy',
 viewerAssetsPath: 'viewer-assets',
 resourcePath: 'viewer-assets/img',
 language: viewerCustomizations.languages['en-US'],
 template: viewerCustomizations.template,
 icons: viewerCustomizations.icons,
 annotationsMode: "LayeredAnnotations"
 });
 });
</script>

Uploading the Source Document to Begin Document Conversion
Finally, after rendering the HTML and sending it to the browser, your web application needs to actually upload the source
document to PAS, associating it with the viewing session.

If you’re using PrizmDoc Cloud, the HTTP request to upload the source document looks like this:

PUT https://api.accusoft.com/prizmdoc/ViewingSession/u{viewingSessionId}/SourceFile
Acs-Api-Key: YOUR_PRIZMDOC_CLOUD_API_KEY

PrizmDoc Viewer v13.17 102

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

<<file bytes>>

NOTE: If you’re using a self-hosted backend:

Replace https://api.accusoft.com/prizmdoc with your actual PAS base URL (such as
http://localhost:3000)
Omit the Acs-Api-Key request header (needed for PrizmDoc Cloud)
Add the required Accusoft-Secret header with the value of your PAS secretKey

If your document is accepted, PAS will reply right away with a simple 200 OK:

HTTP/1.1 200 OK

This just means that your document has been accepted and the conversion process has begun.

What We Have So Far
The viewer has a real viewingSessionId, and the backend is actually converting the document for viewing in the
browser. And the viewer is now trying to ask the backend for converted document content.

If you run your web application now, the viewer should show a loading indicator. However, you’ll also notice a “Page Load
Failed” message and no content actually appears:

That’s because the viewer's requests to the backend aren’t actually getting through yet. We’ll fix that next in part 3.

3. Setting up a Reverse Proxy

Overview
Finally, we need to set up a simple reverse proxy so that the viewer can make requests through your web server to the backend:

PrizmDoc Viewer v13.17 103

©2021 My Company. All Rights Reserved.

By the end of this section, the viewer should actually display real document content.

Configuring the Viewer’s Reverse Proxy Route
When we constructed the viewer, there was a special imageHandlerUrl property which we set to the value /pas-proxy:

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 documentID: 'XYZ...',
 imageHandlerUrl: '/pas-proxy',
 viewerAssetsPath: 'viewer-assets',
 resourcePath: 'viewer-assets/img',
 language: viewerCustomizations.languages['en-US'],
 template: viewerCustomizations.template,
 icons: viewerCustomizations.icons,
 annotationsMode: "LayeredAnnotations"
 });
 });
</script>

imageHandlerUrl is just the base URL that the viewer should use when it makes GET requests to PAS for document content.

The viewer makes a variety of GET requests to PAS, such as:

GET /Page/q/0?DocumentID=uXYZ...&Scale=1
GET /Document/q/Attributes?DocumentID=uXYZ...
GET /Document/q/0-0/Text?DocumentID=uXYZ...
etc.

When the viewer makes those requests, it will use the imageHandlerUrl as the base URL for all of those requests. Since we set
the value to /pas-proxy, the actual requests it makes will look like this:

GET /pas-proxy/Page/q/0?DocumentID=uXYZ...&Scale=1
GET /pas-proxy/Document/q/Attributes?DocumentID=uXYZ...
GET /pas-proxy/Document/q/0-0/Text?DocumentID=uXYZ...
etc.

Notice that these requests to /pas-proxy/* are still going to your web server. We still need to set up a reverse proxy for this
/pas-proxy/* route to ensure that all such HTTP requests are forwarded to PAS.

The Reverse Proxy and Your PrizmDoc Cloud API Key
If you’re using PrizmDoc Cloud, your reverse proxy has an important responsibility: it must add your PrizmDoc Cloud API key to
each HTTP request before sending it along to the backend.

Every HTTP request made to PrizmDoc Cloud must be authenticated with an API key provided in a request header named Acs-
Api-Key.

However, you need to keep your API key private. It’s what gives you access to everything within PrizmDoc Cloud, and it’s what we
use to determine how many billable transactions you’ve performed. To avoid people abusing your account and incurring unwanted
charges, you should never send your API key to the browser. Instead, this responsibility should be handled by your reverse proxy.

So, the viewer will send GET requests to your web application. Your reverse proxy will accept the request, add the API key header,

PrizmDoc Viewer v13.17 104

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

and then forward the request along to PrizmDoc Cloud:

Setting Up a Reverse Proxy
There are lots of options for setting up a reverse proxy. Fundamentally, you need to decide whether to set up your reverse proxy 1)
as part of your application code or 2) as part of an external web server, like nginx or IIS. We offer examples of both. Pick one that
most-closely matches what you need:

Setting Up a Reverse Proxy Within Your Web Application

node.js
ASP.NET
Java / Spring

Setting Up a Reverse Proxy Outside of Your Web Application

nginx
IIS

Setting Up a Reverse Proxy Within Your Web Application

node.js

If you’re using node.js and express, you can use a package like http-proxy-middleware.

NOTE: For a complete example application, check out our Hello PrizmDoc Viewer with node.js and HTML sample on GitHub.

Here is how you would set up a /pas-proxy route:

const express = require('express');
const proxy = require('http-proxy-middleware');

const app = express();

app.use(proxy('/pas-proxy', {
 pathRewrite: {
 '^/pas-proxy': '', // remove the /pas-proxy prefix when forwarding
 target: 'https://api.accusoft.com/prizmdoc', // PAS base URL
 changeOrigin: true, // necessary to convert from HTTP to HTTPS
 headers: {
 'Acs-Api-Key': 'YOUR_API_KEY' // for PrizmDoc Cloud
 }
 }
});

And that's how you can configure your express application to proxy all GET /pas-proxy/* requests to PAS!

PrizmDoc Viewer v13.17 105

©2021 My Company. All Rights Reserved.

https://www.nginx.com/
https://www.iis.net/
https://nodejs.org/
https://expressjs.com/
https://www.npmjs.com/package/http-proxy-middleware
https://github.com/Accusoft/hello-prizmdoc-viewer-with-nodejs-and-html

Once you've set that up, you can skip ahead to the conclusion.

ASP.NET

If you’re using ASP.NET, you can use SharpReverseProxy, an OWIN middleware package available on nuget.

NOTE: For a complete example application, check out our Hello PrizmDoc Viewer with .NET and HTML sample on GitHub.

Within the Configure method of your Startup.cs, here is how you would set up a /pas-proxy route:

app.UseProxy(new List<ProxyRule> {
 new ProxyRule {
 Matcher = uri => uri.AbsolutePath.StartsWith("/pas-proxy/"),
 Modifier = (req, user) =>
 {
 // Create a corresponding request to the actual PAS host
 var match = Regex.Match(req.RequestUri.PathAndQuery, "/pas-proxy/(.+)");
 var path = match.Groups[1].Value;
 var pasBaseUri = new Uri("https://api.accusoft.com/prizmdoc/");
 req.RequestUri = new Uri(pasBaseUri, path);

 // For PrizmDoc Cloud
 req.Headers.Add("Acs-Api-Key", "YOUR_API_KEY");
 }
 }
}, result =>
{
 Logger.LogDebug($"Proxy: {result.ProxyStatus} Url: {result.OriginalUri} Time:
{result.Elapsed}");
 if (result.ProxyStatus == ProxyStatus.Proxied)
 {
 Logger.LogDebug($" New Url: {result.ProxiedUri.AbsoluteUri} Status:
{result.HttpStatusCode}");
 }
});

And that's how you can configure your ASP.NET application to proxy all GET /pas-proxy/* requests to PAS.

Once you've set that up, you can skip ahead to the conclusion.

Java / Spring

In a Java Spring application you can use Netflix Zuul.

NOTE: For a complete example application, check out our Hello PrizmDoc Viewer with Java and HTML sample on GitHub.

Your application.properties will define the information Zuul needs to set up a reverse proxy route for /pas-proxy:

prizmdoc.pas.baseUrl=https://api.accusoft.com/prizmdoc/
prizmdoc.cloud.apiKey=YOUR_API_KEY

===== Proxy all requests from /pas-proxy/* to PAS =====
ribbon.eureka.enabled=false
zuul.routes.pas-proxy.path=/pas-proxy/**
zuul.routes.pas-proxy.url=${prizmdoc.pas.baseUrl}
zuul.routes.pas-proxy.stripPrefix=true

Your main Application.java will look like this:

package myapp;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

PrizmDoc Viewer v13.17 106

©2021 My Company. All Rights Reserved.

https://www.nuget.org/packages/SharpReverseProxy/
https://www.nuget.org/
https://github.com/Accusoft/hello-prizmdoc-viewer-with-dotnet-and-html
https://github.com/Netflix/zuul
https://github.com/Accusoft/hello-prizmdoc-viewer-with-java-and-html

import org.springframework.context.annotation.Bean;
import sample.pasProxy.AddApiKeyRequestHeaderFilter;

@EnableZuulProxy
@SpringBootApplication
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

If you’re using PrizmDoc Cloud, you’ll need to also make sure that your API key is added as a request header before requests are
forwarded to the backend. You can do that by setting up a Zuul “pre” filter Spring component:

package myapp;

import javax.servlet.http.HttpServletRequest;
import com.netflix.zuul.context.RequestContext;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;

import com.netflix.zuul.ZuulFilter;

/**
 * Ensures that the PrizmDoc Cloud API key, if defined, is injected
 * as a request header before proxied requests are sent to PAS.
 *
 * Netflix Zuul will execute this "pre" filter before sending the request on to PAS, allowing
 * this class to inject the configured PrizmDoc Cloud API key.
 *
 * See https://spring.io/guides/gs/routing-and-filtering/
 */
@Component
public class AddApiKeyRequestHeaderFilter extends ZuulFilter {

 private static final Logger log =
LoggerFactory.getLogger(AddApiKeyRequestHeaderFilter.class);

 @Value("${prizmdoc.cloud.apiKey:#{null}}")
 private String apiKey;

 @Override
 public String filterType() {
 return "pre";
 }

 @Override
 public int filterOrder() {
 return 0;
 }

 @Override
 public boolean shouldFilter() {
 return true;
 }

 @Override
 public Object run() {
 RequestContext ctx = RequestContext.getCurrentContext();
 HttpServletRequest request = ctx.getRequest();

 if (apiKey != null) {
 ctx.addZuulRequestHeader("Acs-Api-Key", apiKey);
 }

PrizmDoc Viewer v13.17 107

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

 log.info("Proxying {} {}", request.getMethod(), request.getRequestURL());

 return null;
 }

}

And that's how you can configures your Java Spring application to proxy all GET /pas-proxy/* requests to PAS.

Once you've set that up, you can skip ahead to the conclusion.

Setting Up a Reverse Proxy Outside of Your Web Application

In a production application, it’s common to keep the reverse proxy concern outside of your application code, using something like
nginx or IIS in front of your web application:

With this approach, all incoming traffic goes to nginx or IIS and then, based on the URL, gets routed either to your web application
or to PAS.

Assuming you already have nginx or IIS in front of your web application, this section will explain how to configure an additional
reverse proxy rule to route all GET /pas-proxy/* requests to PAS.

nginx

Within your nginx config file, you can easily add a location directive to a server defining a reverse proxy route to PAS:

location /pas-proxy/ {
 # Limit to GET requests (which is all the viewer needs)

PrizmDoc Viewer v13.17 108

©2021 My Company. All Rights Reserved.

 limit_except GET {
 deny all;
 }

 # For PrizmDoc Cloud:
 proxy_set_header Acs-Api-Key YOUR_API_KEY;

 # PAS base URL
 proxy_pass https://api.accusoft.com/prizmdoc/;
}

Note carefully the trailing slashes in the example above! They are important.

And that's how you configure nginx to proxy all GET /pas-proxy/* requests to PAS.

Once you've set that up, you can skip ahead to the conclusion.

IIS

This section will walk you through setting up a reverse proxy route in IIS.

First, make sure you have these IIS extensions installed:

URL Rewrite
Application Request Rerouting

Next, we need to actually define the reverse proxy rule for your Site or Application in IIS. This sort of rule can only be applied at the
Site or Application level. Let's walk through how to set this up:

1. Select the Site or Application you want to modify, such as Default Web Site:

2. Open the URL Rewrite feature:

PrizmDoc Viewer v13.17 109

©2021 My Company. All Rights Reserved.

https://www.iis.net/downloads/microsoft/url-rewrite
https://www.iis.net/downloads/microsoft/application-request-routing

3. Click Add Rule(s)...

4. Choose the Reverse Proxy template:

PrizmDoc Viewer v13.17 110

©2021 My Company. All Rights Reserved.

5. In the dialog:

Enter a value for your PAS host. If you’re using PrizmDoc Cloud for your backend, use the value
api.accusoft.com/prizmdoc for now.
Uncheck the Enable SSL Offloading checkbox.
Click OK to create the new rule.

6. Now, click Edit... to further modify the rule you just created:

PrizmDoc Viewer v13.17 111

©2021 My Company. All Rights Reserved.

7. Under Match URL, change the Pattern value to ^pas-proxy/(.*)

8. Under Conditions, click Remove to delete the default {CACHE_URL} rule that was created:

PrizmDoc Viewer v13.17 112

©2021 My Company. All Rights Reserved.

9. At the bottom of the page, under Action, adjust the Rewrite URL to your actual PAS base URL, using https if possible.

The default Rewrite URL value begins with {C:1} to dynamically use http or https based on the original request.
But, if your PAS instance is running on HTTPS, you should replace {C:1} with https to ensure that all requests to
PAS are over HTTPS.
If you’re using PrizmDoc Cloud for your backend, change the Rewrite URL to
https://api.accusoft.com/prizmdoc/{R:1}:

10. Click Apply to save your changes to the rule:

11. Click Back to Rules:

PrizmDoc Viewer v13.17 113

©2021 My Company. All Rights Reserved.

Finally, if you’re using PrizmDoc Cloud for your backend, you need to ensure the reverse proxy adds your API key to every request
before it sends it along to PAS. PrizmDoc Cloud requires that your API key be provided via an HTTP request header named
ACS_API_KEY. With IIS, you can achieve this by setting an IIS server variable named HTTP_ACS_API_KEY to your actual API key
value (the URL Rewrite module will add a request header for any server variable beginning with HTTP_, basing the header name on
the rest of the server variable name; see the URL Rewrite module docs for more information).

Setting up this server variable is a two-step process.

First, we need to define the HTTP_ACS_API_KEY server variable so we can actually use it.

1. On the URL Rewrite module screen, click View Server Variables...

PrizmDoc Viewer v13.17 114

©2021 My Company. All Rights Reserved.

https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/url-rewrite-module-20-configuration-reference#note-about-request-headers

2. Click Add...

3. In the dialog:

Set the Server variable name to HTTP_ACS_API_KEY:

Click OK. The Allowed Server Variables screen should now look like this:

PrizmDoc Viewer v13.17 115

©2021 My Company. All Rights Reserved.

Now that we’ve allowed this variable, we need to actually use it in our reverse proxy.

1. Click Back to Rules to return to the list of URL Rewrite rules:

2. Select the reverse proxy rule we created earlier, then click Edit...

PrizmDoc Viewer v13.17 116

©2021 My Company. All Rights Reserved.

3. Expand Server Variables and click Add...

4. In the dialog:

Set Server variable name to HTTP_ACS_API_KEY
Set Value to your actual API key

Click OK to create this new server variable, which will add an acs-api-key request header to every request before
forwarding it on to PAS. Your Server Variables list should now look like this:

PrizmDoc Viewer v13.17 117

©2021 My Company. All Rights Reserved.

5. Click Apply to save your changes to the rule:

That’s it! You’ve now configured your IIS site or application to proxy all GET /pas-proxy/* requests to PAS.

What We Have Now
If you've configured everything correctly, your web application should now display a viewer with actual document content:

PrizmDoc Viewer v13.17 118

©2021 My Company. All Rights Reserved.

Congratulations, you've integrated PrizmDoc Viewer into your application!

PrizmDoc Viewer v13.17 119

©2021 My Company. All Rights Reserved.

Developer Guide

Introduction
PrizmDoc Viewer was designed with ultimate flexibility for developers. With a completely customizable user interface and a
powerful set of APIs for PrizmDoc Server, we provide numerous options to ensure that PrizmDoc Viewer meets your needs.

Customizing the Viewer
Using the Viewer API
The Two Backend Tiers

Customizing the Viewer
There are several options to customize the Viewer based on your use case.

Using the Viewer Out-of-the-Box

The Viewer is designed to work out-of-the-box with only a few lines of integration code to write on your web tier. You may
be able to integrate the Viewer into your web application with little or no customization needed.

Customizing through Configuration

If you need to make minor modifications to the Viewer, customizing through configuration is the simplest option. You can
customize the Viewer by modifying the uiElements to control which tabs are displayed, as well as several other useful
customizations.

For example, you may want to disable your users' ability to print and download documents. Initializing the Viewer with
pre-defined search terms and localization can also be handled via client configuration. You can also control how pages are
displayed for different sized documents through configuration. Modifying through configuration options means that you
don't have to change the actual viewer code, minimizing integration time needed with future PrizmDoc Viewer releases.

Customizing the User Interface

The Viewer is designed using an open markup approach; all of the HTML and .css is open and customizable. This allows
you to treat the Viewer either as an out-of-box product fully supported by Accusoft or as sample code. By taking the
sample code approach, you can start with our complete Viewer and modify the Viewer code as needed, from minor tweaks
to a complete re-design of the interface. Of course, with this approach, you will incur some overhead when merging
customizations with future versions of PrizmDoc Viewer.

The Viewer markup is made up of a number of HTML "template" files. The template files help segment the UI components
and make it easier for you to focus on areas of the Viewer that you need to modify. Simple customizations such as
rearranging, removing, or renaming tabs can be done very quickly by modifying the main template
(viewerTemplate.html). From there, you can add, remove, or change anything in the Viewer UI, including designing a
completely custom interface using the Viewer API. Additionally, we expose an unminified, unobfuscated JavaScript library
that allows you to edit the business logic and behavior of the Viewer (see Developer Guide > Customizing the Viewer >
Modifying viewer.js).

Using the Viewer API
The Viewer API permits programmatic control over the Viewer. Most API functionality is exposed by the ViewerControl -
the core component of the Viewer. The Viewer UI/chrome builds off of the API members of the ViewerControl.

It is required to use the Viewer API for:

Modifying the behavior of the Viewer (beyond simple configuration)
Augmenting the behavior of the Viewer

PrizmDoc Viewer v13.17 120

©2021 My Company. All Rights Reserved.

Building custom Viewer menus

The Viewer API is not required for:

Customizing the Viewer’s layout or style
Adding or removing tabs
Moving or removing buttons and other inputs

For more information about the Viewer API, refer to the API Reference documentation.

The Two Backend Tiers
The backend is made up of two tiers, PAS (PrizmDoc Application Services) and PrizmDoc Server:

PAS and PrizmDoc Server are independent. Each runs on its own host or port, and each has its own REST API.

PrizmDoc Server (on the far right) is the technical heart of the product, the actual engine that converts pages of a
document to SVG. It is compute intensive and has no permanent storage.

PAS does not do any conversion work. Instead, it is a layer in front of PrizmDoc Server which is responsible for
other viewing concerns, such as saving and loading of annotations or long-term caching of pre-converted content.
Like your web application, PAS has privileged access to storage that you own (like a file system or database).

For viewing functionality, your web application should only need to make REST API calls to PAS. PAS will make calls
to PrizmDoc Server on your behalf to ensure the conversion work is actually done.

For automated document processing, your web application can use the powerful PrizmDoc Server REST API
directly. For example, you can leverage the PrizmDoc Server REST API to convert files, combine files, burn markup or
redactions into a file, and more.

PAS

For more information about PAS, see:

The PrizmDoc Application Services section in this developer guide.
The PAS REST API reference.

PrizmDoc Server

For more information about PrizmDoc Server, see:

The PrizmDoc Server section in this developer guide.
The PrizmDoc Server REST API reference.

PrizmDoc Viewer v13.17 121

©2021 My Company. All Rights Reserved.

Implement our Top Features

Introduction
This topic is a quick reference for you to review our top features and decide which ones you want to implement:

Customize the Viewer - There are several ways to customize the Viewer, from quick integrations with minimal
configuration to complete control over the Viewer API. You can create a chrome-less viewer or create your own
custom controls including page navigation, zooming, thumbnails, searching, and printing. The following levels
of customization are available:

Level 1 - Out-of-the-Box - By adding the jQuery plugin to your web application with minimal code,
you can use the full features of the Viewer with no customization necessary.
Level 2 - Customize Using Configuration Parameters - The Viewer has a number of configuration
options that allow you to control basic functions like tab display and localization just by launching the
Viewer using Initialization Parameters and uiElements. For many developers, the flexibility provided here
will be sufficient.
Level 3 - Simple Interface Customization - By having an open markup and UI template design, minor
customization such as moving, hiding, and renaming UI elements can be done by modifying HTML
templates. You can also inject your own code to add additional functionality and workflow.
Level 4 - Advanced Customization - With a complete viewer API, you may opt to do advanced
customization, including building your own viewer from the ground up. See the Developer Guide for
more details.

Annotate Documents - A complete set of annotation tools including text commenting, image stamps,
highlights, hyperlink, and polyline annotations and more.
Redact Documents - Auto-redact features that are perfect for eDiscovery, research, and other collaborative
applications where security is a top priority.
View Large Documents - Minimize the load time and optimize performance for viewing and searching large
documents. Server-side search reduces memory load in the Viewer, increasing performance of large document
search results.
Pre-Convert Documents - Use the Pre-conversion API in PrizmDoc Application Services (PAS) to experience
nearly instantaneous viewing of documents.
Natively Render Microsoft Office Documents - A valuable Microsoft Office Conversion (MSO) feature that
provides true native viewing of Word, Excel, and PowerPoint documents.
Detect PDF AcroForm or Raster File - The RESTful API quickly and accurately auto-detects form fields to
convert existing documents into fillable forms that are simple to fill out and sign. Convert text, checkbox, and
signature fields on AcroForm documents or automatically detect text fields from scanned TIFF or bitmap
documents, creating interactive fillable form fields.
Document Comparison - Document comparison is the process of cross-checking new versions of a document
against previous versions so that you can see the changes. These changes could include formatting
modifications such as font or spacing changes, grammatical changes, or the addition or omission of words,
sentences, clauses or paragraphs. For more details on how to implement Document Comparison, refer to the
following topics:

Work with Document Comparison Programmatically
Perform Document Comparison

Work Effectively with Large Documents

Introduction
This section gives high-level guidelines to achieve fast end-user interaction with source documents that contain
hundreds or even thousands of pages.

PrizmDoc Viewer v13.17 122

©2021 My Company. All Rights Reserved.

Use Viewing Packages to Pre-Convert Content Whenever Possible
The most important thing you can do to make large documents load quickly in the browser is to make sure the
document content has already been converted for viewing in the browser before an end user starts to view it. This is
especially true for Microsoft Office documents.

If you are using PrizmDoc Application Services (PAS), you can take advantage of our Viewing Packages feature to
comprehensively pre-convert an entire document for fast viewing in the browser. Once created, a viewing package
persists until you explicitly delete it, and it allows PAS to simply return static content for any page of a document, even
if the document has thousands of pages.

If you are not yet taking advantage of PAS (that is, you are communicating directly to the back-end PrizmDoc Server
to create your viewing sessions), consider adding PAS to your environment to take advantage of the Viewing
Packages feature.

If you are not familiar with how the browser, your web tier, PAS, and the back-end PrizmDoc Server work together,
refer to the PrizmDoc Overview.

Use Server-Side Search to View Large Documents
Ideally, the Viewer would perform a client-side search whenever possible and a server-side search whenever
necessary. In reality, we make an educated guess based on page count. By default, our Viewer will perform a client-
side search if a document contains no more than 80 pages; otherwise, the Viewer will offload the search work to the
server. For many kinds of documents, this arbitrary 80-page threshold works fine. However, if you are using
documents of 80 pages or fewer with a substantial amount of text, or if your end user's browser is particularly memory
constrained, you may find that this default is not aggressive enough in offloading search work to the server.

When constructing a viewer control, you can use the ViewerControlOptions searchMethodPageCountThreshold
property to adjust the maximum number of pages a document can have before the Viewer switches to server-side
search. Additionally, you can use the searchMethodType property to force the Viewer to only use server-side search
(or only use client-side search).

The Viewing Sessions serverSideSearch property determines whether server-side text searching will be available
for a document and is the default value.

Viewer
This section contains the following information:

Architecture & Design
Integrate PrizmDoc Viewer Releases with Your Code
Configure the Viewer
How to Customize the Viewer
Modify viewer.js

Architecture & Design

Introduction
The Viewer offers the following features out of the box:

A responsive UI

PrizmDoc Viewer v13.17 123

©2021 My Company. All Rights Reserved.

A jQuery plugin for embedding the full Viewer
Configuration options
A customizable UI
An API
Reusable core component

Responsive UI
The Viewer’s responsive UI is designed for phone, tablet, and desktop users. A single UI implementation adapts to
the viewport size of the device or element in which it is embedded.

jQuery Plugin
A jQuery plugin is used to embed the full-featured, responsive Viewer on the page.

Example

$("#myDiv").pccViewer(pluginOptions);

Configuration

The Viewer UI and behavior can be configured when the Viewer is embedded, using JavaScript parameters.

Example

var pluginOptions = {
 documentID: "1234abcd",
 encryption: false,
 viewMode: "EqualWidthPages"
};

Configurable options include:

Disabling tabs
DRM features
Localization
Rendering options
Encryption
Default tool settings
Pre-defined search

Customizable UI
If the Viewer needs to be customized more than the configuration options allow, all of the UI code is open-source
and can be modified to suit your customization needs. The open-source Viewer code is separated into CSS files,
template HTML files, and JavaScript. The code leverages custom HTML attributes and Underscore.js’ templating
system in order to maintain the separation of concerns.

PrizmDoc Viewer v13.17 124

©2021 My Company. All Rights Reserved.

API
The Viewer API offers complete control over the Viewer. The API allows callers to augment, customize, or automate
the end user’s experience with the Viewer. The API functionality covers:

Creating and destroying the Viewer
Events
Page navigation
Zooming and fitting content
Mark (annotation and redaction) CRUD
Markup saving and loading
Customizing mouse tools
Searching document text
Printing
Getting page and document attributes

Example

var api = $("#myDiv").pccViewer(pluginOptions).viewerControl;
api.on("PageCountReady", function() {
 api.changeToLastPage();
});

Reusable Core Component
The core component used by the Viewer for rendering the document is the ViewerControl. The ViewerControl is a
component that can be used independent of the full Viewer; it can be directly embedded into a page and used for
building a fully custom UI:

The only UI of the ViewerControl is the page list, which allows scrolling through a document.
The ViewerControl exposes the API for programmatic control.

Left example above: embedding the full Viewer using the jQuery plugin.
Right example above: embedding the ViewerControl alone.

PrizmDoc Viewer v13.17 125

©2021 My Company. All Rights Reserved.

The ViewerControl does not have dependencies on third-party libraries.

Design Basics

Introduction
The Viewer interface was designed to adapt to any size viewport. Rather than targeting specific devices, the Viewer
will fit to the maximum screen size on any device whether it is a desktop, tablet, or phone.

Media Queries
The Viewer uses CSS3 Media Queries (http://www.w3.org/TR/css3-mediaqueries/) with expressions using min-
width and max-width to adjust the layout of navigation and dialogs.

Breakpoints

The Media Query Breakpoints, defined in viewer.css, are set according to the Viewer layout. On smaller viewports
the tab navigation collapses into a menu and some tools are hidden. On larger viewports the dialogs transform
from horizontal to a vertical layout to utilize screen real estate. The breakpoints are as follows:

Example

/* Target modern browsers that support media queries */
@media (min-width: 0) {}
/* Mobile & Tablet Sizes, collapse navigation tabs into menu */
@media (max-width: 767px) {}
/* Desktop Sizes */
@media (min-width: 768px) {}

Media Queries are not supported in Internet Explorer 8 and no Media Query polyfills are used in this regard. All
Internet Explorer 8 specific styles are in legacy.css.

Changing the Breakpoint

To change the breakpoint from the default 768px you will need to change this in two places:

PrizmDoc Viewer v13.17 126

©2021 My Company. All Rights Reserved.

http://www.w3.org/TR/css3-mediaqueries/

1. In viewer.css, under the comment "viewport breakpoints", look for the following expressions:

Example

@media (max-width: 767px) {}
@media (min-width: 768px) {}

2. In viewer.js look for the variable tabBreakPoint; this is used in viewer.js to collapse the tab navigation on
smaller viewports:

Example

this.tabBreakPoint = 767;

Legacy Support

Media Queries are not supported in Internet Explorer 8 and no Media Query polyfills are used in this regard. All
Internet Explorer 8 specific styles are in legacy.css. Since Media Queries are not supported, if you add styles within
a Media Query block in viewer.css you will also need to add this to legacy.css.

Grid System
The Viewer uses a basic grid system to assist with the UI layout. Through a series of rows and columns the layout
can scale dynamically. Rows are used to create horizontal groups of columns. Columns are created by defining the
number of twelve columns you will span. For example, three columns would use three divs with a class of .pcc-col-
4:

Example

<div class="pcc-row">
 <div class="pcc-col-4">Left</div>
 <div class="pcc-col-4">Center</div>
 <div class="pcc-col-4">Right</div>
</div>

.pcc-col-* classes are active in small viewports and .pcc-lg-col-* classes only take effect in larger viewports:

Example

<div class="pcc-row">
 <!--
 These two divs will span one column on small viewports but
 split to two columns on larger viewports
 -->
 <div class="pcc-col-12 pcc-lg-col-6">Left</div>
 <div class="pcc-col-12 pcc-lg-col-6">Center</div>
</div>

PrizmDoc Viewer v13.17 127

©2021 My Company. All Rights Reserved.

There are also .pcc-hide and .pcc-show classes which can be used to toggle content across breakpoints:

Example

<div class="pcc-row">
 <!-- This button will only appear on larger viewports -->
 <button class="pcc-hide pcc-show-lg">Left</button>
 <!-- This button will only appear on smaller viewports -->
 <button class="pcc-show pcc-hide-lg">Center</button>
</div>

Polyfills
There are a few polyfills used to provide support for browser features:

HTML5 Shiv (https://github.com/aFarkas/html5shiv) - The HTML5 Shiv enables use of HTML5 sectioning
elements in legacy Internet Explorer and provides basic HTML5 styling for Internet Explorer 6-9, Safari 4.x
(and iPhone 3.x), and Firefox 3.x.
Normalize (http://necolas.github.io/normalize.css/) - Normalize provides better cross-browser consistency
in the default styling of HTML elements.

Components
The Viewer is made up of a number of UI components:

PrizmDoc Viewer v13.17 128

©2021 My Company. All Rights Reserved.

https://github.com/aFarkas/html5shiv
http://necolas.github.io/normalize.css/

Tab Navigation - The set of tabs that distinguishes different aspects of the Viewer functionality.
Tab Pane - The tools specific to each tabset. This can be configured to display horizontally or vertically.
Status Bar - Displays the page number and allows you to jump to a specific page.
Dialog - Menu area for extended options and settings.
Context Menu - Menu that allows you to change properties of annotations.
Page List - The viewer control that renders the document.

The styles for Tab Navigation, Tab Pane, Status Bar, Dialog, and Context Menu are defined in viewer.css. The styles
for Page List are defined in viewercontrol.css.

Templates
You can change the markup of the Viewer UI components by editing the templates. The templates are HTML files
ending in *.Template.html. The templates are consumed using the Underscore.js Template utility function. Variables
and JavaScript conditions can be used within the templates using ERB syntax. For more information see the
Underscore documentation at http://underscorejs.org/#template.

For a complete list of templates, refer to the HTML Templates topic.

Disabling Tabs
To disable one of the navigation tabs you could comment out the HTML in the templates or pass one of the
following configuration parameters to the jQuery viewer plugin:

Example

var pluginOptions = {
 uiElements: {
 redactTab: false
 }
};

Architecture Basics

Architecture Basics
The Viewer has a multi-tier architecture, which is used to achieve a simple out-of-the box and customizable
experience.

The jQuery Plugin
At a high level, the Viewer is delivered as a configurable jQuery plugin. When using the jQuery plugin, the caller needs
a basic understanding of jQuery selectors and the ability to copy and paste from sample code.

An understanding of the Viewer architecture is not required for the out-of the box experience offered by the jQuery
plugin.

PrizmDoc Viewer v13.17 129

©2021 My Company. All Rights Reserved.

http://underscorejs.org/#template

Beyond the jQuery Plugin
The Viewer is built through the jQuery plugin using several open-source CSS, JavaScript, and HTML template
files.
These files implement the Viewer UI-chrome, which includes all of the Viewer tabs, buttons, dialogs, and inputs.
The open-source Viewer UI-chrome builds on top of the ViewerControl, which displays the document.
Files that implement the Viewer chrome may be customized in order to customize the Viewer UI.

Separation of Concerns
We apply the principle of separation of concerns within the Viewer implementation, in order to promote
customization of the code.

Aspects of the UI code use MVC concepts. The code in viewer.js acts as a UI controller (or mediator) between the
DOM (view) and the ViewerControl (model). To achieve this pattern, viewer.js leverages third party tools such as
jQuery and Underscore.js’ templating system.

All markup for the UI-chrome is written in the HTML template files.

ViewerControl
The ViewerControl is a core component to any viewer. It implements the logic of document display, mouse tools and
touch interaction, search, printing, annotations, and redactions. It is responsible for calling to the PCCIS services via
the web tier, to retrieve document and annotation data. It renders a UI - the page list - which permits scrolling
through the content of a document.

PrizmDoc Viewer v13.17 130

©2021 My Company. All Rights Reserved.

ViewerControl is Reusable
The ViewerControl is a reusable component that can be instantiated by itself. This gives a chrome-less viewer, which
exposes the full API. Building a custom Viewer UI around the ViewerControl is one approach to building highly custom
viewers.

ViewerControl API
The ViewerControl object exposes an API that gives access to the state of the Viewer and can be used for
programmatic control over all functions of the ViewerControl. This API is consumed by any code that builds on top of
it in order to create rich UI.

ViewerControl is Accessible Through the jQuery Plugin
You don’t have to directly embed the ViewerControl to access its API. The ViewerControl object is accessible when
embedding the Viewer with the jQuery plugin, and its API can be used to control the Viewer created by the jQuery
plugin.

 var viewerControl = $("#myDiv").pccViewer(pluginOptions).viewerControl;

 viewerControl.on("PageCountReady", function(){
 viewerControl.changeToLastPage();
 });

Integrate PrizmDoc Viewer Releases with Your Code

Integrate PrizmDoc Releases with Your Code

PrizmDoc Viewer v13.17 131

©2021 My Company. All Rights Reserved.

The Viewer offers complete customizability. However, performing customization adds additional maintenance costs. If
you choose to perform significant customization, consider how you will integrate future releases of the Viewer with
your code.

You can choose to run the default Viewer with no changes outside of configuration parameters passed in to the
Viewer in your web tier. This allows for the simplest integration with subsequent releases. More likely, you will want to
customize the CSS, HTML, and even the unobfuscated JavaScript libraries to ensure that the Viewer meets the needs
of your product.

Below are a few guidelines to help you make the right decisions in customizing your Viewer:

Viewer API (viewerControl.js)
The Viewer API is the base building block of the Viewer. We ensure that API changes are backward compatible with
point releases (for example, PrizmDoc v11.1 → PrizmDoc v11.2) and will not introduce breaking changes unless critical.
With major releases we also endeavor to ensure backward compatibility with previous releases of the Viewer API.

HTML Templates and CSS
The Viewer that is shipped with the product will be maintained and enhanced from release to release. The Viewer
HTML and CSS markup will change with each release. Once you have begun to modify your markup, it is
recommended that you consider subsequent PrizmDoc releases as sample code, in which you would evaluate product
changes and choose to incorporate all or parts of those changes into your customization.

Viewer Resources (viewerCustomizations.js)
The Viewer can be customized at compilation time with custom icons, translations, and the above HTML Templates, all
provided at initialization time via viewerCustomizations.js.

JavaScript files (viewer.js)
The Viewer JavaScript that lies above the Viewer API is unobfuscated and open for customization. While we expect
many developer needs will be satisfied through configuration parameters and minor HTML or styling changes, some
developers will desire to modify viewer.js for more advanced customization. You should carefully consider your
development and ongoing maintenance strategy to ensure that future releases of PrizmDoc are easy to integrate into
your customizations. We cannot guarantee backward compatibility of viewer.js in future releases as it is central to the
functionality of the Viewer.

Configure the Viewer
This section contains the following information on how to configure the Viewer. You can also see code examples on
our website that demonstrate how to configure the Viewer.

Configuration Options
Initialization Parameters
uiElements
Use Pre-Loaded Search Parameters
Configure the Skinny Comments Panel
Define the View Mode
Digital Rights Management Configuration
Enable Content Encryption
How to use Pre-Defined Search

PrizmDoc Viewer v13.17 132

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/code-examples/code-examples-prizmdoc-viewer/

Localize the Viewer
Use a Custom Resource Path
Add Custom Image Stamps

Configuration Options
This section contains the following information:

Initialization Parameters
uiElements
Use Pre-Loaded Search Parameters
Configure the Skinny Comments Panel
Define the View Mode
Digital Rights Management Configuration
Enable Content Encryption
How to use Pre-Defined Search
Localize the Viewer
Use a Custom Resource Path
Add Custom Image Stamps

Initialization Parameters
For a complete list of configuration options when initializing the Viewer plugin, refer to the Namespace: fn API topic.

uiElements
For a complete list of configurable UI elements when initializing the Viewer plugin, refer to the Namespace: fn API
topic.

Use Pre-loaded Search Parameters

preDefinedSearch Parameters
This object contains all predefined search options:

Parameter Data
Type Description

highlightColor String The default highlight color of the search terms. This is overridden by the term-
level parameter. This must be in 6 digit hexadecimal format preceded by a #.

Example: "#ee3a8c"

searchOnInit Boolean Run search on launch.

globalOptions Object Set the default search options for each of the predefined search terms. This is
overridden by the term-level options parameter.

Example:

PrizmDoc Viewer v13.17 133

©2021 My Company. All Rights Reserved.

predefinedSearch : {
 globalOptions: {
 matchCase: false,
 endsWith: false,
 beginsWith: false,
 matchWholeWord: false
 }
}

terms Array An array of objects that represent the search terms that will be available in the
predefined search menu.

Example:

predefinedSearch : {
 terms: [
 {
 searchTerm: "llama"
 }
]
}

predefinedSearch Terms
This object represents the search terms that will be available in the predefined search menu:

Parameter Data
Type Description

searchTerm String The search string for the term object. This is overridden by the
userDefinedRegex parameter.

userDefinedRegex String A regular expression that will be searched in place of searchTerm. The first
and last forward slashes, as well as the flags, are stripped from the string. For
example, "/Pa(\\w+)/ig" will become "Pa(\\w+)". When special characters
(ex: backslash) are used in the userDefinedRegex field, they need to be
properly escaped. For example, for searching words that begins with "Pa", the
regular expression will be "Pa(\\w+)", this regular expression should be
properly escaped like this "Pa(\\w+)". All patterns use the Global(g) flag.

Example:

predefinedSearch : {
 terms: [
 {
 searchTerm: "4 digits"

Parameter Data
Type Description

PrizmDoc Viewer v13.17 134

©2021 My Company. All Rights Reserved.

 userdefinedRegex: "(\\d{4})"
 }
]
}

selected Boolean Whether or not this term will be selected in the menu.

options Object Set the search options for this term. If a parameter is not defined it will inherit
the globalOptions-level parameter.

Example:

predefinedSearch : {
 terms: [
 {
 searchTerm: "Lla,"
 options: {
 matchCase: true,
 endsWith: false,
 beginsWith: true,
 matchWholeWord: false
 }
 }
]
}

Parameter Data
Type Description

Configure the Comments Panel

Introduction
To better accommodate the Comments view for both small and large viewers, the Viewer automatically switches
between displaying the full comments and displaying only a Comments icon. When you click the Comments icon,
the full comment is expanded.

The commentsPanelMode options are:

full - The entire content of the comments are displayed in the sidebar of the document.
skinny - An icon is placed in the sidebar of the document, representing each comment thread. When the
icon is clicked, the comment thread is expanded to show the full content.
auto - This mode will intelligently switch between the full and skinny mode, in order to optimize the space
available for viewing the document. The default is "auto" when the option is not specified.

The examples below show the use of the commentsPanelMode configuration parameter.

Forcing the Viewer to always display skinny comments:

Example

PrizmDoc Viewer v13.17 135

©2021 My Company. All Rights Reserved.

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 commentsPanelMode: "skinny"
};
$(document).ready(function () {
 var viewerControl = $("#viewer1").pccViewer(pluginOptions).viewerControl;
});

Forcing the Viewer to always display full comments:

Example

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 commentsPanelMode: "full"
};
$(document).ready(function () {
 var viewerControl = $("#viewer1").pccViewer(pluginOptions).viewerControl;
});

Allowing the Viewer to choose between skinny and full comments, which is the default option:

Example

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 commentsPanelMode: "auto"
};
$(document).ready(function () {
 var viewerControl = $("#viewer1").pccViewer(pluginOptions).viewerControl;
});

Define the View Mode

Introduction
The ViewMode enumeration defines view modes known by PCCViewer.ViewerControl. The ViewerControl
uses a specified view mode to set or update how documents that contain different sized pages are displayed in the
Viewer. This enumeration is a convenience for API developers. Instead of using it, you can pass in the string values of
the view mode (enumeration values) directly to the API.

There are three view modes available:

PrizmDoc Viewer v13.17 136

©2021 My Company. All Rights Reserved.

Document - The Viewer maintains the relative size of each page when displaying a document. For example, if
page 2 is smaller than page 1, it will appear smaller. In this view mode, the user can choose to scroll through
the document or select one of the View icons to go from the First page to the Last page of the document.
EqualWidthPages - The Viewer scales each page so that their width is the same. For example, if page 2 is
smaller than page 1, it will be scaled larger so that its width is equal to the width of page 1. In this view mode,
the user can choose to scroll through the document or select one of the View icons to go from the First page
to the Last page of the document.
SinglePage - The Viewer displays a single page at a time. Each page is scaled to fit within a view box, which is
the initial size of the Viewer and increases in size when zooming in (and decreases in size when zooming out).
After the Viewer initializes, the view mode may not be changed to or from SinglePage view mode (or an
exception will occur). In this view mode, the user selects one of the View icons to go from the First page to the
Last page of the document which simulates a smooth transition from page to page. This view mode is non-
scrolling.

To set the ViewMode:

Example

// use the enumeration
myViewerControl.setViewMode(PCCViewer.ViewMode.SinglePage);
// or just use the string value
myViewerControl.setViewMode("SinglePage");

Digital Rights Management Configuration

Introduction
The Viewer can be configured to disable UI buttons that will allow an end user to easily duplicate the content of a
document.

The following UI buttons can be disabled using configuration options:

Download [document] button - Hide the button to download the original document.
Select text button - Hide the button to select the text selection mouse tool, which inhibits the user’s ability
to select and copy selected text.
Print button - Hide the button to print the document.

Example

// DRM options are controlled through the viewer’s options argument. var
pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 uiElements: {
 download: false, // hide download button
 copyPaste: false, // hide select text tool button
 printing: false // hide print button
 },
 };

$("#myDiv").pccViewer(pluginOptions);

PrizmDoc Viewer v13.17 137

©2021 My Company. All Rights Reserved.

Server-Side DRM
DRM options for the Viewer are enforced only in the Viewer UI. A skilled end user can manipulate the browser to
circumvent the viewer-based DRM enforcement.

Techniques a skilled user can use to circumvent viewer-based DRM enforcement:

1. Edit the JavaScript run by the browser, which allows them to:
Change the plugin options for DRM.
Directly call the API of the viewer control to print or set the select text tool.

2. Directly call the server API to download the original document.

Additional security measures can be added using server-side code changes which are listed below:

Document Download

1. Create a new viewerTemplate.html file that excludes the document download button (data-pcc-
download).

Using this technique, the download button will not be available, regardless of the plugin options.

Copying Text

There are not any server-side techniques to strengthen DRM enforcement of copying text. However, removing the
text selection control from the UI will require the user to understand the text selection API in order to enable it on
the Viewer. The manner in which the product renders SVG also makes it nearly impossible to copy text just using a
browser’s text selection capability.

Printing

1. Create a new viewerTemplate.html file that excludes the print button (data-pcc-print="launch").
Using this technique, the print button will not be available, regardless of the plugin options.

2. Exclude the print template from the configuration object passed to the Viewer
(pluginOptions.template.print).

This can be controlled by the server-side code that generates the page.
Using this technique, the ViewerControl#print(options) method will be non-functional.

Content Encryption

For an added layer of security, Content Encryption can be enabled to provide an obscured transfer of data from the
PrizmDoc Server to the Viewer website, preventing unauthorized agents from discerning the content being
transmitted. See Enabling Content Encryption for more information.

PrizmDoc Viewer is not designed or intended to be a fail-proof DRM system but does provide a few basic security
measures to prevent most users from unintentionally accessing content to which they are not authorized.

Enable Content Encryption

Introduction
This topic contains an overview and steps to help you enable content encryption:

Overview of Enabling Content Encryption
Enabling Content Encryption in PrizmDoc Server via the Central Configuration File

PrizmDoc Viewer v13.17 138

©2021 My Company. All Rights Reserved.

Enabling Content Encryption in PrizmDoc Server via ViewingSession Property
Enabling Content Encryption in the Viewer

The goal of content encryption is to provide an obscured transfer of data from the PrizmDoc Server to the Viewer
website, preventing unauthorized agents from discerning the content being transmitted. Additional security can be
enabled by configuring the Viewer and server to communicate over the Secured Socket Layer (SSL), https protocol,
rather than standard non-secure http protocol. In cases where this is not viable or enough protection, the content
encryption adds a strong measure of privacy to the document content. When content encryption is enabled, the
web data images and document text strings sent to the Viewer will be encrypted and then decrypted by the
Viewer.

Overview of Enabling Content Encryption
Content encryption must be enabled in the Viewer and in the PrizmDoc Server; it is disabled by default. Enabling
content encryption in the Viewer is straightforward and performed by an option passed to the Viewer constructor
or jQuery plugin. This process is documented below.

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

There are two options for enabling content encryption on the server:

1. Enable content encryption via the central configuration file (prizm-services-config.yml - located in the
top-level of the installation directory): this enables content encryption for all viewing sessions.

2. Toggle (enable or disable) content encryption via viewing session property: this enables or disables
content encryption per viewing session, overriding the option set in the central configuration file.

These two options are documented below.

NOTE: For security reasons, toggling content encryption per viewing session is not permitted in the out-
of-box product configuration. It must be explicitly allowed via the central configuration file.

Finally, it’s important to note it must be enabled or disabled on both the Viewer and server, or unexpected
behavior will occur. If encryption is enabled on the server but not for the Viewer, then the content will not be
rendered correctly. If encryption is enabled for the Viewer but not on the server, then the content will not be
encrypted during transit, however, it will be rendered correctly in the Viewer.

In summary:

Content encryption is disabled out of the box.
It must be enabled in the Viewer and PrizmDoc Server.
It can be enabled or disabled on the server via the central configuration file.
If permitted, enabling or disabling content encryption can be overridden when creating a viewing session.

Enabling Content Encryption in PrizmDoc Server via the Central
Configuration File
To enable content encryption follow the steps below:

1. Open the central configuration file, prizm-services-config.yml in your favorite editor. The prizm-services-
config.yml file is located in the top-level of the installation directory.

PrizmDoc Viewer v13.17 139

©2021 My Company. All Rights Reserved.

2. Find the viewing.contentEncryption.enabled section and change the value to true.

Encrypted Transmission Example

Controls whether or not content is encrypted by the back end before being
transmitted to a client viewer. The client viewer will decrypt the content
in
the browser. This is useful for DRM, making it more difficult to copy
protected content that has been delivered to the browser.
#
viewing.contentEncryption.enabled: true

3. Save the changes to the file.

4. Restart the PrizmDoc Server for the changes to take effect.
5. Continue by enabling the encryption option for the Viewer as described in the section below.

Enabling Content Encryption in PrizmDoc Server via the
ViewingSession Property

1. Open the central configuration file, prizm-services-config.yml in your favorite editor. The prizm-services-
config.yml file is located in the top-level of the installation directory.

2. Find the viewing.sessionConstraints.pageContentEncryption.allowedValues section and change the
value to ["default", "enabled", "disabled"].

Encrypted Transmission Example

Defines the list of allowed values for the pageContentEncryption viewing
session creation option.
#
Must be an array with either ONE or ALL of the following strings:
#
"default" - Allow REST API callers to create a new viewing session
without
explicitly stating whether or not page content encryption
(DRM)
should be applied. The value configured in this file at
viewing.contentEncryption.enabled will be used to determine
whether or not page encryption is applied.
#
"enabled" - Allows REST API callers to explicitly enable page content
encryption (DRM) when creating a new viewing session,
overriding
whatever value is configured in this file by
viewing.contentEncryption.enabled.
#
"disabled" - Allows REST API callers to explicitly disable page content
encryption (DRM) when creating a new viewing session,
overriding
whatever value is configured in this file by
viewing.contentEncryption.enabled.
#
viewing.sessionConstraints.pageContentEncryption.allowedValues:
["default","enabled","disabled"]

PrizmDoc Viewer v13.17 140

©2021 My Company. All Rights Reserved.

3. Save the changes to the file.

4. Restart the PrizmDoc Server for the changes to take effect.

5. Update your web-tier code to set the value of the pageContentEncryption Viewing Session property to
"enabled" when creating the viewing session. The example below is for a .NET web tier:

Example

viewingSessionProperties.pageContentEncryption = "enabled";
....
// Serialize document properties as JSON which will go into the body of the
request string requestBody = serializer.Serialize(viewingSessionProperties);
requestStream.Write(requestBody);

6. Continue by enabling the encryption option for the Viewer as described in the section below.

Enabling Content Encryption in the Viewer
To enable encryption in the Viewer, provide the encryption option in the viewer options parameter as follows so
that the Viewer can handle encrypted data:

Example

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 documentID: 'XYZ...',
 imageHandlerUrl: '/pas-proxy',
 viewerAssetsPath: 'viewer-assets',
 resourcePath: 'viewer-assets/img',
 language: viewerCustomizations.languages['en-US'],
 template: viewerCustomizations.template,
 icons: viewerCustomizations.icons,
 annotationsMode: "LayeredAnnotations",
 encryption: true
 });
 });
</script>

Enabling the encryption will not work without setting the configuration parameter as described above. Also, if the
PrizmDoc Server configuration setting is either not set or the PrizmDoc Server is not restarted, the data will arrive
unencrypted.

How to Start & Stop the PrizmDoc Server

Refer to these topics for additional information:

Windows: Installation Guide > Starting & Stopping the PrizmDoc Server > Windows
Linux: Installation Guide > Starting & Stopping the PrizmDoc Server > Linux

PrizmDoc Viewer v13.17 141

©2021 My Company. All Rights Reserved.

How to Use Pre-defined Search

Introduction
This feature allows you to define a set of predefined search terms. To enable this functionality you must add the
predefinedSearch property to the Viewer parameters. The following example shows you how:

Example

<script type="text/javascript">
 $(document).ready(function () {
 var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 predefinedSearch: {
 highlightColor: "#ee3a8c",
 searchOnInit: false,
 globalOptions: {
 matchCase: false,
 endsWith: false,
 beginsWith: false,
 matchWholeWord: false,
 wildcard: false
 },
 terms: [{
 searchTerm: "llama",
 selected: true,
 options: {
 matchWholeWord: true,
 wildcard: false
 }
 },
 {
 searchTerm: "Words that begin with ll",
 userDefinedRegex: "\\bll(\\w*)\\b",
 searchTermIsRegex: true,
 selected: true,
 highlightColor: "#4169e1",
 options: {
 matchCase: true
 }
 }]
 }
 }
 };
 $("#sample").pccViewer(pluginOptions);
 });
 </script>

PredefinedSearch.JSON
Predefined Search can also be specified using a text file (predefinedSearch.json). The
predefinedSearch.json file provides several sample search terms and custom regular expressions; the file is

PrizmDoc Viewer v13.17 142

©2021 My Company. All Rights Reserved.

predefinedSearch.json file provides several sample search terms and custom regular expressions; the file is
parsed by the web-tier and loaded in the Viewer. The following example shows you how:

Example

<script type="text/javascript"\>
var viewingSessionId =
'<%=HttpUtility.JavaScriptStringEncode(viewingSessionId)%>';
//Retrieve the searchJson (search data) into javascript var searchTerms =
<%=searchJson%>;
var pluginOptions = {
 documentID: viewingSessionId,
 predefinedSearch: searchTerms,
};
$(document).ready(function () {
 var viewerControl = $("#viewer1").pccViewer(pluginOptions).viewerControl;
});
</script>

Predefined Search Patterns

Parameter Data
Type Description

highlightColor String The default highlight color of the search terms. This is overridden by the term-level
parameter. This must be in 6 digit hexadecimal format preceded by a #.

Example: "#ee3a8c"

searchOnInit Boolean Run search on launch.

globalOptions Object Set the default search options for each of the predefined search terms. This is
overridden by the term-level options parameter.

Example:

predefinedSearch : {
 globalOptions: {

PrizmDoc Viewer v13.17 143

©2021 My Company. All Rights Reserved.

 matchCase: false,
 endsWith: false,
 beginsWith: false,
 matchWholeWord: false,
 wildcard: false
 }
}

terms Array An array of objects that represent the search terms that will be available in the
predefined menu.

Example:

predefinedSearch : {
 terms: [
 {
 searchTerm: "llama"
 }
]
}

Predefined Search Terms

Parameter Data
Type Description

searchTerm String The search string for the term object. This is overridden by the
userDefinedRegex parameter.

searchTermIsRegex Boolean When set to true will use userDefinedRegex to execute the search.

userDefinedRegex String A regular expression that will be searched in place of searchTerm. The first
and last forward slashes, as well as the flags, are stripped from the string. For
example, "/Pa(\\w+)/ig" will become "Pa(\\w+)".

When special characters (for example, backslash) are used in the
userDefinedRegex field, they need to be properly escaped. For example, for
searching words that begin with "Pa", the regular expression will be
"Pa(\w+)". This regular expression should be properly escaped like this:
"Pa(\\w+)".

All patterns use the Global(g) flag.

Example:

predefinedSearch : {
 terms: [

Parameter Data
Type Description

PrizmDoc Viewer v13.17 144

©2021 My Company. All Rights Reserved.

 {
 searchTerm: "4 digits"
 userdefinedRegex: "(\\d{4})"
 }
]
}

description String Description of the search term. If description is not defined, then searchTerm
will be used.

highlightColor String When specified the system will use this value to show the highlight color for
this search term. When not specified the system will generate a color.

Example: highlightColor: "#FFFF20"

Options Object Example:

options: {
 "matchCase": false,
 "endsWith": false,
 "beginsWith": false,
 "matchWholeWord": false,
 "exactPhrase": false,
 "wildcard": false
}

Parameter Data
Type Description

Localize the Viewer

Introduction
The Viewer has a language localization feature which allows you to customize labels and text using a language
JavaScript object. The language object is passed as a parameter in the Viewer plugin configuration options:

Example

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates
}

Using the Language Parameters
In viewer.js the language parameters are used in various places. The following example shows a message with the

PrizmDoc Viewer v13.17 145

©2021 My Company. All Rights Reserved.

printRangeError language parameter:

Example

viewer.notify({message: viewer.language.printRangeError});

When the HTML templates are loaded, using the Underscore.js Template utility function, the language object is
used as template data:

Example

element.html(_.template(options.template.viewer, options.language))

The language parameters are then referenced as variables in the templates:

Example

<!-- This is using the "rotate" parameter from language.json -->
<button data-pcc-rotate class="pcc-icon pcc-icon-rotate"
 title="<%= rotate %>"></button>

For more information on template syntax see the Underscore.js Template documentation at
http://underscorejs.org/#template.

Common Pitfalls
When editing the language.json file or the templates there may be some errors for which the cause may not be
immediately obvious. Here are some common console errors and their possible causes:

Uncaught TypeError

Cannot read property languageElements of undefined - This error is thrown when viewer.js cannot
find the language object. Verify that the language.json file is being read and parsed correctly.

Uncaught ReferenceError

x is not defined - This error could be thrown if you have referenced a variable in the HTML templates that
is not defined as data when loading the template. Check to see that this variable exists in either the
language.json file or as a template data property used when loading a template.

Use a Custom Resource Path

Introduction
In some instances you may want to change the path that the viewercontrol.js uses to look for images. For
example, instead of img you would like to use images. To achieve this, add the resourcePath parameter to the

PrizmDoc Viewer v13.17 146

©2021 My Company. All Rights Reserved.

http://underscorejs.org/#template

example, instead of you would like to use . To achieve this, add the resourcePath parameter to the
Viewer plugin configuration options and specify the new path.

The trailing slash is not required and this path can be absolute or relative. Some examples of valid paths are:

"img"
"../img"
"/PrizmCC_HTML5_Viewer_CS/html5/img"
http://prizmdemos.accusoft.com/PCCv9Preview2/html5/img

Example

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates,
 resourcePath: ‘images’
}

If you change the image directory name you will also need to update the background image URIs in the
Viewer.css.

The resourcePath is used in the obfuscated code to obtain images like the markhandles. You can work around
the hard coded paths in the Viewer.css by editing the Viewer.css.

For example, you can change the folder to another location on your file system within the same domain. If you want
to put the images in a folder called "imgServer1", you can provide resourcePath : "imgServer1" and edit the
Viewer.css as shown in the following example:

Example

.pccv .pccEditMarkButton {
 background-image: url(../imgServer1/EditTextMark@2x.png);
 }

Add Custom Image Stamps

Introduction
You can customize the image stamps available to Viewer users by adding or deleting image files from the
ImageStamp folder, located by default in:

Windows - C:\ProgramData\Accusoft\Prizm\ImageStamp
Linux - /usr/share/prizm/Samples/imageStamp

By default, two image stamps are included in the installation: a green 'checkmark' and a red 'x'. You can choose to
leave these in place, or delete them and add image files of your choosing. The Viewer supports the following file
extensions for image stamps by default:

PNG
JPG
JPEG

PrizmDoc Viewer v13.17 147

©2021 My Company. All Rights Reserved.

GIF

Example

imageStamps.validTypes: ["png", "jpg", "jpeg", "gif", "svg", "webp", "tiff", "tif"]

To add more supported file types, refer to the PrizmDoc Application Services (PAS) configuration options.

How to Customize the Viewer

Introduction
The Viewer can be customized in a variety of ways, from quick integrations with minimal configuration to complete
control over the Viewer API. Tabs and basic DRM functions such as printing, text selection, and document
download can be quickly hidden using configuration parameters.

It's very simple to reorganize menus, add/remove tabs, and customize the look of the Viewer by editing the
markup and .css. All Viewer functionality is built on top of the Viewer API, allowing complete control over all Viewer
functions.

Configuration Options
The Viewer UI and behavior can be configured when the Viewer is embedded by using JavaScript parameters. For
example, you can set the following:

Displaying/Hiding Tabs and DRM functions
Enabling Content Encryption
Using a Custom Resource Path
Localizing the Viewer
How to use Predefined Search
Digital Rights Management Configuration

Customizing Markup and Styles
If the Viewer needs to be customized more than the configuration options allow, all UI code is open-source and
can be modified to change the following:

Reorganizing Menus
Creating a Custom Tab
Changing annotation default values
Changing the position of the menu bar
Customizing Styles (css)

Viewer API
The Viewer API permits programmatic control over the Viewer. The API allows callers to augment, customize, or
automate the end user’s experience with the Viewer. Functionality that is exposed through the Viewer API includes:

Creating and destroying the Viewer
Events

PrizmDoc Viewer v13.17 148

©2021 My Company. All Rights Reserved.

Page navigation
Zooming and fitting content
Mark (annotation and redaction) CRUD
Markup saving and loading
Customizing mouse tools
Searching document text
Printing
Getting page and document attributes

In addition to the code samples provided in this section, we have a number of interactive, live code examples on
our website.

Add a Custom Button

Introduction
Adding a custom button is as simple as adding some markup and a little bit of JavaScript anywhere on the web
page. In this example below, we will look at adding a button to the Viewer in a way that matches the design
language and code style of the existing Viewer.

If you are not yet familiar with the code structure, refer to these topics:

Modifying viewer.js
Creating a Custom Tab

In this topic, we will add a button to the default View tab which will add an Approved stamp annotation to the
top right of the first page in the document.

Adding the Button HTML
The bulk of the Viewer markup is inside the file viewerTemplate.html; this includes all the toolbars and vertical
slide-outs.

NOTE: If you would like to add buttons to the context menu, the annotations saving dialog, or the print
dialog, these are found in separate files.

The View tab appears at the top of the document, and is identified by the data attribute data-pcc-nav-
tab="view". Inside the .pcc-tab-pane, the actual menu bar, there are two lists of buttons. One is the normal list
starting from the left, .pcc-left, and the second is the buttons floating on the right side, .pcc-pull-right. To add the
button on the right side:

Example

<div class="pcc-pull-right">
 <button class="myCustomApprovedButton">Approve</button>
 <button class="pcc-icon pcc-icon-print" data-pcc-print="launch"></button>
 <button data-pcc-download class="pcc-icon pcc-icon-download"></button>
</div>

Note that the actual list of other buttons in the .pcc-pull-right section may be different from the example.
However, adding the example code for the button with the class "myCustomApprovedButton" to the top of the
list will make it appear first in the right-hand side buttons.

PrizmDoc Viewer v13.17 149

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizm-content-connect-pcc/code-examples/

Adding the Custom JavaScript
Associating logic to the buttons is handled in the viewer.js file.

First, find the button in the DOM. Toward the top of the file, there is a property on the Viewer, this.viewerNodes,
which holds all of the Viewer DOM elements. Add the button to the end of the list:

Example

...
 $searchBeginsWith: viewer.$dom.find("[data-pcc-search=beginsWith]"),
 $searchEndsWith: viewer.$dom.find("[data-pcc-search=endsWith]"),
 $searchWildcard: viewer.$dom.find("[data-pcc-search=wildcard]"),
 $customApproved: viewer.$dom.find(".myCustomApprovedButton")
};

We have used a variable name starting with a $, the global name of jQuery, to indicate that this is a jQuery-
wrapped variable. Any time a variable name starts with a $ in this file, it indicates that the object is able to use the
entire jQuery API.

Second, add logic to the button’s click event. A few lines down from this section is the function bindMarkup,
where logic is added to the DOM nodes. To keep with convention, go all the way to the bottom of this function,
and add the click handler there:

Example

viewer.viewerNodes.$customApproved.on("click", function (ev) {
 // get the first page attributes
 viewer.viewerControl.requestPageAttributes(1).then(
 function success(attributes) {
 // let's add a stamp now
 var mark = viewer.viewerControl.addMark(1, "StampRedaction");
 // set the stamp text
 mark.setLabel("Approved");
 // set the stamp location
 mark.setRectangle({
 width: 180,
 height: 50,
 x: attributes.width - 200,
 y: 20
 });
 },
 function failed(error) {
 // :(tell the user there was an error
 alert(error);
 });
});

Styling the Button
The default Viewer SVG icons are in the /viewer-assets/src/icons/svg folder of each sample. For this example, let’s
assume that you have an icon already created, named custom-check.svg.

PrizmDoc Viewer v13.17 150

©2021 My Company. All Rights Reserved.

You will need to add your SVG file to the /viewer-assets/src/icons/svg folder and specify id="pcc-icon-custom-
check" and viewBox="0 0 52 52" in the SVG. Note that the id must begin with "pcc-icon-". Copy your SVG path
content to the SVG symbol element you added.

Then simply update your viewer HTML template to use this new icon by adding the pcc-icon and pcc-icon-
custom-check class to your button:

Example

<button class="myCustomApprovedButton pcc-icon pcc-icon-custom-check"></button>

You will then need to build the Viewer assets by running "npm install" and "gulp build". Copy the output
/dist/viewer-assets/js/viewerCustomizations.js file over the /viewer-assets/js/viewerCustomizations.js file in the
sample. For more information on building the Viewer assets, see the README file in the viewer-assets folder.

You have completed adding a custom button.

Add Keyboard Shortcuts

Introduction
The Viewer includes support for some keyboard shortcuts. This topic will walk through how the jQuery.hotkeys
plugin (https://github.com/jeresig/jquery.hotkeys) is used to support adding keyboard shortcuts, as well as how
easy it is to remove the built-in keyboard support.

The current implementation represents some (but not all) that can be accomplished with keyboard shortcuts. The
currently supported keyboard combinations are detailed in the tables below:

Keyboard Key Combinations for Page Navigation

Number Keyboard
Action

Key
Combinations Result

1. ‘keydown’ ‘pageup’ Scrolls the document one page up.

2. ‘keydown’ ‘pagedown’ Scrolls the document one page down.

3. ‘keydown’ ‘home’ document scrolls to the first page

4. ‘keydown’ ‘end’ document scrolls to the last page

5. "keydown" ‘ctrl+g’ puts the cursor in The Viewer’s ‘go to page’ edit box. It allows user to
enter the page number to go to.

6. "keydown" down arrow Scrolls the page down.

7. ‘keydown’ up arrow Scrolls the current page up.

8. ‘keydown’ left arrow Scrolls the displayed current page left.

9. ‘keydown’ right arrow Scrolls the displayed current page right.

Zoom in / Zoom out

PrizmDoc Viewer v13.17 151

©2021 My Company. All Rights Reserved.

https://github.com/jeresig/jquery.hotkeys

Number Keyboard Key Action Type Key Combinations Result

1. ‘keydown’ ‘=’ zoomin

2. ‘keydown’ ‘-’ zoomout

Delete Selected Marks

Number Keyboard Key Action Type Key Combinations Result

1. ‘keydown’ ‘delete’ Deletes selected marks.

Modal Dialogs
All the following modal dialogs respond to the ‘esc’ key as if the ‘cancel’ button was pressed:

1. e-signature dialog
2. Image stamp selection dialog
3. Page redaction dialog
4. Download document dialog
5. Print dialog
6. About box

Number Keyboard Key Action
Type

Key
Combinations Result

1. ‘keydown’ ‘esc’ Closes the dialog. The result is equivalent to pressing the
‘cancel’ button.

The viewer.js contains a method, initKeyBindings, that contains the code to handle the keyboard support as
described in the above tables. This method is called in the initializeViewer method. In order for the keyboard
shortcuts to work, jQuery.hotkeys.min.js file is required.

Example

<script src="viewer-assets/js/js/jQuery.hotkeys.js"\></script>

Do not obtain the file from CDN because it is broken. The non-minified version can be obtained from
GitHub: https://github.com/jeresig/jquery.hotkeys This is a small file and it is recommended that you
read all the details about the plugin before using it in your Viewer.

If you either have your own implementation of the keyboard support or prefer not use this implementation in the
viewer.js, simply comment out the call to initKeyBindings() in the initializeViewer method. Also, you can choose
to remove the initKeyBindings method definition completely from your copy of the viewer.js.

The following example shows a snippet of code in the method initKeyBindings for the ‘pageup’ key support for
scrolling one page up.

Example

$('body').on('keydown', null, 'pageup', function () {
 if ($(viewer.viewerNodes.$pageList\[0\]).is(':visible')) {

PrizmDoc Viewer v13.17 152

©2021 My Company. All Rights Reserved.

https://github.com/jeresig/jquery.hotkeys

 //make sure modals are not up
 if (!$(viewer.viewerNodes.$overlayFade\[0\]).is(':visible')) {
 //change to the previous page
 viewer.viewerControl.changeToPrevPage();
 return false;
 }
 }
 return true;
});

The following example shows how you can change the code above to trigger the event on the whole document
object.

Example

$(document).on('keydown', null, 'pageup', function () {
 if ($(viewer.viewerNodes.$pageList\[0\]).is(':visible')) {
 //make sure modals are not up
 if (!$(viewer.viewerNodes.$overlayFade\[0\]).is(':visible')) {
 //change to the previous page
 viewer.viewerControl.changeToPrevPage();
 return false;
 }
 }
 return true;
});

In the above example, line 1 binds the keydown action of the ‘pageup’ key to the in-line handler. For the Viewer,
the node with the selector attribute ‘pageList’ is the parent node. Therefore, the handler code checks to see if this
node is visible. Also, since you do not want the page navigation to occur when the modal dialogs are showing, in
line 4, check for the visibility of the modal dialogs.

Because the elements are divs and are not normally focusable, use a wider net and use ‘body’ as the target node of
the key events. When nothing in particular has focus, document.body acts as a target node of key events. You can
choose to bind to other elements beside the ‘body’ but you may need to give it a tab index. It may not provide
expected results in all the browsers. Most browsers have native keyboard focusable support for the following
element types:

1. Input elements
2. Buttons
3. link elements

There are other things to consider too. Most browsers provide the following keyboard event types:

1. ‘keydown’
2. ‘keyup’
3. ‘keypress’

The implementation in the Viewer uses ‘keydown’ key action. In some cases you may want to use the ‘keyup’ event.
The ‘keypress’ event is not used at all since it is mainly used for capturing key characters entered in the input
elements. Not all browsers are consistent in providing key events for all the keys or key combinations. Some
browsers will not allow to override their default behavior for a particular key combinations. You may need to
experiment/research before choosing key action and key combinations.

The method initKeyBindings also contains some commented out code that demonstrates how to provide

PrizmDoc Viewer v13.17 153

©2021 My Company. All Rights Reserved.

keyboard support for the buttons in the modal dialogs.

Adding Keyboard Support without using jQuery.hotkeys Plugin
First, set up the Viewer as you would normally.

Example

function initKeyBindings (viewerControl) {
 var handler = function(ev){
 return handleGlobalKeypress(ev, viewerControl);
 };

 $(document).on("keydown", handler);
}

var pluginOptions = {
 documentID: viewingSessionId,
 language: languageItems,
 template: htmlTemplates
};

$(document).ready(function () {
 var viewerControl = $("#viewer1").pccViewer(pluginOptions).viewerControl;

 initKeyBindings(viewerControl);
});

Example Code for using pageup and pagedown Keys
This code does not check for modal dialogs but the check can be added as shown in the examples above.

Example

function handleGlobalKeypress (ev, viewerControl) {
 //check for keys
 switch (ev.keyCode) {
 case 33: // Page Up
 ev.preventDefault();
 viewerControl.changeToPrevPage();
 return false;
 case 34: //Page Down
 ev.preventDefault();
 viewerControl.changeToNextPage();
 return false;
 }
}

Build a Custom User Interface

PrizmDoc Viewer v13.17 154

©2021 My Company. All Rights Reserved.

Build a Custom User Interface
It is possible to build a custom Viewer UI by directly embedding the ViewerControl instead of embedding the
Viewer using the jQuery plugin.

There are several benefits to building a custom Viewer UI, including the ability to:

Design menus and button placement that is unique for your customer’s workflow.
Create custom UI elements/behavior.
Arrange UI elements distributed throughout a web page, rather than all Viewer UI elements in a single div.
Choose your own UI framework(s).

The ViewerControl (viewercontrol.js) does not have a dependency on any third-party
frameworks/libraries

Customization Example
In the example below, the ViewerControl is embedded into a page and a simple UI is built around the
ViewerControl. The Viewer created by the example code is shown in the figure below:

PrizmDoc Viewer v13.17 155

©2021 My Company. All Rights Reserved.

The directory structure for this example is:

/
css/

viewercontrol.css (product)
simple.css (custom - shown below)

js/
viewercontrol.js (product)

viewerCustomizations.js (product)
simple.js (custom - shown below)

simple.html (custom - shown below)

NOTE: This example uses jQuery for simplicity and because it is well known to many readers. jQuery is
served from the Google Hosted Libraries CDN.

HTML (simple.html)

 <!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="UTF-8">
 <title>Custom Viewer UI Example</title>
 <!--resources for the viewer-->
 <link rel="stylesheet" href="css/viewercontrol.css">
 <script src="js/viewercontrol.js"></script>
 <script src="js/viewerCustomizations.js"></script>
 <!--Use jQuery to build the UI of the viewer-->
 <script src="//ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js">
</script>
 <!-- Script tag for simple.js, which creates and embeds the custom viewer. -->
 <script src="js/simple.js"></script>
 <!-- CSS for the page -->
 <link rel="stylesheet" href="css/simple.css">
</head>
<body>
<!-- This div contains the custom viewer and UI elements. -->
<div class="viewerWrapper">
 <!-- There are some buttons/tools in the viewer UI. These will be disabled
until the ViewerReady event. -->
 <button id="prevPage" class="viewerButton" disabled>Previous</button>
 <button id="nextPage" class="viewerButton" disabled>Next</button>
 <button id="zoomOut" class="viewerButton" disabled>-</button>
 <button id="zoomIn" class="viewerButton" disabled>+</button>
 <!-- There is a status bar that shows the current and total page number. -->
 <div class="floatRight">Page 1 of <span
id="totalPages">1</div>
 <!-- The ViewerControl is embedded in this element. -->
 <div id="viewerControlContainer">ViewerControl goes here</div>
</div>
</body>
</html>

JavaScript (js/simple.js)

$(document).ready(function() {
 // Get the element where the viewer will be embedded.

PrizmDoc Viewer v13.17 156

©2021 My Company. All Rights Reserved.

 var element = document.getElementById("viewerControlContainer");
 // Create the options object for the viewer
 var options = {
 documentID : "a_valid_document_id",
 imageHandlerUrl: "my_pas_proxy",
 icons : viewerCustomizations.icons,
 language : viewerCustomizations.languages['en-US'],
 // printTemplate : "..." // include a print template for printing
to work
 };
 // Create the viewer control
 var viewerControl = new PCCViewer.ViewerControl(element, options);
 // It's best practice to wait for the "ViewerReady" event before calling the
viewer API.
 viewerControl.on("ViewerReady", function() {
 // Display the page count when the estimated and actual page count are
available.
 viewerControl.on("PageCountReady", displayPageCount);
 viewerControl.on("EstimatedPageCountReady", displayPageCount);
 function displayPageCount(ev) {
 $("#totalPages").html(ev.pageCount);
 }
 // Display the current page number when the page changes.
 viewerControl.on("PageChanged", function(ev) {
 $("#currentPage").html(ev.pageNumber);
 });
 // It's safe to enable the UI buttons during the ViewerReady event
 $(".viewerButton").prop("disabled", false);
 // ...and then hookup the UI buttons
 $("#nextPage").click(function() {
 viewerControl.changeToNextPage();
 });
 $("#prevPage").click(function() {
 viewerControl.changeToPrevPage();
 });
 $("#zoomOut").click(function() {
 viewerControl.zoomOut(1.25); // Zoom out 1.25x
 });
 $("#zoomIn").click(function() {
 viewerControl.zoomIn(1.25); // Zoom in 1.25x
 });
 });
});

NOTE: The sample code that installs with the product demonstrates how to generate a document ID.
The code is too large to be shown in this example.

CSS (css/simple.css)

.viewerWrapper {
 width: 600px;
 height: 600px;
 position: relative;
 border: 1px solid #aaa;
 background: #ddd;
}
#viewerControlContainer {
 position: absolute;

PrizmDoc Viewer v13.17 157

©2021 My Company. All Rights Reserved.

 top: 40px;
 bottom: 0px;
 left: 0px;
 right: 0px;
}
.floatRight {
 float: right
}

Change the Position of the Menu Bar

Introduction
You can change the layout of the tab panes by modifying the markup located in the viewerTemplate.html file by:

Adding the pcc-tab-vertical class to make the tab pane vertical.
Adding either a pcc-left or pcc-right class to specify the side on which the vertical tab pane will appear.

Example

<div class\="tabset pcc-nav-tabset" data-pcc-nav>
 <!-- Tab -->
 <div class\="pcc-tab" data-pcc-nav-tab="demo"\>
 <div class\="pcc-tab-item"\>Demo</div>
 <!-- This tab pane is vertical and left aligned -->

PrizmDoc Viewer v13.17 158

©2021 My Company. All Rights Reserved.

 <div class\="pcc-tab-pane pcc-tab-vertical pcc-left"\>
 <!-- Tab content -->
 </div>
 </div>
 <!-- End tab -->
</div>

Create a Custom Mouse Tool

Introduction
You can create a custom mouse tool in the Viewer by defining the tool and then by updating the UI to show the
button for the tool.

Step 1: Define the tool in JavaScript code
Define the tool in the code before the tool is selected. For example:

Example

// Create the new mouse tool. var myTool = PCCViewer.MouseTools.createMouseTool(
 "PinkLine",
 PCCViewer.MouseTool.Type.LineAnnotation);

// Configure the tool to draw a pink (#FF69B4) line that is 10 pixel thick
myTool.getTemplateMark()
 .setColor("#FF69B4")
 .setThickness(10);

Step 2: Update the UI to show a button for the tool
This modification will take place in the viewerTemplate.html file. The button can be added to several places in the UI,
but a common place to add the button is in the Annotate tab pane. Content of the Annotate tab is defined in the
element with the attribute data-pcc-nav-tab="annotate":

Example

<!-- The following markup will create a button that enables use
 of the mouse tool named "PinkLine".

 The custom attributes that are used:
 * data-pcc-mouse-tool="PinkLine" - specifies that the button selects the
mouse tool named "MyLineTool"
 * data-pcc-context-menu="false" - specifies that a context menu is not shown
for this mouse tool
 -->
<button
 data-pcc-mouse-tool="PinkLine"
 data-pcc-context-menu="false"
 class\="pcc-icon pcc-icon-annotate-line"

PrizmDoc Viewer v13.17 159

©2021 My Company. All Rights Reserved.

 title="Pink Line Tool"\></button>

Create a Custom Tab

Introduction
You can add a new custom tab to the Viewer tab navigation by modifying the markup located in the
viewerTemplate.html file. The tab must be placed inside the div element with the data attribute data-pcc-nav
and it must have a unique data-pcc-nav-tab value:

Example

<div class\="pcc-tabset pcc-nav-tabset" data-pcc-nav>
 <!-- An example of a custom tab -->
 <div class\="pcc-tab" data-pcc-nav-tab="custom"\>
 <div class\="pcc-tab-item"\>
 <!-- Tab label -->
 </div>
 <div class\="pcc-tab-pane"\>
 <!-- Tab content -->
 </div>
 </div>
 <!-- End custom tab -->
</div>

Customize the Markup

Introduction
All of the markup in the Viewer is customizable. This topic covers how to customize using the templates, custom
attributes, and the mouse tools.

Templates
You can change the markup of the Viewer UI components by editing the templates. The templates are HTML files
ending in *.Template.html. The primary navigation tabs and menus are located in the viewerTemplate.html file.

Adding/Removing Template Files

To create your own version of the Viewer template you will need to update the template name where it is being
loaded in viewer.js. For example, if you copy viewerTemplate.html to a new file called customTemplate.html you
would change:

Example

element.html(_.template(options.template.viewer, ...

PrizmDoc Viewer v13.17 160

©2021 My Company. All Rights Reserved.

To:

Example

element.html(_.template(options.template.custom, ...

Currently, in the samples "Template" is removed from the name of the template property in the
template object. For example, viewerTemplate.html becomes template.viewer.

Template Syntax

The templates are consumed using the Underscore.js Template utility function. Variables and JavaScript
conditions can be used within the templates using ERB syntax. For more information, refer to the Underscore
documentation: http://underscorejs.org/#template.

Example

<!-- An example of a variable -->
<button data-pcc-rotate class\="pcc-icon pcc-icon-rotate"
 title="<%= rotate %>"\></button>

Custom Attributes
Throughout the templates, on many elements, there are data attributes starting with data-pcc-. These are used
to identify elements and bind them to functionality defined in the viewer.js file:

Example

<!-- This button will rotate the current page when clicked -->
<button data-pcc-rotate class\="pcc-icon pcc-icon-rotate"\></button>

<!-- Other elements can perform the same function -->
<div data-pcc-rotate class\="customClass"\></div>

Using the example above, this attribute is used as a selector for a $rotatePage jquery object in viewer.js:

Example

this.viewerNodes = {
 $rotatePage: viewer.$dom.find("\[data-pcc-rotate\]") ...

This attribute is then bound to a click event which rotates the current page:

Example

PrizmDoc Viewer v13.17 161

©2021 My Company. All Rights Reserved.

http://underscorejs.org/#template

// Rotate Page button viewer.viewerNodes.$rotatePage.on('click', function () {
 viewer.viewerControl.rotatePage(90);
});

Mouse Tools
The named mouse tools, like this one, are provided by viewercontrol.js:

Example

<button
 data-pcc-mouse-tool="AccusoftSelectToZoom"
 class\="pcc-icon pcc-icon-rectanglezoomtool"\></button>

Using a Custom Mouse Tool in the Viewer UI

A named mouse tool can be used in the default UI of the Viewer. This allows one or more tools to be pre-
configured. Setting the data-pcc-mouse-tool attribute to false will prevent the context menu from opening if
the mouse tool is an annotation or redaction.

Enabling a custom tool in the Viewer UI requires modification of the viewerTemplate.html file, as shown in the
example below:

Example

<!-- The following markup will create a button that enables use
 of the mouse tool named "MyLineTool". -->
<button
 data-pcc-mouse-tool="MyLineTool"
 data-pcc-context-menu="false"
 class\="pcc-icon pcc-icon-annotate-line"
 title="My Line Tool"\></button>

Customize the Mouse Tools
Mouse tools are named, customizable instances that can be used by any Viewer instance. Each mouse tool has a
type, which determines how the tool behaves and the properties the tool has.

Mouse Tool Names
Mouse tools are given a name when a mouse tool is created. This name is used to get and set the mouse tool that
is used by the Viewer:

Example

// The name of a new mouse tool
var myMouseToolName = "MyLineTool";

PrizmDoc Viewer v13.17 162

©2021 My Company. All Rights Reserved.

// Create the new mouse tool
PCCViewer.MouseTools.createMouseTool(
 myMouseToolName,
 PCCViewer.MouseTool.Type.LineAnnotation);

// Set the current mouse tool of the ViewerControl by passing the name
viewerControl.setCurrentMouseTool(myMouseToolName);

The mouse tool name also specifies the new mouse tool in the MouseToolChanged event:

Example

// The MouseToolChanged event triggers when the mouse tool changed.
// Use the ViewerControl#getCurrentMouseTool() method or event#mouseToolName
property
// to get the new mouse tool name.
viewerControl.on("MouseToolChanged", function(ev) {
 viewerControl.getCurrentMouseTool() == ev.mouseToolName; // true
});

Mouse Tool Objects
PCCViewer.MouseTool objects represent mouse tools, and the objects can be used to configure the mouse tools.

These objects are returned when creating a mouse tool with method
PCCViewer.MouseTools.createMouseTool(...). The object can be retrieved at a later time using the method
PCCViewer.MouseTools.getMouseTool():

Example

// Get the MouseTool object for an existing tool
var myMouseTool = PCCViewer.MouseTools.getMouseTool(myMouseToolName);

The MouseTool object has getters for the tool name and type:

Example

myMouseTool.getName(); // returns "MyLineTool"
myMouseTool.getType(); // returns "LineAnnotation"

Depending on the tool type, additional getters or setters may be available to configure the tool:

Example

// All mouse tools that draw a mark (annotation and redaction) have a
// getter `getTemplateMark()`
if (myMouseTool.getType() === "LineAnnotation") {
 // The method gives access to a template mark that configures how the tool

PrizmDoc Viewer v13.17 163

©2021 My Company. All Rights Reserved.

draw
 // the annotation or redaction.
 // In this example the mouse tool is configured to draw a red line.
 myMouseTool.getTemplateMark().setColor("#FF0000");
}

Mouse Tool Type
The mouse tool type specifies the behavior of a mouse tool.
The API has many different mouse tool types, all of which are specified in the enumeration
PCCViewer.MouseTool.Type.
The mouse tool type is specified when creating the mouse tool, and it cannot be changed.

Multiple Mouse Tools of one Type
Creating multiple mouse tools of one type is useful if several pre-defined behaviors are needed for one type of
mouse tool. For example, this gives the ability to create two text highlighter tools, one that highlights red and the
other that highlights green:

Example

// Create the red highlighter
PCCViewer.MouseTools.createMouseTool(
 "RedHighlighter",
 PCCViewer.MouseTool.Type.HighlightAnnotation)
 .getTemplateMark()
 .setFillColor("#FF0000");

// Create the green highlighter
PCCViewer.MouseTools.createMouseTool(
 "GreenHighlighter",
 PCCViewer.MouseTool.Type.HighlightAnnotation)
 .getTemplateMark()
 .setFillColor("#00FF00");

Pre-defined Named Mouse Tools
The file viewercontrol.js creates several named mouse tools as listed in the table below. These named mouse tools
are used by the Viewer out-of-the-box.

Name Type

"AccusoftMagnifier" PCCViewer.MouseTool.Type.Magnifier

"AccusoftSelectToZoom" PCCViewer.MouseTool.Type.SelectToZoom

"AccusoftPan" PCCViewer.MouseTool.Type.Pan

"AccusoftPanAndEdit" PCCViewer.MouseTool.Type.PanAndEdit

"AccusoftSelectText" PCCViewer.MouseTool.Type.SelectText

"AccusoftEditMarks" PCCViewer.MouseTool.Type.EditMarks

PrizmDoc Viewer v13.17 164

©2021 My Company. All Rights Reserved.

"AccusoftLineAnnotation" PCCViewer.MouseTool.Type.LineAnnotation

"AccusoftArrowAnnotation" PCCViewer.MouseTool.Type.LineAnnotation

"AccusoftRectangleAnnotation" PCCViewer.MouseTool.Type.RectangleAnnotation

"AccusoftEllipseAnnotation" PCCViewer.MouseTool.Type.EllipseAnnotation

"AccusoftTextAnnotation" PCCViewer.MouseTool.Type.TextAnnotation

"AccusoftStampAnnotation" PCCViewer.MouseTool.Type.StampAnnotation

"AccusoftHighlightAnnotation" PCCViewer.MouseTool.Type.HighlightAnnotation

"AccusoftRectangleRedaction" PCCViewer.MouseTool.Type.RectangleRedaction

"AccusoftTransparentRectangleRedaction" PCCViewer.MouseTool.Type.TransparentRectangleRedaction

"AccusoftTextRedaction" PCCViewer.MouseTool.Type.TextRedaction

"AccusoftStampRedaction" PCCViewer.MouseTool.Type.StampRedaction

Name Type

Customize the Styles

Introduction
This topic covers how to customize the styles in the Viewer. Depending on your needs, you can make minor
changes to the Viewer by following the guidance below. Or, if you want fine-grained control of the Viewer's look
and feel, you can go to the PrizmDoc Viewer Client Assets Build Guide for detailed instructions.

Customizing the Styles
Before you begin, make sure that the included .css file is loaded in the Viewer: normalize.min.css.

Namespace

The Viewer uses the class .pccv to namespace the styles it uses. In order to override any selector used in the
Viewer, your selector must begin with the class .pccv:

Example

/* Set the navigation tab bar to dark red */
 .pccv .pcc-nav-tabset,
 .pccv .pcc-nav-tabset .pcc-tab-item,
 .pccv .pcc-status-bar { background: #5b100d; }

Organization

All resulting CSS files have a Less counterpart in the root of the less folder. These are the only files that can be built
on their own. File names beginning with an underscore (_) are partial style files, and are included as modules in
the root files. These individual components are split out into the following structure:

base - These files contain the variables and mixins used by the Viewer, as well as the overall layout. Included

PrizmDoc Viewer v13.17 165

©2021 My Company. All Rights Reserved.

https://github.com/Accusoft/prizmdoc-viewer

here are also the reusable, generic components, such as the grid and form inputs.
components - These files contain the large Viewer components, and are named in a self-explanatory way.
For example, styles related to the search functionality are held in the _search.less file.

Variables

There are many variables contained in less/base/_variables.less, which control things like the image resources, color
scheme, and toolbar sizing. These variables can be modified in order to propagate changes throughout the Viewer.

Icons

A number of icons are used throughout the Viewer for different UI elements. These icons are stored in the
icons\svg*.svg files. Any individual SVG file can be scaled up or down for use at any viewport size. Additionally, the
color of any SVG file can be altered via CSS attributes for use on both light and dark backgrounds.

Media Queries

The Viewer utilizes CSS3 Media Queries with expressions using min-width and max-width to adjust the layout of
navigation and dialogs. The Media Query Breakpoints are set according to the Viewer layout. On smaller viewports
the tab navigation collapses into a menu and some tools are hidden. On larger viewports the dialogs transform
from horizontal to a vertical layout to utilize screen real estate.

The breakpoints are located in the less/base/_breakpoints.less file, and are used throughout the less files as
detached rulesets. The breakpoints are as follows:

Example

/* Target modern browsers that support media queries */
.modernView(@rules) {
 @media (min-width: 0) { @rules(); }
}

/* Mobile & Tablet Sizes, collapse navigation tabs into menu */
.mobileView(@rules) {
 @media (max-width: 767px) { @rules(); }
}

/* Desktop Sizes */
.desktopView(@rules) {
 @media (min-width: 768px) { @rules(); }
}

Grid System

The Viewer uses a basic grid system to assist with the UI layout. Through a series of rows and columns the layout
can scale dynamically. Rows are used to create horizontal groups of columns. Columns are created by defining the
number of twelve columns you will span. For example, three columns would use three divs with a class of .pcc-col-
4:

Example

<div class="pcc-row">
 <div class="pcc-col-4">Left</div>
 <div class="pcc-col-4">Center</div>
 <div class="pcc-col-4">Right</div>

PrizmDoc Viewer v13.17 166

©2021 My Company. All Rights Reserved.

 </div>

Legacy CSS support

The legacy CSS necessary for legacy browsers is held in the less/legacy.less file. Here we address unsupported or
troublesome CSS features like drop shadows, opacity or background alpha transparency. In addition, because
Media Queries are not supported in some legacy browsers and no Media Query polyfills are used in this regard, we
add additional styles here that are accounted for in Media Queries in modern browsers.

Polyfills

There are a few polyfills used to provide support for modern browser features:

Normalize (https://necolas.github.io/normalize.css/) - Normalize provides better cross-browser consistency
in the default styling of HTML elements.

Disable the Print Button

Introduction
There are two ways of disabling printing inside the Viewer:

1. Just disable printing when initializing the viewer
2. Make a custom build of the viewer which has the printing button removed from the UI

Option 1: Just Disable Printing When Initializing the Viewer
You can easily disable printing when initializing the viewer. Just add the following uiElements parameter to the
options object:

Example

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 /*
 ...other required options omitted for clarity...
 */
 uiElements: {
 printing: false
 }
 });
 });
</script>

Option 2: Make a Custom Build of the Viewer
If you need more customization of the viewer UI than the initialization API allows, you can always perform your own
custom build of the viewer after modifying the original HTML templates. To do this, you will need the source code for
the client viewer build, available at https://github.com/Accusoft/prizmdoc-viewer.

PrizmDoc Viewer v13.17 167

©2021 My Company. All Rights Reserved.

https://necolas.github.io/normalize.css/
https://github.com/Accusoft/prizmdoc-viewer

If you wanted to remove the printing button from the UI in this way, you would need to modify
src/templates/viewerTemplate.html, removing the element with the attribute data-pcc-
print="launch".

After you have made your changes, perform your own build and use the new dist/viewer-assets output in place
of the existing viewer-assets in your application.

For more information about building the client viewer, see the README.

Additional Resources

Design Basics - This topic gives you an overview of how to customize the Viewer.
Available Parameters for the UI - This topic provides a list of available UI configuration options.
Interactive Code Examples - These live code examples allow you to see how to customize the Viewer.

Enable Multiple Redaction Reasons

Introduction
When creating a redaction in the PrizmDoc Viewer Client UI, you can apply multiple redaction reasons to be
associated with the selected redaction. These reasons will be visible in the Viewer and saved to PDF along with the
rest of the redacted content.

How to Enable Multiple Redaction Reasons
The Viewer uses the single redaction reason mode by default. You need to explicitly enable it to use Multiple
Redaction Reasons.

When creating the viewer define the redaction reasons list and enable multiple redaction reasons with a JavaScript call
like this:

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 ...
 annotationsMode: "LayeredAnnotations",
 redactionReasons: {
 autoApplyDefaultReason: true,
 enableRedactionReasonSelection: true,
 enableFreeformRedactionReasons: true,
 maxLengthFreeformRedactionReasons: 40,
 enableMultipleRedactionReasons: true,
 reasons: [
 {
 reason: "1.a",
 description: "Client Privilege"
 },
 {
 reason: "1.b",
 description: "Privacy Information due to HIPAA regulations"
 },
 {
 reason: "1.c",
 description: "Redacted"
 }
]

PrizmDoc Viewer v13.17 168

©2021 My Company. All Rights Reserved.

https://github.com/Accusoft/prizmdoc-viewer
https://github.com/Accusoft/prizmdoc-viewer/blob/master/README.md
https://www.accusoft.com/code-examples/configure-the-viewers-ui/

 }
 });
 });
</script>

If you run your web application now and create some redactions, the Viewer should display the reasons list with
descriptions and allow you to select multiple reasons:

For a complete list of redactionReasons options when initializing the Viewer plugin, refer to the redactionReasons
API topic.

How to hide and show action items in the immediate menu
Let's say we don't want the "Add Comment" and "Delete" items to be shown in the immediate menu. It can be
configured with the immediateActionMenuActionsFilter property from viewer Options:

<script type="text/javascript">
 $(function() {
 $('#viewerContainer').pccViewer({
 ...
 annotationsMode: "LayeredAnnotations",
 redactionReasons: {
 ...

PrizmDoc Viewer v13.17 169

©2021 My Company. All Rights Reserved.

 },
 immediateActionMenuActionsFilter: {
 comment: false,
 "delete": false
 }
 });
 });
</script>

The immediate menu will look like the following after this change:

How to adjust immediate menu size
You can adjust the immediate menu by changing the CSS style for the pcc-immediate-action-menu class. Create
a file with the name viewer-style-customization.css and put content:

.pcc-immediate-action-menu {
 max-width: 450px;
 max-height: 75%;
}

PrizmDoc Viewer v13.17 170

©2021 My Company. All Rights Reserved.

Then update your application HTML file and add a link to the viewer-style-customization.css file so that it is
placed after the viewer-assets/css/viewer.css link:

 <link rel="stylesheet" href="viewer-assets/css/viewer.css">
 <link rel="stylesheet" href="viewer-style-customization.css">

It will result in the following view:

Reorganize Menus
All of the menus and navigation in the Viewer are customizable.

Templates
You can change the markup of the Viewer UI components by editing the templates. The templates are HTML files
ending in *.Template.html. The primary navigation tabs and menus are located in viewerTemplate.html.

Adding/Removing Template Files

If you wish to create your own version of the Viewer template, you will need to update the template name where it

PrizmDoc Viewer v13.17 171

©2021 My Company. All Rights Reserved.

is being loaded in viewer.js. For instance, if you copy viewerTemplate.html to a new file called
customTemplate.html you would change:

Example

element.html(_.template(options.template.viewer, ...

To:

Example

element.html(_.template(options.template.custom, ...

Currently in the samples, "Template" is removed from the name of the template property in the
template object (e.g., viewerTemplate.html becomes template.viewer).

Template Syntax

The templates are consumed using the Underscore.js Template utility function. Variables and JavaScript conditions
can be used within the templates using ERB syntax. For more information, see the Underscore documentation at
http://underscorejs.org/#template.

Example

<!-- An example of a variable -->
<button data-pcc-rotate class="pcc-icon pcc-icon-rotate"
 title="<%= rotate %>"></button>

Removing Elements
To remove buttons from the menu, you can remove the markup, comment out the markup, or add a CSS class to
the element.

Example

<!-- This button is no longer visible
 <button data-pcc-rotate class="pcc-icon pcc-icon-rotate"></button>
-->

<!-- This element is hidden because of a pcc-hide class -->
<div data-pcc-rotate class="customClass pcc-hide"></div>

Data Attributes
Throughout the templates, on many elements, there are data attributes starting with data-pcc-. These are used to
identify elements and bind them to functionality defined in viewer.js:

PrizmDoc Viewer v13.17 172

©2021 My Company. All Rights Reserved.

http://underscorejs.org/#template

Example

<!-- This button will rotate the current page when clicked -->
<button data-pcc-rotate class="pcc-icon pcc-icon-rotate"></button>

<!-- Other elements can perform the same function -->
<div data-pcc-rotate class="customClass"></div>

Customizing CSS
It is recommended to create your own CSS file and add it to the bottom of the cascade. This would be after
normalize.min.css, viewer.css, viewercontrol.css, and legacy.css. All selectors in viewer.css have a parent of
.pccv, in order to override the .pccv parent should be in the selector:

Example

/* Set the navigation tab bar to dark red */
.pccv .pcc-nav-tabset,
.pccv .pcc-nav-tabset .pcc-tab-item,
.pccv .pcc-status-bar {background:#5b100d}

CSS Polyfills

There are a few polyfills used to provide support for modern browser features:

Normalize (http://necolas.github.io/normalize.css/) - Normalize provides better cross-browser consistency
in the default styling of HTML elements.

Scroll the Viewer Programmatically
The ViewerControl API offers two methods for scrolling the Viewer:

The 'scrollToAsync(target)' method will scroll the Viewer to a specified target/location within the Viewer.
The 'scrollBy(offsetX, offsetY)' method will scroll the Viewer by a specified number of pixels.

Scroll to a Specific Target
The API enables scrolling to a specific target or location within the Viewer. Possible targets are:

a mark (annotation, redaction, or signature)
a conversation
a search result, or
a point on a specific page

Use the method PCCViewer.ViewerControl#scrollToAsync(target) to scroll to a specific target, as shown in the
following code example:

Example

PrizmDoc Viewer v13.17 173

©2021 My Company. All Rights Reserved.

http://necolas.github.io/normalize.css/

myViewerControl
 .scrollToAsync({
 pageNumber: 2,
 x: 500,
 y: 500
 })
 .then(
 function onFulfilled() {
 alert("The point was scrolled into view.")
 },
 function onRejected() {
 alert("Something went wrong: ")
 }
);

The scrollToAsync method returns a PCCViewer.Promise that is fulfilled when the target is scrolled into view and
has been displayed. In the onFulfilled callback is an appropriate time to take additional programmatic actions
against the target (e.g. put a mark in text editing mode).

The method will attempt to center the target. If the full target does not fit at the current scale, then it will attempt
to center the top left corner of the target. The method will not scroll past the bounds of the document, so in some
cases it will scroll to as close to centering the target as possible.

There is also the ViewerControl#scrollTo(target) method that returns the ViewerControl object rather
than a promise. It is recommended that you use scrollToAsync, unless method chaining is desired.

Scroll by a Number of Pixels
The API enables scrolling the content in the Viewer by a specified number of pixels. The method
PCCViewer.ViewerControl#scrollBy(offsetX, offsetY) allows scrolling up, down, left, or right. Scrolling down or right
is performed by passing positive offset values. Scrolling up or left is performed by passing negative offset values.

The following example demonstrates how to scroll down using this method:

Example

// Scroll down by 100 pixels
myViewerControl.scrollBy(0, 100);

This method will scroll content until it reaches the bounds of the document, at which point the method will stop
scrolling in that direction.

When the ViewerControl is in SinglePage view mode, this method will only scroll within the current
page, it will not change pages.

Set the Initial Zoom Factor

Example Integration
When a document loads, it defaults to the size of the screen. While this ensures all documents fit on the screen,
certain documents may be sized too large. To prevent this, you can set an initial zoom of the document before it is
displayed. To set a specific scaling factor before the document loads with optimal performance, subscribe to the

PrizmDoc Viewer v13.17 174

©2021 My Company. All Rights Reserved.

PageOpening event to set the target scale before PageDisplayed has fired.

The PageOpening event is triggered when a page being opened has reached the point that it has height, width, and
resolution data but hasn’t yet been displayed. This example sets the initial zoom of the Viewer at runtime so that it will
initialize at 125% zoom factor instead of auto-fit:

Example

function pageOpeningHandler() {
 // Set the initial page zoom to a maximum of 125%
 if (viewerControl.getScaleFactor() > 1.25) {
 viewerControl.setScaleFactor(1.25);
 }
 // Remove the event subscription since we only want to respond to the first
PageOpening
 viewerControl.off(PCCViewer.EventType.PageOpening, pageOpeningHandler);
}
viewerControl.on(PCCViewer.EventType.PageOpening, pageOpeningHandler);

Subscribe to Events

Subscribing to ViewerControl Events
The ViewerControl has several events defined in the enumeration PCCViewer.EventType that can be subscribed to
using the .on method. The .off method can be used to unsubscribe to previously subscribed events. Event
subscription allows you to provide a function[m1] that is called whenever the event is fired. This method is called a
'handler'. When the event is triggered, the handler is called with one argument, a PCCViewer.Event object that is
augmented with properties specific to the event type.

Event subscription should be performed immediately after the ViewerControl is created, or within the ViewerReady
event, to ensure that no events are triggered before subscription.

Example

var viewer = new PCCViewer.ViewerControl(viewerElement,
 {
 documentID: viewingSessionId,
 imageHandlerUrl: "../pcc.ashx"
 });

viewer.on(PCCViewer.EventType.ViewerReady, viewerReadyHandler);

function viewerReadyHandler(event) {
 alert("The ViewerReady event was fired.);
 // Now Subscribe to the event PCCViewer.EventType.PageChanged
 //exposed by the API
 viewer.on(PCCViewer.EventType.PageChanged, function(event) {
 alert("The current Page is " + event.pageNumber);
});
 //subscribe to other events here…
}

An enumeration, PCCViewer.EventType, defines event types that are triggered by the ViewerControl.

PrizmDoc Viewer v13.17 175

©2021 My Company. All Rights Reserved.

It's acceptable to use this enum or use string literals when subscribing and unsubscribing.

Work with Annotations
This section provides details on how to change annotation default values, load annotations from a web tier, work with
annotation layers and work with annotations programmatically:

Change Annotation Default Values
Load Annotations from the Web Tier
Work with Annotation Layers
Work with Annotations Programmatically

Change Annotation Default Values

Changing Annotation Default Values
You can customize the default behavior of an annotation by modifying the button markup located in
viewerTemplate.html.

In this example the mouse tool will draw a green line and will not open the context menu:

Example

<button data-pcc-mouse-tool="AccusoftLineAnnotation"
 data-pcc-default-fill-color="#ff0000"
 data-pcc-context-menu="false"></button>

Default Data Attributes

These are the current data attributes that are being used to set defaults:

Attribute Value
Type Description

data-pcc-default-
fill-color

String The default fill color for the annotation. This must be a hexadecimal string of 6
characters preceded by a #.

data-pcc-context-
menu

Boolean Whether or not to show the context menu when the annotation is drawn. Default is
true.

Load Annotations from the Web Tier
Annotation layers may be persisted to the web tier and then loaded back into the Viewer at a later time. On the web
tier, the resource representing a layer is referred to as the 'markup layer record' while in the Viewer, it’s referred to as
the 'markup layer object'. An important distinction to make is that the layer object in the Viewer has two IDs
associated with it while a layer record persisted to the web tier has only one. A layer object in the Viewer has both an
'id' and a 'markupLayerRecordId' while a persisted layer record has only a 'markupLayerRecordId'.

What’s the difference? A layer’s 'id' is a runtime identifier that exists only for the life of the layer object. This 'id' is
needed for several reasons; one of them being as a unique object identifier for the period of time when a layer is

PrizmDoc Viewer v13.17 176

©2021 My Company. All Rights Reserved.

created in the Viewer but not yet persisted to the web tier. Only when a layer is persisted to the web tier will it have a
'markupLayerRecordId'.

The following is a code example for loading layer records in to the Viewer:

Example

// Get a ViewerControl object
var viewer = new PCCViewer.ViewerControl(viewerElement, {
 documentID: viewingSessionId,
 imageHandlerUrl: "../pcc.ashx"
});

// Retrieve a list of the annotation layer records persisted on the web tier.
viewer.requestMarkupLayerNames().then(
 function onResolve(annotationLayerRecords) {
 // Load a specific record so that its data is available to the API
 viewer.loadMarkupLayers(annotationLayerRecords[0].layerRecordId).then(
 function onResolve(annotationLayers){
 // A layer object representing the persisted record is now created.
 // Any marks and their associated comments are now displayed
 // on the loaded document.
 console.log("Annotation layer loaded: ", annotationLayers[0]);
 },
 function onReject(reason) {
 console.log("Failed to load annotation layer. ", reason);
 }
);
 },
 function onReject(reason) {
 console.log("Failed to load annotation layer record list. ", reason);
 }
);

Work with Annotation Layers
PrizmDoc Viewer’s Annotation Layering functionality makes it possible to create, view and manage multiple sets of
annotations for a document enabling collaborative annotating and commenting scenarios for your document
review needs.

What's an Annotation Layer?
An annotation layer (or layer) is a collection of annotations saved in a unique file (under this definition all
annotation files you currently have are layers). The layer may be modified over time as often as desired and can be
modified by different users, however, only a single user can work with the file at a time.

In order to maintain layer integrity, only one user can be modifying a layer file at any given
moment.

The best way to achieve this is by having each user create their own layer for editing; this is the main scenario that
annotation layers are designed upon. Note that there is nothing in the PrizmDoc Viewer code that will restrict the
incorrect usage of layer files, so this is an important consideration for your implementation.

PrizmDoc Viewer v13.17 177

©2021 My Company. All Rights Reserved.

Review Layers
A "Review Layer" is simply a layer that has been loaded but cannot be modified by the current user. The user may
load as many layers for review as they like, and each of these layers can be made independently visible/invisible via
the user interface. While the user cannot modify any of the annotations on a Review Layer, they may comment on
them which makes it possible to have conversations across multiple reviewers of a document.

With this system it’s possible to have as many people working concurrently to annotate a document as desired,
and these people can see all other annotation layers if they wish (the layers will be as up-to-date as the last time
the file was loaded for a user).

Annotation File Format
When adding the Annotation Layering functionality, we updated our annotation storage mechanism to
accommodate cross-layer references for commenting. For this reason, we have moved to a JSON file format for all
annotation persistence. This JSON format is based on our ability to persist individual annotations into a JSON
object.

It's important to note that once annotation layering has been turned 'on', via the Viewer configuration option, that
all persistence will use the JSON file format. This means that when an XML file (legacy) is loaded for editing, saving
it again will save it as a JSON file. When both an XML and JSON file exist with the same root filename, only the
JSON file will be visible to the user (it will be as if the XML file no longer exists, although it still remains as a
separate file).

For more detailed information, refer to the following topics:

Loading Annotations from the Web Tier
API - jQuery.fn

Work with Annotations Programmatically

Introduction
The API offers methods to perform create, read, update, and delete operations on annotations. Other API methods
available are for selection/de-selection of marks, obtaining selected annotations, re-ordering of annotation mark
objects (within a z-order of a page), and loading and saving of annotations.

Create & Update Annotations
When adding annotations programmatically using the addMark method to distant pages of a large document, or if
you are not sure if your annotation object will straddle the page width and height boundaries, it is recommended that
you use the requestPageAttributes method to obtain width and height of a page. This will help you to remain within
the confines of the image rectangle when specifying width and height of the annotation’s dimensions (rectangle or
start point and end point).

Example

var pageNumber = 1;
var promise = viewer1.requestPageAttributes(1);
promise.then(
 function(pageAttributes){
 try{

PrizmDoc Viewer v13.17 178

©2021 My Company. All Rights Reserved.

 //create stamp annotation on page 1
 var stampMark1 = viewer1.addMark(1,
PCCViewer.Mark.Type.StampAnnotation);
 //update the created rectangle mark using the property setters
 //use width and height obtained in the promise object to place the
stamp annotation object
 // assume the width obtained was 612 and height 792.
 stampMark1.setRectangle({x: 250, y: 50, width :
 pageAttributes.width - 300, height: pageAttributes.height -
500});
 //provide the label for the stamp mark
 stampMark1.setLabel("Reviewed");
 //set the color to red
 stampMark1.setColor("#ff0000");
 // … add more annotations on this page 1 ….
 var rectangleMark1 = viewer1.addMark(1,
PCCViewer.Mark.Type.RectangleAnnotation);
 rectangleMark1.setRectangle({x: 250, y: 50, width :
 pageAttributes.width - 300, height: pageAttributes.height - 500});
 //set fill color to blue
 rectangleMark1.setFillColor("#0000ff");
 }
 catch(e){
 alert("ERROR: " + e);
 }
 },
 function(rejectedReason) {
 alert("Unable to add annotations because page attributes promise was
rejected, error = " +
 rejectedReason);
 }
);

Create Text-Based Mark from Search Result
You can create a text-based mark from a search result by using addMarkFromSearchResult.

Read Annotations Properties
Property getters can be used to obtain current property values. It is not necessary to use requestPageAttributes
method for these operations.

Example

var label = stampMark1.getLabel();
var rectangle = stampMark1.getRectangle();

Select Annotations
The following example shows how to select annotations:

Example

PrizmDoc Viewer v13.17 179

©2021 My Company. All Rights Reserved.

//get all marks var marks = getAllMarks();

//select annotations returned by the above getAllMarks() call (marks is an array)
viewer1.selectMarks(marks);

The graphic below shows the previously created marks are selected after selectMarks call:

Deselect Annotations
The following example shows how to deselect annotations:

Example

//Get the selected marks var selectedMarks = viewer1.getSelectedMarks();
if(selectedMarks.length > 0) {
 //deselect all the marks in all the pages
 viewer1.deselectMarks();
 //programmatically check if all marks were deselected
 var checkSelectedMarks = viewer1.getSelectedMarks();
 if(checkSelectedMarks.length === 0) {
 alert("All annotations marks were deselected");
 }

Reorder Annotations

PrizmDoc Viewer v13.17 180

©2021 My Company. All Rights Reserved.

Reordering of marks applies to all marks on a single page. Reordering does not apply to Highlight annotations
because these type of marks need to remain attached to the Text on the page.

Example

//use moveMarkToFront to bring mark to the front
viewer1.moveMarkToFront(rectangleMark1);

//use moveMarkToBack to the back viewer1.moveMarkToFront(stampMark1);

//use moveMarkForward to bring the mark one slot forward
viewer1.moveMarkForward(rectangleMark1);

//use moveMarkBackward to move the mark one slot backward
viewer1.moveMarkBackward(rectangleMark1);

Delete Annotations
The following example shows how to delete annotations:

Example

//In this example we will delete all the marks that are selected
//Get the selected marks var selectedMarks = viewer1.getSelectedMarks();
//delete if there were any selected if(selectedMarks.length > 0) {
 //delete all the selected marks
 viewer1.deleteMarks(selectedMarks);
}

Save Annotations
You can save annotations created in the currently displayed document using saveMarkupLayer.

Load Annotations
Refer to the topic, Load Annotations from the Web Tier.

Work with Document Comparison Programmatically

Introduction
The API offers methods to request revisions and to get those requested revisions once they have been retrieved.

Requesting and Getting Revisions
Request the revisions for a given document comparison. Revisions requests complete asynchronously. A
PCCViewer.RevisionsRequest will be returned that provides events for revisions retrieval progress and members to

PrizmDoc Viewer v13.17 181

©2021 My Company. All Rights Reserved.

access retrieved revisions:

Example

// Request revisions
var revisionsRequest = viewerControl.requestRevisions();
// Subscribe to the PartialRevisionsAvailable event to get revisions as they become
available
revisionsRequest.on('PartialRevisionsAvailable', function(_event) {
 // Get the newly available revisions
 var newRevisions = _event.partialRevisions;
});
// Subscribe to the RevisionsRetrievalCompleted event to get revisions when all of
them are available
revisionsRequest.on("RevisionsRetrievalCompleted", function(){
 // Get all of the revisions for that comparison
 var revisions = revisionsRequest.getRevisions();
});

Modify viewer.js

Introduction
To facilitate open customization of the Viewer, this file is left unminified and unobfuscated. This file controls the
behavior of the user interface, allowing you to bind custom button behavior or to completely re-implement the
user experience to match any business need. This file utilizes the public ViewerControl API to allow complete
interaction with the underlying Page List document control. To find out more about this, consult the ViewerControl
API section.

Updates to the PrizmDoc Viewer Product
This file will be updated with future releases of the product, introducing new features and enhancing the current
behavior, when necessary. When editing or re-implementing this file, a clear upgrade path should be established in
order to be able to take full advantage of future releases of the product.

Viewer.js Sections
The file is split up into several logical sections, in order to make modifying the file easier. They are as follows, in
order:

Using the Viewer Template and Parsing for DOM Elements

The Viewer Template is inserted into the specified Viewer element, and then individual components are parsed out
using jQuery. For convenience, all jQuery-wrapped elements are places in a variable starting with the \$ character.
For example, the pan tool button element is named \$panTool, indicating that the object has the full jQuery API
available. This naming is maintained throughout the file.

Initialization and Binding the Markup

After the DOM elements are parsed out, behavior is bound to them inside a single initialization function, named
bindMarkup. The content of the short initialization function can be seen right above, in initializeViewer. All DOM

PrizmDoc Viewer v13.17 182

©2021 My Company. All Rights Reserved.

behavior, such as click and input events, are bound to the DOM here using the jQuery API.

Auxiliary Functions

Following are some auxiliary functions, which provide useful and reusable abstractions and wrappers for the
ViewerControl API. An example of this is the setMouseTool function, allowing any part of the file to set the mouse
tool through the ViewerControl API and update all necessary DOM elements accordingly. Other functions include
handling toggle elements, displaying notifications in the Viewer, handling context menu and dialog behavior, and
various others.

ViewerControl Event Handlers

Next are all of the event handler functions. These are written in separate functions in order to allow easy subscribe
and unsubscribe handling. These include events that are currently handled in the Viewer. For a list of all available
events, consult the EventType section of the ViewerControl API.

Create the ViewerControl and Add Listeners

Directly following the event handler, the main Page List viewer control is initialized, and the necessary events are
subscribed. Initializing the main control requires only the \$pageList DOM element, and the original options
object passed into the Viewer and jQuery plugin. For more specifics on initializing the Viewer control, consult the
ViewerControl API.

The DOM element passed into the Viewer control constructor should be a plain DOM element, and
not the jQuery variable. This is why \$pageList.get(0) is used in the code.

Search and Annotation IO Modules

Next are two sections that have been abstracted in a module format. The first handles the search navigation UI, and
the second handles retrieving, opening, and saving annotations. These modules are self-contained, as much as
possible, to allow easy removal of these large parts of code if you are not interested in that specific functionality.

jQuery Plugin

This is the first part of code being executed, and is a simple jQuery wrapper, providing convenience for the Viewer.
It will create a new instance of the Viewer, and can also provide the ViewerControl instance associated to a Viewer
in a particular DOM element. Fore more information on this plugin, consult the jQuery Plugin section of the
ViewerControl API.

Legacy Samples

Introduction
If you are self-hosting your PrizmDoc Viewer backend, we have some legacy samples which you may find useful (these
samples assume you are self-hosting the backend and are not currently designed to be easily configured with our
cloud-hosted backend options). These legacy samples are included in the "Client Installer".

The legacy samples each demonstrate a variety product functionality within a single web application. These samples
are available for the following server-side frameworks:

ASP.NET MVC
ASP.NET WebForms
JSP

Click on any of the links above for instructions on how to setup the sample web application.

PrizmDoc Viewer v13.17 183

©2021 My Company. All Rights Reserved.

Legacy ASP.NET MVC Sample

Installation
1. Ensure that Microsoft’s Internet Information Service (IIS) is enabled on the computer that will be running the .NET

MVC 5 sample. For steps on how to enable IIS, go to the How to Enable Internet Information Services page.
2. Ensure that .NET 4.5 is installed. You can download it from the Microsoft .NET Framework page.
3. Run the "Client Installer".

4. During installation, make sure the following features are selected to be installed:

Legacy Samples
PAS (PrizmDoc Application Services)
Configure ASP.NET Samples with IIS
Re-register ASP.net 4.0 with IIS

5. After installation, open this URL to make sure the legacy sample is running:

http://localhost:18000/PrizmDoc_HTML5_Viewer_NET_MVC

Overview
1. From the splash page you have three options:

Choice of viewer:

You can choose to load either the Full Viewer, Book Reader or the Comparison Viewer.

Select a sample document -OR- upload a document:

You can choose any of the 5 sample documents (Word, PDF, CAD, Tiff, or JPEG)

Or, you can upload a document from an arbitrary location on your computer. Note that dragging and dropping
a file on this page is not supported in Internet Explorer 8.

2. Full Viewer:

If you select Full Viewer on the splash page, then documents will be viewed with the full-featured, out-of-the-box
Viewer:

PrizmDoc Viewer v13.17 184

©2021 My Company. All Rights Reserved.

https://docs.microsoft.com/en-us/previous-versions/ms181052(v=vs.80)
https://www.microsoft.com/en-us/download/details.aspx?id=30653

3. Book Reader:

If you select Book Reader on the splash page, then documents will be viewed with the book reader. The book reader
demonstrates how the Viewer can be heavily customized:

4. Comparison Viewer

NOTE: This feature requires a Microsoft Office enabled PrizmDoc Viewer License.

If you select Comparison Viewer on the splash page, then you can upload two Word (.doc or .docx) files to be
compared in the Viewer. The Comparison Viewer shows how two Word documents can be reviewed and compared
using PrizmDoc Viewer:

PrizmDoc Viewer v13.17 185

©2021 My Company. All Rights Reserved.

Sample Directory Structure
The legacy ASP.NET MVC sample is installed at C:\prizm\Samples\dotnet\mvc. This folder contains all the MVC related
folders (Models, Views and Controllers), all the Visual Studio related files and our different viewers which are located on the
viewers folder.

PccViewerServices Route

In App_Start/RouteConfig.cs you will find one special route called PccViewerServices. This route will catch all
requests made to the application that start with pcc/. The {*pathInfo} fragment is very important as it will be needed
by our Controller later on.

PccController

The PccController handles the requests from the route in the previous section. It simply passes the pathInfo information
to our own route handler which will handle the request appropriately.

NOTE: If you are interested in seeing how we handle the requests, please take a look at the source code in
Modes/PccViewer.

Folder contents: viewers/full-viewer-sample

NOTE: The full viewer (with the comparisonMode configuration parameter set to true) is used for document
comparison.

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, and images that make up the Viewer.

viewer-assets/src

folder
Contains Less, icons, languages, and HTML templates that can be used to build the Viewer
CSS and customizations. This folder is non-essential, and does not need to be re-distributed.

viewer-

assets/Gulpfile.js

Contains Gulp tasks to build the Viewer Less, icons, and HTML templates. This file is non-
essential and does not need to be re-distributed.

viewer- A file used by npm (a package manager). It defines the dependencies installed by npm, which

PrizmDoc Viewer v13.17 186

©2021 My Company. All Rights Reserved.

viewer-

assets/package.json are required to run Gulp and compile the Viewer Less, icons, and HTML templates. This file is
non-essential and does not need to be re-distributed.

predefinedSearch.json This data file contains information defining search queries that will appear as selectable
items in the full viewer. > NOTE: This file is consumed by the page Default.aspx and the
JSON is injected into the HTML that is returned by Default.aspx. Ultimately, the predefined
search terms are provided as a JavaScript hash, when the Viewer is created.

redactionReason.json This data file contains information defining redaction reasons that are available in the Viewer.
> NOTE: This file is consumed by the page Default.aspx and the JSON is injected into the
HTML that is returned by Default.aspx. Ultimately, the redaction reasons are provided as a
JavaScript hash, when the Viewer is created.

Folder contents: viewers/book-reader-sample

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML)
that make up the book reader viewer.

viewer-assets/less

folder
Contains less that can be used to build the book reader CSS. This folder is non-essential, and
does not need to be re-distributed.

viewer-

assets/Gruntfile

Contains Grunt tasks to build the reader less. This file is non-essential and does not need to
be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Grunt and compile the less.

viewer-

assets/selection.json

A file used by the IcoMoon application to generate the icons in the book reader viewer. If
you need to add an icon to the Viewer, you can add the icon to this file and use the IcoMoon
application (https://icomoon.io) to generate a new icon font. This file is non-essential and
does not need to be re-distributed.

viewer-

assets/js/sample-

config.js

Contains references to the assets, web tier, and language files used by the Viewer in this
sample.

Folder contents: viewers/e-signer-sample

File / Folder Description

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js. The files in this folder are non-essential and do not need to be re-
distributed.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the Viewer.

Gulpfile.js Contains Gulp tasks to build the viewer js and css files. This file is non-essential and does not
need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer assets. This file is non-essential and does not
need to be re-distributed.

index.html The default page for the sample. This page calls the pcc.ashx handler to start a viewing session

File / Folder Description

PrizmDoc Viewer v13.17 187

©2021 My Company. All Rights Reserved.

https://icomoon.io/

index.html
with PAS and then the page loads the Viewer.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

Folder contents: viewers/template-designer-sample

File / Folder Description

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js. The files in this folder are non-essential and do not need to be re-
distributed.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the Viewer.

Gulpfile.js Contains Gulp tasks to build the viewer js and css files. This file is non-essential and does not
need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer assets.This file is non-essential and does not
need to be re-distributed.

index.html The default page for the sample. This page calls the pcc.ashx handler to start a viewing session
with PAS and then the page loads the Viewer.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

Configuration with pcc.config

The file pcc.config is used to configure the resources and storage used by the Viewer web tier. This file can be found in
the root of the sample folder This file is self-documenting, but a little information about the configuration options is given
below.

Option Description

<DocumentPath> The sample pulls named documents from this location. The DocumentPath
must have read/write permissions in order for the file drag and drop
functionality of the splash page to work.

<PrizmApplicationServicesScheme> Specifies the scheme (http or https) to use when connecting with PAS.

<PrizmApplicationServicesHost> Specifies the host to use when connecting with PAS.

<PrizmApplicationServicesPort> Specifies the port to use when connecting with PAS.

Development Information

The legacy ASP.NET MVC sample has the following requirements for development:

Visual Studio 2012 or later
.NET 4.5 or later

File / Folder Description

PrizmDoc Viewer v13.17 188

©2021 My Company. All Rights Reserved.

Legacy ASP.NET WebForms Sample

Installation
1. Prior to installation, ensure Microsoft's Internet Information Service (IIS) and ASP.NET 4.0+ are enabled on the

computer that will be running the .NET Web Forms sample.
2. Run the "Client Installer".

3. During installation, make sure the following features are selected to be installed:

Legacy Samples
PAS (PrizmDoc Application Services)
Configure ASP.NET Samples with IIS
Re-register ASP.net 4.0 with IIS

4. After installation, open this URL to make sure the legacy sample is running:

http://localhost:18000/PrizmDoc_HTML5_Viewer_NET_WEBFORMS

Overview
1. From the splash page you have three options:

Choice of Viewer:

You can choose to load either the Full Viewer, the Book Reader, or the Comparison Viewer.

Select a sample document -OR- upload a document:

You can choose any of the 5 sample documents (Word, PDF, CAD, Tiff, or JPEG).

Or, you can upload a document from an arbitrary location on your computer. Note that dragging and dropping
a file on this page is not supported in Internet Explorer 8.

2. Full Viewer

If you select Full Viewer on the splash page, then documents will be viewed with the full-featured, out-of-the-box
responsive Viewer:

PrizmDoc Viewer v13.17 189

©2021 My Company. All Rights Reserved.

3. Book Reader

If you select Book Reader on the splash page, then documents will be viewed with the book reader. The Book Reader
demonstrates how the Viewer can be heavily customized:

4. Comparison Viewer

NOTE: This feature requires a Microsoft Office enabled PrizmDoc Viewer License.

If you select Comparison Viewer on the splash page, then you can upload two Word (.doc or .docx) files to be
compared in the Viewer. The Comparison Viewer shows how two Word documents can be reviewed and compared
using PrizmDoc Viewer:

PrizmDoc Viewer v13.17 190

©2021 My Company. All Rights Reserved.

Directory Structure
The samples are installed at C:\prizm\Samples\dotnet\webforms. This folder contains 6 sub-folders, one folder for
each of the four samples (full Viewer, book reader, e-signer and the e-signer template designer) and two folders for the
splash pages (main splash page and the e-sign splash page):

Each of the sample folders are completely self-contained, meaning that they contain all of the files needed to run the sample.
Furthermore, with the exception of a few project files and build files, the sample folders contain only the files needed to run
the sample.

Folder contents: full-viewer-sample

NOTE: The full viewer (with the comparisonMode configuration parameter set to true) is used for document
comparison.

File / Folder Description

App_Code folder Contains classes that support the communication between the Viewer and PAS. While the
code for the classes can be modified as needed, modifications should be done with care. See
PrizmApplicationServices.cs to see how we integrate the sample with PAS and see
PccConfig.cs to see how we load the pcc.config configuration file.
The files in this folder are essential and must be re-distributed to run the full Viewer.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, and images that make up the Viewer.

viewer-assets/src

folder
Contains Less, icons, languages, and HTML templates that can be used to build the Viewer
CSS and customizations. This folder is non-essential, and does not need to be re-distributed.

PrizmDoc Viewer v13.17 191

©2021 My Company. All Rights Reserved.

viewer-

assets/Gulpfile.js

Contains Gulp tasks to build the Viewer Less, icons, and HTML templates. This file is non-
essential and does not need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer Less, icons, and HTML templates. This file is
non-essential and does not need to be re-distributed.

viewer-webtier folder Contains files that implement the ASP.NET layer of communication between the Viewer and
PAS.

viewer-

webtier/pcc.ashx

This file handles all incoming requests from the Viewer. This file simply uses the
App_Code/PrizmApplicationServices.cs class to forward all requests to PAS.

viewer-

webtier/pcc.config

Defines the connection settings for PAS.

Default.aspx,
Default.aspx.cs

The default page for the sample. This page loads the full Viewer.

web.config Contains IIS settings.

predefinedSearch.json This data file contains information defining search queries that will appear as selectable
items in the full Viewer.
NOTE: This file is consumed by the page Default.aspx and the JSON is injected into the
HTML that is returned by Default.aspx. Ultimately, the predefined search terms are
provided as a JavaScript hash, when the Viewer is created.

redactionReason.json This data file contains information defining redaction reasons that are available in the Viewer.
NOTE: This file is consumed by the page Default.aspx and the JSON is injected into the
HTML that is returned by Default.aspx. Ultimately, the redaction reasons are provided as a
JavaScript hash, when the Viewer is created.)

Global.asax The Global.asax file, also known as the ASP.NET application file, is a file that contains
code for responding to application-level events raised by ASP.NET or by HttpModules. The
Global.asax file resides in the root directory of an ASP.NET-based application. We use this
file to initialize our PccConfig class.

full-viewer-

sample.sln

Visual Studio solution file to open the sample.

Folder contents: book-reader-sample

File / Folder Description

App_Code folder Contains classes that support the communication between the Viewer and PAS. While the
code for the classes can be modified as needed, modifications should be done with care. See
PrizmApplicationServices.cs to see how we integrate the sample with PAS and see
PccConfig.cs to see how we load the pcc.config configuration file.
The files in this folder are essential and must be re-distributed to run the full Viewer.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML)
that make up the book reader viewer. This file is non-essential and does not need to be re-
distributed.

viewer-assets/less

folder
Contains less that can be used to build the book reader CSS. This folder is non-essential, and
does not need to be re-distributed.

File / Folder Description

PrizmDoc Viewer v13.17 192

©2021 My Company. All Rights Reserved.

viewer-

assets/Gruntfile

Contains Grunt tasks to build the reader LESS definitions. This file is non-essential and does
not need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Grunt and compile the less.

viewer-

assets/selection.json

A file used by the IcoMoon application to generate the icons in the book reader Viewer. If
you need to add an icon to the Viewer, you can add the icon to this file and use the IcoMoon
application (https://icomoon.io) to generate a new icon font. This file is non-essential and
does not need to be re-distributed.

viewer-webtier folder Contains files that implement the ASP.NET layer of communication between the Viewer and
PAS.

viewer-

webtier/pcc.ashx

This file handles all incoming requests from the Viewer. This file simply uses the
App_Code/PrizmApplicationServices.cs class to forward all requests to PAS

viewer-

webtier/pcc.config

Defines the connection settings for PAS.

index.html The default page for the sample. This page calls the pcc.ashx handler to start a viewing
session with PAS and then the page loads the Viewer.

sample-config.js Contains references to the assets, web tier, and language files used by the Viewer in this
sample.

web.config Contains IIS settings.

Global.asax The Global.asax file, also known as the ASP.NET application file, is a file that contains
code for responding to application-level events raised by ASP.NET or by HttpModules. The
Global.asax file resides in the root directory of an ASP.NET-based application. We use this
file to initialize our PccConfig class.

book-reader-

sample.sln

Visual Studio solution file to open the sample.

Folder contents: e-signer-sample

File / Folder Description

App_Code folder Contains classes that support the communication between the Viewer and PAS. While the code
for the classes can be modified as needed, modifications should be done with care. See
PrizmApplicationServices.cs to see how we integrate the sample with PAS and see
PccConfig.cs to see how we load the pcc.config configuration file.
The files in this folder are essential and must be re-distributed to run the full Viewer.

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js.
The files in this folder are non-essential and do not need to be re-distributed.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the Viewer.

Gulpfile.js Contains Gulp tasks to build the viewer JS and CSS files. This file is non-essential and does not
need to be re-distributed.

viewer- A file used by npm (a package manager). It defines the dependencies installed by npm, which

File / Folder Description

PrizmDoc Viewer v13.17 193

©2021 My Company. All Rights Reserved.

https://icomoon.io/

viewer-

assets/package.json are required to run Gulp and compile the viewer assets. This file is non-essential and does not
need to be re-distributed.

viewer-webtier folder Contains files that implement the ASP.NET layer of communication between the Viewer and
PAS.

viewer-

webtier/pcc.ashx

This file handles all incoming requests from the Viewer. This file simply uses the
App_Code/PrizmApplicationServices.cs class to forward all requests to PAS

viewer-

webtier/pcc.config

Defines the connection settings for PAS.

index.html The default page for the sample. This page calls the pcc.ashx handler to start a viewing
session with PAS and then the page loads the Viewer.

web.config Contains IIS settings.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

Global.asax The Global.asax file, also known as the ASP.NET application file, is a file that contains code
for responding to application-level events raised by ASP.NET or by HttpModules. The
Global.asax file resides in the root directory of an ASP.NET-based application. We use this
file to initialize our PccConfig class.

e-signer-sample.sln Visual Studio solution file to open the sample.

Folder contents: template-designer-sample

File / Folder Description

App_Code folder Contains classes that support the communication between the Viewer and PAS. While the code
for the classes can be modified as needed, modifications should be done with care. See
PrizmApplicationServices.cs to see how we integrate the sample with PAS and see
PccConfig.cs to see how we load the pcc.config configuration file.
The files in this folder are essential and must be re-distributed to run the full Viewer.

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js.
The files in this folder are non-essential and do not need to be re-distributed.

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the Viewer.

Gulpfile.js Contains Gulp tasks to build the viewer js and css files. This file is non-essential and does not
need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer assets. This file is non-essential and does not
need to be re-distributed.

viewer-webtier folder Contains files that implement the ASP.NET layer of communication between the Viewer and
PAS.

viewer-

webtier/pcc.ashx

This file handles all incoming requests from the Viewer. This file simply uses the
App_Code/PrizmApplicationServices.cs class to forward all requests to PAS

File / Folder Description

PrizmDoc Viewer v13.17 194

©2021 My Company. All Rights Reserved.

viewer-

webtier/pcc.config

Defines the connection settings for PAS.

index.html The default page for the sample. This page calls the pcc.ashx handler to start a viewing
session with PAS and then the page loads the Viewer.

web.config Contains IIS settings.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

Global.asax The Global.asax file, also known as the ASP.NET application file, is a file that contains code
for responding to application-level events raised by ASP.NET or by HttpModules. The
Global.asax file resides in the root directory of an ASP.NET-based application. We use this
file to initialize our PccConfig class.

template-designer-

sample.sln

Visual Studio solution file to open the sample.

Configuration with pcc.config

The file pcc.config is used to configure the connection settings between the web tier and PAS. The file can be found at:
<sample-folder-name>/viewer-webtier/pcc.config. This file is self-documenting, but a little information about
the configuration options is given below.

Option Description

<DocumentPath> (Only in splash pages) The sample pulls named documents from this location. The DocumentPath
must have read/write permissions in order for the file drag and drop
functionality of the splash page to work.

<PrizmApplicationServicesScheme> Specifies the scheme (http or https) to use when connecting with PAS.

<PrizmApplicationServicesHost> Specifies the host to use when connecting with PAS.

<PrizmApplicationServicesPort> Specifies the port to use when connecting with PAS.

Development Information

The legacy ASP.NET WebForms sample has the following requirements for development:

Visual Studio v2010 or later
.NET 4.0 or later

File / Folder Description

Legacy JSP Sample

Legacy JSP Sample

Installation
This topic contains steps for how to install the legacy JSP sample on Linux and Windows.

NOTE: JDK 1.7 and JRE 1.7+ are required.

PrizmDoc Viewer v13.17 195

©2021 My Company. All Rights Reserved.

1. Run the appropriate "Client Installer" for your OS, Windows or Linux.
2. Install Apache Tomcat.
3. After installation is complete, launch Tomcat Manager.
4. In the WAR file to deploy section, select Choose File.

5. Select PCCSample.war file to upload from the installation location:

For Windows: C:\Prizm\Samples\jsp\target
For Linux: /usr/share/prizm/Samples/jsp/target

6. Click Deploy.

7. PrizmDoc Server web tier will be deployed on your Tomcat server. The deployed app may be found in the following
location:

For Windows: C:\Program Files\Apache Software Foundation\Tomcat 7.0\webapps
For Linux: /var/lib/tomcat7/webapps

8. Give read/write permissions to the "Documents" folder, the "markup" folder and the "markupLayerRecords" folder.
Give read permissions to the "imageStamp" folder. These folders are installed on the following location:

For Windows: C:\Prizm\Samples\
For Linux: /usr/share/prizm/Samples

9. Now you can browse to http://localhost:8080/PCCSample in your browser to see the JSP sample. See the JSP
Directory Structure for more information on where these files are located.

Configure JSP Web Tier with SELinux
If you are running the JSP Web Tier on Security-Enhanced Linux you may experience issues when loading documents in the
Viewer. The Web Tier needs to contact the PrizmDoc Server but SELinux disallows Tomcat processes from making outbound
connections by default. You can run the following command to make the Tomcat domain permissive and allow the Web Tier
to function normally with Tomcat:

semanage permissive -a tomcat_t

Overview
From the splash page you have three options:

1. Choice of Viewer:

You can choose to load either the Full Viewer, the Book Reader, or the Comparison Viewer.

Select a sample document -OR- upload a document:

You can choose any of the 5 sample documents (Word, PDF, CAD, Tiff, or JPEG).
Or, you can upload a document from an arbitrary location on your computer. Note that dragging and dropping
a file on this page is not supported in Internet Explorer 8.

2. Full Viewer:

If you select Full Viewer on the splash page, then documents will be viewed with the full-featured, out-of-the-box
responsive Viewer:

PrizmDoc Viewer v13.17 196

©2021 My Company. All Rights Reserved.

http://tomcat.apache.org/

3. Book Reader:

If you select Book Reader on the splash page, then documents will be viewed with the book reader. The book reader
demonstrates how the Viewer can be heavily customized:

PrizmDoc Viewer v13.17 197

©2021 My Company. All Rights Reserved.

4. Comparison Viewer

NOTE: This feature requires a Microsoft Office enabled PrizmDoc License.

If you select Comparison Viewer on the splash page, then you can upload two Word (.doc or .docx) files to be
compared in the Viewer. The Comparison Viewer shows how two Word documents can be reviewed and compared
using PrizmDoc:

JSP Directory Structure
The jsp samples are installed under /usr/share/prizm/Samples/jsp/Sample/public_html. This folder contains 6 sub-folders,
one folder for each of the four samples (full Viewer, book reader, e-signer and e-signer template designer) and two folders
for the splash pages (main splash page and the e-sign splash page):

PrizmDoc Viewer v13.17 198

©2021 My Company. All Rights Reserved.

Each of the sample folders are completely self-contained, meaning that they contain all of the files needed to run the sample.
Furthermore, with the exception of a few project files and build files, the sample folders contain only the files needed to run
the sample.

Folder contents: common

File / Folder Description

src/com/accusoft/pccis/sample/pas

and
src/com/accusoft/pccis/sample/html5

Contains classes that support the communication between the Viewer and
PrizmDoc Application Services. While the code for the classes can be
modified as needed, modifications should be done with care.

public_html/WEB-INF/web.xml Contains web tier settings.Some of these settings define the connection
for the PrizmDoc Application Services. See more on the Configuration
with web.xml section below.

Folder contents: full-viewer-sample

NOTE: The full viewer (with the comparisonMode configuration parameter set to true) is used for document
comparison.

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, and images that make up the Viewer.

viewer-assets/src

folder
Contains Less, icons, languages, and HTML templates that can be used to build the Viewer
CSS and customizations. This folder is non-essential, and does not need to be re-distributed.

viewer-

assets/Gulpfile.js

Contains Gulp tasks to build the Viewer Less, icons, and HTML templates. This file is non-
essential and does not need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer Less, icons, and HTML templates. This file is
non-essential and does not need to be re-distributed.

viewer-webtier folder Contains files that implement the jsp layer of communication between the Viewer and the
PrizmDoc Application Services.

viewer-

webtier/pas.jsp

Handles all requests from the Viewer and forwards them to the PrizmDoc Application
Services.

index.jsp The default page for the sample. The Viewer’s code gets loaded by this page.

predefinedSearch.json This data file contains information defining search queries that will appear as selectable
items in the full Viewer.
NOTE: This file is consumed by the page index.jsp and the JSON is injected into the HTML
that is returned by index.jsp. Ultimately, the predefined search terms are provided as a
JavaScript hash, when the Viewer is created.

redactionReason.json This data file contains information defining redaction reasons that are available in the Viewer.
NOTE: This file is consumed by the page index.jsp and the JSON is injected into the HTML
that is returned by index.jsp. Ultimately, the redaction reasons are provided as a JavaScript
hash, when the Viewer is created.

Folder contents: book-reader-sample

PrizmDoc Viewer v13.17 199

©2021 My Company. All Rights Reserved.

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML)
that make up the book reader Viewer.

viewer-assets/less

folder
Contains less that can be used to build the Viewer CSS. This folder is non-essential, and does
not need to be re-distributed.

viewer-

assets/Gruntfile.js

Contains Grunt tasks to build the viewer less. This file is non-essential and does not need to
be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm,
which are required to run Grunt and compile the less.

viewer-

assets/selection.json

A file used by the IcoMoon application to generate the icons in the book reader Viewer. If
you need to add an icon to the Viewer, you can add the icon to this file and use the IcoMoon
application (https://icomoon.io) to generate a new icon font. This file is non-essential and
does not need to be re-distributed.

viewer-webtier folder Contains files that implement the jsp layer of communication between the book reader
Viewer and the PrizmDoc Application Services.

viewer-

webtier/pas.jsp

Handles all requests from the Viewer and forwards them to the PrizmDoc Application
Services.

index.html The default page for the sample. The Viewer’s code gets loaded by this page.

sample-config.js Contains references to the assets, web tier, and language files used by the Viewer in this
sample.

Folder contents: e-signer-sample

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the book reader Viewer.

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js.
The files in this folder are non-essential and do not need to be re-distributed.

Gulpfile.js Contains Gulp tasks to build the viewer js and css files. This file is non-essential and does not
need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer assets. This file is non-essential and does not
need to be re-distributed.

viewer-webtier folder Contains files that implement the jsp layer of communication between the book reader Viewer
and the PrizmDoc Application Services.

viewer-

webtier/pas.jsp

Handles all requests from the Viewer and forwards them to the PrizmDoc Application Services.

index.html The default page for the sample. This page loads the Viewer.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

PrizmDoc Viewer v13.17 200

©2021 My Company. All Rights Reserved.

https://icomoon.io/

Folder contents: template-designer-sample

File / Folder Description

viewer-assets folder Contains the essential JavaScript, CSS, fonts, images, language data, and templates (HTML) that
make up the book reader Viewer.

modules folder Contains uncompiled assets of the Viewer. These files will be compiled to viewer-
assets/js/bundle.js and viewer-assets/css/bundle.css by the build process
defined in Gulpfile.js.
The files in this folder are non-essential and do not need to be re-distributed.

Gulpfile.js Contains Gulp tasks to build the viewer js and css files. This file is non-essential and does not
need to be re-distributed.

viewer-

assets/package.json

A file used by npm (a package manager). It defines the dependencies installed by npm, which
are required to run Gulp and compile the Viewer assets. This file is non-essential and does not
need to be re-distributed.

viewer-webtier folder Contains files that implement the jsp layer of communication between the book reader Viewer
and the PrizmDoc Application Services.

viewer-

webtier/pas.jsp

Handles all requests from the Viewer and forwards them to the PrizmDoc Application Services.

index.html The default page for the sample. This page loads the Viewer.

webpack.config.js Webpack configuration file. This file contains all the settings for the webpack module bundler.
We use webpack to compile all the files in the modules folder to the bundle.js and
bundle.css that are found in the viewer-assets folder.

Configuration with web.xml

The file web.xml is used to configure the connection settings between the web tier and PrizmDoc Application Services. The
file can be found at: public_html/WEB-INF/web.xml. This file is self-documenting, but a little information about the
configuration options is given below.

Option Description

DocumentPath The sample pulls named documents from this location. The DocumentPath
must have read/write permissions in order for the file drag and drop
functionality of the splash page to work.

PrizmApplicationServicesScheme Specifies the scheme (http or https) to use when connecting with PAS.

PrizmApplicationServicesHost Specifies the host to use when connecting with PAS.

PrizmApplicationServicesPort Specifies the port to use when connecting with PAS.

All settings are configured using the <context-param/> element. Here is an example of how it would look on the web.xml
file:

Example

<context-param>
 <description>Prizm Application Services Scheme</description>
 <param-name>PrizmApplicationServicesScheme</param-name>
 <param-value>http</param-value>
</context-param>

PrizmDoc Viewer v13.17 201

©2021 My Company. All Rights Reserved.

Legacy Viewers

Introduction
If you are self-hosting your PrizmDoc Viewer backend, we have two legacy viewers which you may find useful (these
legacy viewers assume you are self-hosting the backend and are not currently designed to be easily configured with
our cloud-hosted backend options). These legacy viewers are included in the "Client Installer".

The legacy viewers each demonstrate a variety product functionality:

Book Reader Viewer
E-Signature Viewers

Customize the E-Signature Viewers
This section contains the following information:

Viewer Modular Design
Configure the E-Signature Viewers
Build the E-Signature Viewers
Fill in Fields Programmatically

Viewer Modular Design

Overview
The Template Designer and E-Signer viewers follow a modular design. This section provides information regarding
the modular design and the principles we follow when implementing the Viewer modules.

Modules are generalized, single-feature, and reusable. Modules should implement their feature as generically as
possible, making the least amount of assumptions about the external code consuming that module. If you find that
you must use "and" to describe what the module does, you should probably be writing two modules.

Modules should also be instance-safe and viewer-safe. Each viewer should be able to use multiples of the same
module without adverse effects, and multiple viewers should be able to initialize the same module without adverse
effects. When writing a module, each module will need to initialize itself in such a way that allows multiple
instances of that module to run at the same time. This means that things like global state variables are not allowed;
any global variables need to be static.

Core Module
JS-Only Modules
UI Modules
Initializing
Destroying
Components

Core Module
Each viewer will need its own core module. The purpose of the core is to set up some common API, initialize
modules, and provide a basic page structure and module containers:

PrizmDoc Viewer v13.17 202

©2021 My Company. All Rights Reserved.

Core will set up both the StateStore and EventStore (available as stateStore and eventStore on the
Viewer object). These APIs are expected by all modules and need to be created by the code initializing the
modules.
Core will also create the general page layout (think large containers), and will size and position all modules.
It will need to provide parent containers as part of initializing UI modules.
Core will also attach all exported members of common-core.js, including parseIcons and
parseComponents functions, to the Viewer object. These are auxiliary functions that are expected by all
modules.

JS-Only Modules
JS-only modules are encouraged when there is specific business logic to take care of. This includes, but is not
limited to, client-server communication, controller modules that translate one thing to another, and modules that
manage a state in the background. These modules should consist of a single JavaScript file, or a main JavaScript file
that calls out to one or more sub-modules.

These modules can listen to and trigger any EventStore events, and can listen to any ViewerControl events. These
modules must never listen to DOM events.

UI Modules
UI modules present a specific user interface, and should be entirely contained inside one container. If you find that
you need two containers in your implementation, you should probably be writing two modules. These modules
should always take up 100% of their specified container. It is up to the code creating the module to size and
position it, and not up to the module itself.

These modules can listen to and trigger EventStore events. It can also listen to DOM events of elements that are
located inside the module’s container. They must never listen to DOM events for elements that are located outside
of the module’s container. Though it is not encouraged, it could be okay at times to listen to ViewerControl events,
although such logic should most likely be extracted to a separate JS-only module.

UI modules should take care of updating their own UI, and staying up-to-date with any viewer logic (such as
changes in relevant state values).

Initializing
Each module should take up to two parameters when initializing. The first will be an instance of a viewer (such as
that defined in a "core" module). The second parameter is an optional options parameter, which provides extra
settings and values to the module, such as the DOM element that the module should use as a parent container.
Modules should register all events that they need in order to complete their tasks. Modules should not rely on
external triggers that are not expressly defined as events.

Destroying
Modules should provide a mechanism to allow them to be destroyed. Typically, this will be a destroy method
available as the module’s API.

Any event that is registered during initialization or throughout the lifespan of the module must be removed during
the destroy. This includes, but is not limited to, event store events, ViewerControl events, all DOM events, and
events and functions that are temporarily registered to perform a transient task, such as animation frame
optimizations or timeouts. In the case of the last example, the developer should never assume that a transient
event was already disconnected, as a module could be destroyed before the transient task has completed.

Any resources created during initialization or throughout the lifespan of the module must be removed and cleaned

PrizmDoc Viewer v13.17 203

©2021 My Company. All Rights Reserved.

up during the destroy. This includes, but is not limited to, DOM elements, CSS classes used on the parent container
element, any amounts of global data being stored, pending web requests or other asynchronous tasks, and
functions that exist as part of events. The last is very important, as we need to avoid memory leaks due to data
staying in scope indefinitely.

Components
Components are special types of modules that provide some widely reusable canned behavior for a single
conceptual thing. Components will most likely be needed for, but not necessarily confined to, polyfilling native
browser controls and components. Examples of this are the TextInput, CheckboxCollection, and Dropdown
components. For example, browsers provide a native dropdown through the select tag; however, these are not
all that pretty and have very limited styling and extensibility options. In order to provide flexible, extensible, and
beautiful dropdowns, we have implemented the Dropdown component to polyfill the parts that a native select
element does not provide.

When implementing components, we should provide an experience as close as possible to the native browser
ability. For example, in dropdown, we need to provide a similar developer experience to using the native select
tag. In this case, the developer using Dropdowns should provide a parent tag defining the component, as well as a
list of elements to use as the options. Code to handle selecting options, including the label and dropdown arrow,
as well as any extra markup, should be created by the component code.

Initializing Components

Components are initialized by providing the component parent element to the component. In the Dropdown
example, this is the element equivalent to the select tag. In the case of sets, such as CheckboxCollection and
ButtonSet, each element from the set is initialized separately, and it is up to the component to group them
together in order to add functionality. Components should use the "Data Dash" DOM API (e.g., data-pcc-
something) in order to define properties of that component.

Destroying Components

Similar to modules, components need to expose a destroy method which cleans up all resources used by that
component.

Component API

Components should expose similar functionality to the native ability that they are polyfilling. This includes, but is
not limited to, useful events (such as the "change" event for values), ways of getting and setting the value (in the
case of input components), and a way to access the list of values. This should be standard throughout all
components, as much as possible.

Configure the E-Signature Viewers

Introduction
You can configure the E-Signature viewers (Template Designer and E-Signer) with one of the following options.
You can configure:

The Viewer parameters
The Viewer control parameters

NOTE: If you specify the documentID Viewer control parameter, it is still necessary to specify the
templateDocumentId Viewer parameter.

PrizmDoc Viewer v13.17 204

©2021 My Company. All Rights Reserved.

Option 1 - Configure Options to Set When the Viewer is Built
Edit the sample-config.js file available in any of the legacy samples included with the "Client Installer".

Option 2 - Configure Options without Building the Viewer
Set window.pccViewerConfig before the Viewer is loaded. Note that the Viewer is loaded when all DOM
elements are available (that is, when the jQuery document ready event fires). Any window.pccViewerConfig
options you set will be used instead of the sample-config.js module settings (described in #1) or the query
parameters (form or document).

For example, you could update C:\Prizm\Samples\dotnet\mvc\viewers\template-designer-
sample\index.html to include the following JavaScript code to configure the following options in the C#
Template Designer:

Viewer control parameter for hiding side handles (instead of corner handles) when the handles are closed.
Viewer control parameter for displaying the pages in a single horizontal row (instead of a vertical column).
Viewer parameter for loading the document PdfDemoSample.pdf (instead of having to specify the
document as a query parameter).

Example

<script type="text/javascript">
 window.pccViewerConfig = {
 markHandleMode: 'HideSideHandlesWhenClose',
 pageLayout: 'Horizontal',
 templateDocumentId: 'PdfDemoSample.pdf',
 };
</script>

Option 3 - Manually Embed the Viewer
You can disable default embedding of the Viewer and instead use your own code to embed the Viewer into a web
page as follows:

1. Change the id property on the div reserved for embedding to something other than the default pcc-
viewer; this will disable auto-embedding.

2. Create a separate JavaScript file that will hold all of the code for embedding. You can check viewer-
init.js for an example. Make sure you reference the id that you specified in your html markup, as shown
below:

Example

var viewer = $('#pcc-viewer-custom').pccESigner(options);

3. Reference your JavaScript file you created in Step #2 in your web page, after the bundle.js reference.

Example

PrizmDoc Viewer v13.17 205

©2021 My Company. All Rights Reserved.

<head>
 ...
 <!-- load the viewer bundles -->
 <link rel="stylesheet" href="viewer-assets/css/bundle.css">
 <script src="viewer-assets/js/bundle.js"></script>
 <script src="viewer-assets/js/your-javascript-file.js"></script>
 ...
</head>
<body>
 <div id="pcc-viewer-custom"></div>
</body>

Build the E-Signature Viewers

Introduction
The Template Designer Viewer and E-Signer Viewer work out-of-the-box, but if you want to customize either of
these viewers, you will need to build them as follows:

1. Install node.js, which you can download from https://nodejs.org/.

2. Open a node.js command prompt and change to the directory of the Viewer you are building. For
example, if you want to build the C# template designer, change to the C# template designer sample folder,
as demonstrated below:

cd C:\Prizm\Samples\dotnet\mvc\viewers\template-designer-sample

NOTE: By default, the C# template designer sample is installed to
C:\Prizm\Samples\dotnet\mvc\viewers\template-designer-sample.

3. Run the following command, which will install the dependencies for building the Viewer:

npm install

4. To build the Viewer, use one of the commands described below:

5. To create a single developer build, use the following command:

 gulp build

6. To run a watch task, use the following command. This will automatically rebuild the Viewer when any files
are modified. Note that you will need to keep the command window open while the watch task is running:

 gulp

PrizmDoc Viewer v13.17 206

©2021 My Company. All Rights Reserved.

https://nodejs.org/

7. When creating a single build or running a watch task, you can create production builds by adding a -p flag
to the end of the command, as demonstrated below. Productions builds will output minified source code
(both JavaScript and CSS) and will not generate sourcemaps:

 gulp build -p

8. When creating a single developer build or running a watch task, you can get native system notifications
when the build is complete by adding an -n flag to the end of the command, as demonstrated below:

 gulp -n

The build process uses some standard open-sourced tools. To learn more about these resources and how to use
them, refer to the following:

Gulp - http://gulpjs.com/
Webpack - http://webpack.github.io/

Integrating Webpack in Gulp
Less - http://lesscss.org/

Fill in Fields Programmatically

Introduction
The StateModified event fires when fields are filled in and the ModifyState event can be used to update filled-in field
values.

The example below demonstrates using a StateModified event handler to get the filled-in values of two fields and
fire the ModifyState event to fill in a third field with the sum:

Example

viewer.eventStore.on('StateModified', function (ev, data) {
 if (data.state === 'FieldList') {
 var value1 = parseInt(data.stateValue.fieldList\[1\].value);
 var value2 = parseInt(data.stateValue.fieldList\[2\].value);
 data.stateValue.fieldList\[3\].value = (value1 + value2).toString();
 viewer.eventStore.trigger('ModifyState', {
 state: 'FieldList',
 stateValue: data.stateValue
 });
 }
});

Customize the Book Reader Viewer

Introduction

PrizmDoc Viewer v13.17 207

©2021 My Company. All Rights Reserved.

http://gulpjs.com/
http://webpack.github.io/
https://webpack.js.org/
http://lesscss.org/

This topic covers how to install and customize the Book Reader Viewer.

Installing the Book Reader Viewer
Be sure to run the appropriate "Client Installer" for your OS, Windows or Linux. Once complete, the Book Reader
Viewer files can be found in the following location:

For Windows: C:\Prizm\Samples\jsp\Sample\public_html\book-reader-sample
For Linux: /usr/share/prizm/Samples/jsp/Sample/public_html/book-reader-sample

Working with the LESS preprocessor
The Book Reader Viewer uses LESS to pre-process the CSS for the Book Reader Viewer. In order to facilitate using
this pre-processor in a development environment, the following files are included in the book-reader-
sample/viewer-assets folder:

Gruntfile.js

package.json

In order to use these files, you will need to install Node.JS in your development environment. Open your
command line interface in the book-reader-sample/viewer-assets folder. Then, you can run the following
commands from a command line or terminal:

Example

npm install -g grunt-cli
npm install

Next, you can use this command to build the CSS files required for production:

Example

grunt buildprod

You can also build development files, which will include extra source maps helpful in debugging CSS:

Example

grunt builddev

Finally, while developing, you may choose to run the task in such a way that it will automatically run
whenever any of the Less files change, as such:

Example

grunt dev

PrizmDoc Viewer v13.17 208

©2021 My Company. All Rights Reserved.

http://lesscss.org/
https://nodejs.org/

The Less preprocessor will generate the following file(s):

css/style.css - contains the Viewer styles
css/style.css.map - (optional) only present when using one of the dev options

Customizing the Styles
The styles should be loaded in the Book Reader Viewer in the following order:

1. viewercontrol.css
2. style.css

Namespace

The Book Reader Viewer uses the class .pccv in order to namespace the styles it uses. In order to override any
selector used in the Book Reader Viewer, your selector must begin with the class .pccv:

Example

/* Set the navigation tab bar to dark red */
 .pccv .pcc-nav-tabset,
 .pccv .pcc-nav-tabset .pcc-tab-item,
 .pccv .pcc-status-bar { background: #5b100d; }

Organization

All Less files are in the less folder. These individual files are split out based on functionality and are named in a self-
explanatory way. For example, styles related to the search functionality are held in the
less/components/search.less file.

Variables

There are many variables contained in less/components/variables.less, which control things like the color scheme
and icon sizing. These variables can be modified in order to propagate changes throughout the Book Reader
Viewer.

Grid System

The Viewer uses a basic grid system to assist with the UI layout. Through a series of rows and columns the layout
can scale dynamically. Rows are used to create horizontal groups of columns. Columns are created by defining the
number of twelve columns you will span. For example, three columns would use three divs with a class of .pcc-col-
4:

Example

<div class="pcc-row">
 <div class="pcc-col-4">Left</div>
 <div class="pcc-col-4">Center</div>
 <div class="pcc-col-4">Right</div>
</div>

PrizmDoc Viewer v13.17 209

©2021 My Company. All Rights Reserved.

viewercontrol.css

This file contains the styles required for using ViewerControl. This file should not be changed, but rather, should
have any necessary rules overridden by your own CSS. If choosing not to use any of our viewers, and instead
embedding ViewerControl directly in a custom integration, this CSS file is still required.

PAS

Overview
PAS is a layer in front of PrizmDoc Server which is responsible for creating viewing sessions, saving and loading of
annotations, and creating viewing packages (pre-converted content). Like your web application, PAS has privileged
access to storage that you own (like a file system or database).

For an introduction to how PAS is part of the overall viewing architecture, see the Architecture Overview in our Getting
Started guide.

For viewing functionality, your web application should only make REST API calls to PAS. PAS will then make calls to
PrizmDoc Server on your behalf to ensure the conversion work is done. The only time your application should call
PrizmDoc Server directly is when you need to perform non-viewing work, such as converting a file or burning
annotations into a document.

We support the ability to do pre-conversion and long term caching of documents in a central location. To use this
functionality, an external instance of a database will need to be configured to run with PAS.

PAS Clustering
PAS is designed to scale out well. In order to install and run PAS on multiple servers, you will need to consider the
following:

You will need a load balancer to accept incoming requests and route them to any instance of PAS. Since any
request can be handled by any instance in the cluster, any on-the-shelf load balancing solution should do the
job.
All instances of PAS will need to be configured to point to the same PrizmDoc Server deployment (whether a
single instance of PrizmDoc Server or the load balancer in front of a PrizmDoc Server cluster).
All instances of PAS will need to be configured with the same storage solution, in order to have access to the
same data. This includes using shared filesystem storage, such as a NAS, for all filesystem files, as well as a
shared database when working with Pre-Conversion Services.

For more information on installing PAS on a cluster, refer to the topic Run PAS on Clusters.

This section contains the following "How To" information:

Set up Your Database for use with PAS
Handle Specific Routes with PAS
Compare Documents with PAS
Pre-Convert Documents
Pre-Populate Fields in the E-Signature Viewer
Work with Viewing Packages

For information on administering PAS, refer to Administering PrizmDoc Viewer > PAS.

PrizmDoc Viewer v13.17 210

©2021 My Company. All Rights Reserved.

Set up Your Database for use with PAS

Introduction
This topic covers how to set up your database for use with PAS. For information on configuring PAS to
communicate with your database, see the PAS Configuration section in the help file.

Creating the required database tables
Some databases, like Microsoft SQL Server, require that the tables be created before PAS can use them. This is a
manual step.

The easiest way to create the tables is to run the scripts available as part of PAS:

On Windows:

cd C:\Prizm\pas\db
createtables.cmd

On Linux:

cd /usr/share/prizm/pas/db
./createtables.sh

This will create the required tables in the database that is configured through the PAS configuration file. If you
need to change any of the configuration temporarily when running these scripts (such as using a different user that
has the required privileges to create tables), you can specify any of the database.* properties from the PAS
configuration file as command line flags, as such:

createtables.cmd --user=createTablesUser --password=Pa55w0rd

./createtables.sh --user=createTablesUser --password=Pa55w0rd

NOTE: The create tables script should be run when upgrading PAS as well. This will update the
database schema without modifying any data already stored in the database.

Advanced use
For advanced database administrators, you may want to inspect and manually run the SQL scripts to create tables.
You can use this by adding the --export-scripts flag to the above commands, as such (the commands below
work on both Windows and Linux using the appropriate script):

./createtables.sh --export-scripts --filepath=/path/to/script.sql

PrizmDoc Viewer v13.17 211

©2021 My Company. All Rights Reserved.

When running this command, the configured database will not be changed, and the script will be saved to the
output file specified. These SQL scripts can be found:

On Windows:

C:\Prizm\pas\db\mssql-scripts
C:\Prizm\pas\db\mysql-scripts

On Linux:

/usr/share/prizm/pas/db/mssql-scripts
/usr/share/prizm/pas/db/mysql-scripts

Handle Specific Routes with PAS

Introduction
This topic covers how to handle specific routes from PAS using custom logic. PAS is designed to handle all viewer
requests in an appropriate way. However, there might be some cases where you need to add custom logic in place
of those handlers. Here, we will look at how the request rerouting is done in general, as well as some examples
where handling routes in a custom way might be desirable.

Rerouting any request to PAS
In the API Reference section, every route has a Routes key defined. This is the key that allows handling this route
using outside logic. It can be used to instruct PAS to forward that particular route to any HTTP endpoint that it can
access. This is done through the configuration file. Assuming the standard install location:

On Windows: C:\Prizm\pas\pcc.win.yml
On Linux: /usr/share/prizm/pas/pcc.nix.yml

To reroute any route, you will need to know that route's key. In these examples, we will use RouteKey as that key.
If you want to simply handle a route, you can use the following config:

routeHandlers.RouteKey.url: "http://myserver/some/route"

You can also define any header you would like used when the request is proxied. This can be useful when wanting
to secure a specific route from outside users while still allowing PAS to use it. This can be configured as such:

routeHandlers.RouteKey.url: "http://myserver/some/route"
define any header you would like
routeHandlers.RouteKey.headers.x-my-custom-secret: "c2hoLCBJJ20gYSBzZWNyZXQ="
routeHandlers.RouteKey.headers.x-use-any-name: "YW55IG5hbWUsIHJlYWxseQ=="

PAS will proxy any request to RouteKey to the url specified in the config. Since PAS routes will sometimes include
important information, such as document ids, markup ids, etc., the entire route from PAS will be appended to the

PrizmDoc Viewer v13.17 212

©2021 My Company. All Rights Reserved.

URL, as such:

// route as handled by PAS
http://localhost:3000/RouteKey/u1234/sOmEiDvAlUe

// it will be forwarded here, as per the above config
http://myserver/some/route/RouteKey/u1234/sOmEiDvAlUe

If you would prefer to defer handling of that request back to PAS, you can return a 202 Accepted response to
instruct Application Services to continue handling that request as it would normally. Any other response that is
returned by the handler will be forwarded back to the client.

NOTE: Since this rerouting is based on an HTTP REST API, the example code that shows how to handle
the requests in the following examples will be provided in pseudo-code. It is appropriate to implement
this code in any language you feel comfortable using, as long as it can be exposed through an HTTP
interface.

Example: How to handle markup file delete permissions

The routes to delete any markup files in PAS are open to all users, since PAS does not know about system users.
However, you can let PAS know about user access. In the configuration, you will want to handle the following
routes as such:

routeHandlers.DeleteMarkupLayer.url: "http://myserver/user/deletepermission"
routeHandlers.DeleteFormDefinition.url: "http://myserver/user/deletepermission"

You could potentially register this route handler on your server:

DELETE http://myserver/user/deletepermission/{markupType}/{markupId}

Using the following pseudo-code, you could determine whether the user is allowed to complete this delete action
and instruct PAS on how to continue:

 var markupType = parsedRouteParameters.markupType; // "FormDefinitions" or
"MarkupLayers"
 var markupId = parsedRouteParameters.markupId; // a guid value

 if (userCanDelete(markupType, markupId)) {
 sendResponseStatus(202); // Accepted
 // This will tell Application Services to continue with the delete
operation
 } else {
 sendResponseStatus(403); // Forbidden
 // The 403 response will be returned to the client
 }

Example: How to handle creating sessions

Sometimes, you may not be able to give PAS access to your documents directly. For example, when documents are

PrizmDoc Viewer v13.17 213

©2021 My Company. All Rights Reserved.

in a custom content management system and you may want to handle creating sessions on your own. In this
example, we will look at handling the legacy CreateSession route.

The following would be an example of the configuration:

routeHandlers.LegacyCreateSession.url: "http://myserver/documents"

You would register a handler, as such, on your server:

GET http://myserver/documents/CreateSession

You would be able to use the following pseudo-code to handle this request:

 var document = parsedQueryParameters.document;
 // also make sure to handle the case for the "form" query
parsedQueryParameters
 // when using the e-sign viewers

 var documentData = getDocumentData(document);

 // use the ViewingSession API to create the actual session
 var sessionResponse = makeRequest({
 method: "POST",
 url: "http://localhost:3000/ViewingSession"
 body: {
 source: {
 type: "upload",
 displayName: documentData.displayName,
 markupId: documentData.uniqueIdentifier
 }
 }
 });

 // optionally do this later or in a separate thread, for better performance
 var uploadResponse = makeRequest({
 method: "PUT",
 url: "http://localhost:3000/ViewingSession/" +
sessionResponse.viewingSessionId + "/SourceFile",
 headers: {
 "Accusoft-Secret": "mysecretkey"
 },
 body: documentData.theDocument
 });

 // return the response back to PAS, to be forwarded to the client
 returnResponse(sessionResponse);

Compare Documents with PAS

Performing Document Comparison

PrizmDoc Viewer v13.17 214

©2021 My Company. All Rights Reserved.

You can use PrizmDoc Viewer to show an end user a comparison view of two different Microsoft Office documents
(if you are hosting the backend yourself, you must be running PrizmDoc Server on a Windows machine with a
Microsoft Office enabled PrizmDoc license).

Here is how you typically set this up:

Step 1: Create a Comparison Viewing Session
As with normal viewing sessions, your web application begins by sending a POST /ViewingSession request to
create a new viewing session. However, this time you will set the source.type to "comparison". And, instead
of providing only one document, you will provide two.

There are different ways to provide the two documents (refer to the information about document comparison in
the Viewing Sessions REST API documentation for PAS). The most common and recommended way is to have your
web application upload each of them in subsequent requests.

Here is how you would create a comparison viewing session and indicate that you intend to upload both
documents in subsequent requests:

POST pas_base_url/ViewingSession
Content-Type: application/json

{
 "source": {
 "type": "comparison",
 "displayName": "Example Comparison",
 "original": {
 "type": "upload",
 "displayName": "original.docx"
 },
 "revised": {
 "type": "upload",
 "displayName": "revised.docx"
 }
 }
}

PAS will respond immediately, giving you a new viewingSessionId:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "viewingSessionId": "XYZ..."
}

Step 2: Initialize the Viewer
Now that you have the viewingSessionId, your web application can go ahead and render the HTML page with
the viewer configured to use that viewingSessionId. The document content will load for the end user as soon
as it becomes available.

But, in order for content to be shown, you still need to upload the two documents.

PrizmDoc Viewer v13.17 215

©2021 My Company. All Rights Reserved.

Step 3: Upload the Two Documents
When uploading the two documents, our API uses the terms original and revised to refer to the two documents.
You issue two PUT requests: one to upload the original file, and one to upload the revised file:

PUT pas_base_url/v2/viewingSessions/XYZ.../sourceFile/original

<<file 1 bytes>>

HTTP/1.1 200 OK

PUT pas_base_url/v2/viewingSessions/XYZ.../sourceFile/revised

<<file 2 bytes>>

HTTP/1.1 200 OK

Once both documents have been uploaded, a background process will begin automatically creating a new
document which is a visual comparison of the two. Once that comparison document is ready, it will internally be set
as the actual, primary document of the viewing session, and the viewer running in the browser will load the first
page of this automatically-created comparison document as soon as it becomes ready.

Additional Info
There are additional API endpoints which allow you to download the original and revised documents you initially
provided, as well as an endpoint which our viewer uses to download metadata about the revisions in the document
so the end user can navigate between them. Your application may be interested in using these endpoints directly.
For more information, see the relevant PrizmDoc Server REST API documentation (these endpoints can be called via
PAS, which proxies the requests to PrizmDoc Server):

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/original
GET /v2/viewingSessions/{viewingSessionId}/sourceFile/revised
GET /v2/viewingSessions/{viewingSessionId}/revisionData

Pre-Convert Documents

Pre-converting documents in PrizmDoc Application Services (PAS)
When viewing large documents, a user can experience a delay viewing later pages in the document. The Pre-
conversion API allows the user to avoid any delay in viewing a fully converted document prior to the creation of a
viewing session.

This section describes a typical use in pre-converting and management of the pre-converted Viewing Packages:

1. How to Create a Viewing Package by Pre-converting Documents.
2. How to Obtain Information for a Viewing Package.
3. How to Delete a Viewing Package

PrizmDoc Viewer v13.17 216

©2021 My Company. All Rights Reserved.

How to Create a Viewing Package by Pre-converting Documents
Pre-conversion is available by using the Pre-conversion API. For detailed information, refer to the PrizmDoc
Application Services RESTful Viewing Package Creators API section.

Documents are pre-converted using the following steps:

Step 1

Issue a POST request with the body of the request containing JSON formatted 'source' object. The source.type
property can be a "document", "url" or "upload".

In this example, "document" is used as a source.type property.

POST http://localhost:3000/v2/viewingPackageCreators

viewingPackageCreator POST Body

 Content-Type: application/json
 {
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 }
 }

A successful response to the above POST provides a processId in the response body:

 200 OK
 Content-Type: application/json
 {
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "processing",
 "percentComplete": 0
 }

Step 2

PrizmDoc Viewer v13.17 217

©2021 My Company. All Rights Reserved.

Using the processId obtained in the step 1, query the pre-conversion process for the status:

Example

GET http://localhost:3000/v2/viewingPackageCreators/khjyrfKLj2g6gv8fdqg710

A successful response body contains the JSON formatted properties state and percentComplete. The state
value indicates whether it is complete or processing and the property percentComplete indicates
percentage amount complete.

Start polling the status by issuing a GET command using the above URL. It is recommended to use shorter intervals
initially between the requests for the first few times. If it is still not complete, then the document may be large,
requiring more processing time.

In scenarios like this, an increase in the time interval between requests would be necessary to prevent a large
number of status requests that could potentially cause network congestion. On 100% completion, the response
body will among other information contain an output object with packageExpirationDateTime property:

 200 OK
 Content-Type: application/json
 {
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "output": {
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z"
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "complete",
 "percentComplete": 100
 }

How to obtain information about the converted Viewing Package
For obtaining detailed information about the converted Viewing Package, refer to the PrizmDoc Application
Services RESTful Viewing Packages API section.

When the status is 100% complete, details can be obtained about the converted package by issuing the following
request:

GET http://localhost:3000/v2/viewingPackages/unT67Fxekm8lk1p0kPnyg8

Example Response Body

PrizmDoc Viewer v13.17 218

©2021 My Company. All Rights Reserved.

 200 OK
 Content-Type: application/json
 {
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "state": "complete",
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z"
 }

How to Delete a Previously Converted Package
For obtaining detailed information about deleting converted Viewing Package, refer to the PrizmDoc Application
Services RESTful Viewing Packages API section.

A previously converted package can be deleted by issuing a DELETE request:

DELETE http://localhost:3000/v2/viewingPackages/unT67Fxekm8lk1p0kPnyg8

This request marks the package for asynchronous deletion. A successful response is as follows:

204 (No Content)

Pre-Populate Fields in the E-Signature Viewer

Introduction
This example demonstrates automatically pre-populating pre-existing user data into form fields at runtime. Route
the form definition GET request to a custom handler instead of Prizm Application Services (PAS) directly. In this
handler, fetch the Form Definition from PAS, insert default values into the given form definition using external data,
and return the modified form definition to the viewer. This example assumes PAS is listening on
localhost:3000, but this will vary based on your server configuration.

Step 1: Load the Form Definition
Example

GET http://localhost:3000/FormDefinitions/5418c96283bc469783bd30e7c8fdc059
Content-Type: application/json
{
 "templateDocumentId": "Form 3.pdf",

PrizmDoc Viewer v13.17 219

©2021 My Company. All Rights Reserved.

 "globalSettings": { ... global settings ... },
 "formRoles": { ... form roles ... },
 "groups": {},
 "formName": "Form 1 - updated",
 "formData": [... form data ...]
}

Step 2: Get User Data
This will vary based on your data source. You might load data from a database, a file, or another location. Or, your
GET request to load the form definition may have included a session ID for a particular user from which secondary
information can be queried. Let’s assume we receive the following user data object:

Example

{
 "Name": "John Smith",
 "Address": "123 Town St",
 "Phone": "(555)555-5555"
}

Step 3: Insert the Data
We can iterate through each field in the formDefinition, check if there is data corresponding to that field ID in
the example user data object, and set its defaultValue property appropriately depending on the field template
type:

Example

//userData is the result of our example external data GET request
//formDefinition is the result of our PrizmDoc FormData GET request
formDefinition.formData = formDefinition.formData.map(function(field) {
 if (userData[field.fieldId]) {
 switch (field.template) {
 // Checkboxes are either "checked" or not
 case 'CheckboxTemplate':
 return extend({}, field, {
 defaultValue: userData[field.fieldId] ? 'checked' : ''
 });
 // Signatures use a different value based on their type,
 // but we will assume text for this example
 case 'SignatureTemplate':
 case 'InitialsTemplate':
 return extend({}, field, {
 defaultValue: {
 type: 'text',
 value: userData[field.fieldId],
 fontName: 'Grand Hotel'
 }
 });
 // Date templates use an ISO datetime
 case 'DateTemplate':

PrizmDoc Viewer v13.17 220

©2021 My Company. All Rights Reserved.

 return extend({}, field, {
 defaultValue: (new Date(userData[field.fieldId])).toISOString()
 });
 // Text templates use a string
 case 'TextTemplate':
 return extend({}, field, {
 defaultValue: userData[field.fieldId]
 });
 }
 }
 // If the item was not in the database, return it as-is.
 return field;
});

NOTE: A field collection has the option to "Allow Multiple Selections". If "Allow Multiple Selections" is
false, but multiple fields in that group are set to pre-populate as "checked", the first field with a
defaultValue of "checked" will be set as the only selected field for that collection.

Step 4: Return Data to the Caller
Return the updated formDefinition object to the function, web service, or other source that called it. When the
data reaches the viewer and the FormLoaded event in the E-Signature Viewer fires, fields in this form definition
with a valid defaultValue will be populated.

Work with Viewing Packages

Introduction
A Viewing Package is a cached version of a document that the Viewer will use when viewing a document. Viewing a
document from a Viewing Package significantly reduces the load on PrizmDoc Server and allows you to serve many more
users per minute than you could otherwise. A Viewing Package can be created through Pre-Conversion or by using On-
Demand Caching.

This topic provides information about the following:

Storage
Configuration
Pre-Conversion
On-Demand Caching
Performance Considerations
Known Issues

Storage
Viewing Packages are stored in both the filesystem and configured database. If using multiple instances of PAS, you must
use a shared database and NAS (Network Attached Storage). The Running PrizmDoc Application Services (PAS) on Multiple
Servers topic can provide more information for configuring PAS in Cluster Mode.

By default, storage is configured in the following way:

PrizmDoc Viewer v13.17 221

©2021 My Company. All Rights Reserved.

Config Key Storage
Provider Description

viewingPackagesData database Data about a Viewing Package. This is the data that can be
retrieved from GET /v2/viewingPackages.

viewingPackagesProcesses database Data about a Viewing Package creator process. This is the data
that can be retrieved from GET /v2/viewingPackageCreators.

viewingSessionsData database Data about a Viewing Session. When creating a Viewing Session,
an entry is added to this table.

viewingSessionsProcessesMetadata database Data about processes for a Viewing Session. This is currently
used for content conversion and markup burner processes.

viewingPackagesArtifactsMetadata database Metadata for a viewing package artifact. This is used to find
specific artifacts for a package and contains the artifact type, the
file name in the filesystem among other important information.

viewingPackagesArtifacts filesystem Artifacts for a Viewing Package. These include SVG and raster
content for every page, the source document, and other
artifacts the Viewer will likely request.

Configuration
Viewing Packages are opt-in and require special configuration to work properly. At a minimum, your configuration should
include the following:

\# Feature toggles

feature.viewingPackages: "enabled"

\# Database configuration

database.adapter: "sqlserver"

database.host: "localhost"

database.port: 1433

database.user: "pasuser"

database.password: "password"

database.database: "PAS"

\# Default timeout for the duration of a viewing session

defaults.viewingSessionTimeout: "20m"

viewingPackagesData.storage: "database"

viewingPackagesProcesses.storage: "database"

viewingSessionsData.storage: "database"

viewingSessionsProcessesMetadata.storage: "database"

PrizmDoc Viewer v13.17 222

©2021 My Company. All Rights Reserved.

viewingPackagesArtifactsMetadata.storage: "database"

viewingPackagesArtifacts.storage: "filesystem"

viewingPackagesArtifacts.path: "/your/path/to/viewingPackages"

Pre-Conversion
Creating a Viewing Package through Pre-Conversion provides a way to generate packages whenever it makes the most
sense for your application to do so. It allows you to make use of down-time for Pre-Conversion to reduce load in high
traffic periods. Pre-Conversion does all the work of creating a Viewing Package whenever it is requested. It starts a process
that will begin downloading content and allow you to poll for progress.

It is recommended that you maintain a queue of Pre-Conversions so you don’t overload the server and have faster
turnaround time. We recommend a maximum of 5 Pre-Conversion processes at a time per PAS and PrizmDoc Server
instance. This will allow packages to be created quickly while maintaining a sustainable load.

For a step-by-step process, go to the Pre-Converting Documents topic.

On-Demand Caching
Creating a Viewing Package through On-Demand Caching is a seamless process through the Viewing Session API. On-
Demand Caching allows you to trigger a Viewing Package creation process in the background and use the resulting
Viewing Package when it is ready. This feature is designed to allow immediate viewing using PrizmDoc Server while
caching a package for subsequent views of the same document.

As an example, consider this request for a Viewing Session:

POST /ViewingSession

{

 "source": {

 "documentId": "PdfDemoSample-a1b0x19n2",

 "type": "document",

 "fileName": "PdfDemoSample.pdf"

 }

}

This request will always return a viewingSessionId regardless of the status of the matching Viewing Package. If a
Viewing Package does not currently exist with the given documentId, PrizmDoc Server will handle document viewing
while a background process creates a Viewing Package. Once the background process is complete, PAS will handle all
further viewing sessions until the Viewing Package expires (24 hours by default).

PrizmDoc Viewer v13.17 223

©2021 My Company. All Rights Reserved.

Performance Considerations
When enabling the Viewing Packages feature, there are additional considerations for hardware requirements. See Sizing
Servers for more information.

Known Issues

Document Comparison

Viewing packages are not supported for comparison viewing sessions.

Markup & Redaction

When creating a Viewing Package and pages of the source document have successfully converted to the intermediate PDF,
but PAS fails to get one or more pages of viewable content, the Viewer will not have that failed page content available to
markup (i.e., redact). Because of this, when the user attempts to burn the markup into the output document, (which is
generated from the intermediate PDF), it will have the page content and no markup.

If this occurs and the failed page contains content that must be redacted, a new viewing package should be created to
retry the conversion.

Raster Content

Viewing Packages limit available raster content. During Viewing Package creation, raster content is requested only
for 0.125 , 0.25, 0.5, and 1.0 scale. API requests for raster content with a scale that is not one of these values will
return 404 Not Found. The Viewer will always request full scale raster content from a viewing package which may
result in degraded fidelity since the full scale image will be returned and any additional scaling will occur within the
browser. Additionally, requests for tiling and thumbnails are not supported and will return 501 NotImplemented.
The render.html5.alwaysUseRaster property cannot be used when creating a viewing session with caching.

Watermarks

The watermarks property cannot be used when creating a viewing session with caching.

PrizmDoc Server
This section contains the following information:

Use the PrizmDoc Server API
Markup Burner XML Specification
Markup JSON Specification
How To Examples

Compare Documents
Convert Content with Content Conversion Service

Content Conversion Demo
How to Configure the Demo on Windows

PrizmDoc Viewer v13.17 224

©2021 My Company. All Rights Reserved.

How to Configure the Demo on Linux
Migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer Self-Hosted Servers
Perform Auto-Redaction
Set up a Viewing Session for a CAD Drawing which has XREF Dependencies
Use the Markup JSON Schema
Use a Viewing Session
Watermark Content in a Viewing Session

Use the PrizmDoc Server API

Introduction
PrizmDoc Server exposes a RESTful API that clients may use to perform operations on documents, enabling them
to manipulate and extract content. In the same way that the PrizmDoc Server API is used by the Viewer, Developers
can use the API to create their own applications to generate viewable content, perform redactions, and convert
documents.

Resources
The PrizmDoc Server API exposes several resources that are designed to work together to perform document
operations. This overview of these resources will provide developers with the understanding required to quickly get
up and running with PrizmDoc Services:

Work Files

Work Files form the basis of the PrizmDoc Service temporary document storage. Documents provided by users,
converted content results, redaction markup, and burned output are all stored within Work Files. Documents are
stored and retrieved through requests to the Work File Service made by user applications or other PrizmDoc
Services. Work Files are not intended for long-term storage and are periodically removed when they are no longer
required for PrizmDoc Server operations.

Processes

Several PrizmDoc Server operations are represented as asynchronous work processes. These processes are created
by a request containing configuration information and immediately begin their work. Prior to completion,
information about the process can be requested in order to determine its current state. Processes eventually reach
a terminal state, at which point either the process was successful and the output is available or the process failed
and is in an error state. After completion, processes do remain available for a short time, but since their work is
done, they are soon removed by periodic maintenance. The lifetime of a process is configurable within its creation
options.

PrizmDoc Viewer v13.17 225

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/prizmdoc-server-api-overview.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/work-files.html

These processes include:

Redaction Creators

Redaction Creators are processes that operate on a document Work File to generate a document markup Work
File. The user provides regular expressions that identify the text to be redacted, and the process generates a
markup Work File that contains data describing the locations of the matches. The generated markup Work File can
then be used in a Markup Burner process to create a document with the redactions burned in.

Markup Burners

PrizmDoc Viewer v13.17 226

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/redaction-creator.html

Markup Burners are processes that create a "burned" document Work File as output from a source document Work
File and a markup Work File describing redactions or annotations.

Content Converters

Content Converters are processes that convert one or more source Work File documents to one or more output
Work File documents. Many different document formats are supported as source documents, and several common
formats are allowed for output. After process completion, converted output is available as one or more Work Files.

Viewing Sessions

Viewing Sessions create converted content primarily for, but certainly not restricted to, use by the Viewer. They
provide access to SVG and raster renderings of document pages as well as any extracted document text, metadata
for the converted content, and attachments in the case of email documents. Viewing Sessions are typically short-
lived (20 minutes by default), but their lifetimes are configurable (see the viewing.sessionLifetime property
in Central Configuration for details). Viewing Sessions also provide access to other document processes not directly

PrizmDoc Viewer v13.17 227

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/markup-burners.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/content-converters.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/viewing-sessions.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/html5-viewing.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/html5-viewing.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/attachments.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/central-configuration.html

related to viewing.

PrizmDoc Server Operations
The PrizmDoc API also provides server level operations that allow the user to query the health status of sub-
services as well as the overall system health. When using several PrizmDoc Server instances in a cluster
environment, APIs exist to query and configure the servers that each instance can use to route traffic for load
balancing.

Markup Burner XML Specification

Introduction
A user can provide a specification of required modifications to a document in an XML-based format. The following
nodes are expected as part of the declaration:

<?xml version="1.0"?>
<documentAnnotations>
 <pages>
 <page id="1" pageWidth="612" pageHeight="792"></page>
 </pages>
</documentAnnotations>

A <pages> element can contain a number of <page> elements, each containing an arbitrary number of the
<annotation> elements. Each <page> element must have the following attributes:

PrizmDoc Viewer v13.17 228

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/central-configuration.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/health-status.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/cluster-management.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/cluster-management.html

Name Type Required Description

id integer yes A 1-based page number; annotations that are listed as child elements of a
given <page> are only applied to the corresponding page of the target
document.

pageWidth floating
point

yes Page width. This attribute is only used for positioning of annotations which
use absolute coordinates (such as <line-rectangles> data in
text_hyperlink_annotation). This value can be arbitrary, as long as absolute
coordinates specified in annotations are consistent with it.

pageHeight floating
point

yes Page height. This attribute is only used for positioning of annotations which
use absolute coordinates (such as <line-rectangles> data in
text_hyperlink_annotation). This value can be arbitrary, as long as absolute
coordinates specified in annotations are consistent with it.

Each <page> can contain an arbitrary number of the <annotation> elements.

Each <annotation> element defines a certain modification to a page content. A specific set of attributes depends
on drawType attribute of the <annotation>.

Common Attributes
Each <annotation> element supports the following attribute set:

Name Type Required
/ Default Description

drawType string yes One of the supported draw types (see Draw Type Descriptions below) that
defines what modification should an annotation apply to a page.

x_percent float 0.0 X position of a bounding rectangle, in 0-to-1 based portion of a page
width.

y_percent float 0.0 Y position of a rectangle, in 0-to-1 based portion of a page height.

width_percent float 0.0 Width of a bounding rectangle, in 0-to-1 based portion of a page width.

height_percent float 0.0 Height position of a rectangle, in 0-to-1 based portion of a page height.

The set of x_percent, y_percent, width_percent, height_percent coordinates is referred to as a
“bounding rectangle” in the draw type descriptions below.

Example XML
Below is a full working sample of a redaction XML containing one annotation for the 1st page that adds a black
rectangle redaction to a redacted document:

<?xml version="1.0"?>
<documentAnnotations>
 <pages>
 <page id="1" pageWidth="612" pageHeight="792">
 <annotation drawType="rectangle_filled_redact"
 x_percent="0.043" y_percent="0.028"
 height_percent="0.093" width_percent="0.128" />

PrizmDoc Viewer v13.17 229

©2021 My Company. All Rights Reserved.

 </page>
 </pages>
</documentAnnotations>

Image Binary Data
Some annotations add images to a document. The content of such images is provided in an XML as well. To
support this, a <documentAnnotations> element can have a child element <stampImages> that can include
an arbitrary number of <stampImage> elements, each having two required elements:

Name Type Description

imageStampId string ID of an image that will be used by annotations to reference to it.

base64format string Base64-encoded binary image data; this attribute uses the same format as HTML inline
image does.

Example

<documentAnnotations>
 <pages>
 <page id="1" pageWidth="612" pageHeight="792">
 <annotation drawType="imagestamp"
 imageStampId="sample-stamp-id-1"
 x_percent="0.043" y_percent="0.028"
 height_percent="0.093" width_percent="0.128" />
 </page>
 </pages>
 <stampImages>
 <stampImage imageStampId="sample-stamp-id-1"
 base64format="data: image/png;base64,iVBORw0K...kJggg=="/>
 </stampImages>
</documentAnnotations>

Custom Type Definitions
Color - in all attributes below “color” type means the attribute’s value can either be a “transparent” keyword,
meaning no color at all should be applied for that piece of a redaction, or an integer value that represents a 24-bit
RGB value of a desired color. This type does not support HTML hex color codes, such as “#F0F8FF” or HTML color
names such as “AliceBlue”.

Draw Type Descriptions
For text-based annotations, such as a highlights or strikethroughs, the annotation will only display in
the search results if the text underneath the annotation matches the search terms.

arrow

Draws a line with a triangle-shaped head. Same set of attributes, the size of an arrowhead is hard-coded and it also
has the same color as the line itself. An arrowhead is drawn at the END side of the line (see dragDirection
property of the line drawType).

PrizmDoc Viewer v13.17 230

©2021 My Company. All Rights Reserved.

circle_filled

Draws an ellipse that fits into a bounding rectangle. Uses the same attributes as rectangle_filled.

circle_trans

Draws an ellipse that fits into a bounding rectangle. Uses the same attributes as rectangle_filled.

eSignDate

Legacy synonym for text_redact annotation. > _NOTE: Coordinate calculations may be slightly different from
text_redact annotation._

eSignEmail

Legacy synonym for text_redact annotation. > _NOTE: Coordinate calculations may be slightly different from
text_redact annotation._

eSignESignId

Legacy synonym for text_redact annotation. > _NOTE: Coordinate calculations may be slightly different from
text_redact annotation._

eSignInitials

Legacy synonym for text_redact annotation. > _NOTE: Coordinate calculations may be slightly different from
text_redact annotation._

eSignName

Legacy synonym for text_redact annotation. > _NOTE: Coordinate calculations may be slightly different from
text_redact annotation._

eSignSignature

Draws a text entry that is composed of two text strings and a date string. Allows adding current date to the
document. Its content is positioned at the bottom of the bounding rectangle. Note that eSignWidth and
eSignHeight attributes override width_percent and height_percent attributes of the boundary rectangle.

Annotation text is built from following parts, in that order:

1. eSignIdLabel attribute value;
2. uuid attribute value;
3. eSignDate attribute value. If this attribute is not specified, current date is used.

Text attributes are controlled by an esign-specific set of attributes (see below), unlike other text annotations that
are controlled by HTML-like markup.

Supported attributes:

Name Type Required /
Default Description

eSignWidth int 280 Overrides the boundary rectangle width.

eSignHeight int 10 Overrides the boundary rectangle height.

PrizmDoc Viewer v13.17 231

©2021 My Company. All Rights Reserved.

eSignIdLabel string eSign ID: Signature label (first part of the signature annotation text).

eSignUuid string Signature uuid (second part of the signature annotation text).

eSignDate string Signature date (third part of the signature annotation text).

eSignFontFace string Tahoma Font name to use; same limitations apply as when using a font name
for a text_redact.

eSignFontSize int 8 Font size to use.

See also: Common Attributes

eSignText

Legacy synonym for text_redact annotation. > _NOTE: coordinate calculations may be slightly different from
text_redact annotation._

eSignTitle

Legacy synonym for text_redact annotation. > _NOTE: coordinate calculations may be slightly different from
text_redact annotation._

freehand

Draws an arbitrary SVG path using a limited subset of commands - only absolute versions of L, C and M SVG path
commands are supported at the moment. The drawn path is scaled to fit a boundary rectangle using the
parameters listed below, while keeping the aspect ratio.

The path data itself is expected to be provided in a CDATA child element of the freehand <annotation> element.
The path data is expected to be a set of commands, each followed by a comma-separated list of coordinate
arguments; see the following example:

 <annotation drawType="freehand" align="left" lineWidth="4"
 pathWidth="381.6459330143541" pathHeight="178.622009569378"
 x_percent="0.057416267942583726" y_percent="0.10598811077279977"
 height_percent="0.22553284036537627" width_percent="0.6236044657097289">

 <![CDATA[M0,50.75L0.08,50.51C0.16,50.26,0.32,49.77,0.97,48.31]]>

 </annotation>

Supported attributes:

Name Type Required
/ Default Description

pathWidth float Yes Absolute width of the provided path. This is expected to correlate with the
coordinates provided within the path data. This parameter is used to define the
scaling factor when scaling the path to fit into the boundary rectangle.

pathHeight float Yes Absolute height of the provided path. This is expected to correlate with the
coordinates provided within the path data. This parameter is used to define the

Name Type Required /
Default Description

PrizmDoc Viewer v13.17 232

©2021 My Company. All Rights Reserved.

scaling factor when scaling the path to fit into the boundary rectangle.

lineWidth int 1 Width of the path line, in pixels

lineColor color black Color of the path line

align string No Path line horizontal alignment in the annotation boundary rectangle.
Can have one of the following self-explanatory values:

right
left

Missing the parameter or setting it to any other value will result to default
behavior (center aligned path line).

See also: Common Attributes

highlightText

This is an utility annotation that effectively allows to draw several rectangles using the same color, border and
opacity settings as a rectangle_filled, while having a set of rectangles defined in <line-rectangles> child
elements exactly as it is done in text_hyperlink_annotation.

imagestamp

A legacy synonym of an imagestamp_redact.

imagestamp_redact

Draws an image over a given area. The image is scaled to fit its content into a boundary rectangle, keeping aspect
ratio.

Supported attributes:

Name Type Required / Default Description

imageStampId string Yes id of an image to use (see Image Binary Data above).

See also: Common Attributes

line

Draws a line from one corner of a bounding rectangle to another. A line has a drag direction (see the attributes list);
the following rules apply to a drag direction:

if it starts with “t”, then the line is directed “to the top”, meaning it goes from (Y + height) to (Y) in terms of
vertical direction; otherwise it goes “to the bottom”;
if it ends with “r” then the line goes “to the right”, meaning it goes from (X) to (X + width); otherwise, it goes
“to the left”.

So, for instance, dragDirection “tl” means that a line will be drawn from a bottom-right to the top-left corner of
a bounding rectangle.

Name Type Required
/ Default Description

PrizmDoc Viewer v13.17 233

©2021 My Company. All Rights Reserved.

Supported attributes:

Name Type Required / Default Description

lineWidth int 1 width of the line, in pixels

lineColor color black color of the line

dragDirection string No Defines the direction of the line.
Defines the placement of the arrowhead when used for an arrow.

See also: Common Attributes

polyline

Draws a polyline. Annotation node of this type should contain coordinates of polyline points in its inner text,
formatted as shown in example below:

 <annotation drawType="polyline">
 <![CDATA[[{"x":166.4,"y":95.1},{"x":262.07,"y":169.8},
{"x":184.4,"y":199.1}]]]>
 </annotation>

NOTES:

Polyline coordinates are specified in points
Boundary rectangle attributes are ignored for this annotation.

Supported attributes:

Name Type Required / Default Description

lineColor color black Color of the line.

lineWidth int 1 Width of the line, in pixels.

See also: Common Attributes

rectangle_filled

Draws a rectangle, either filled or transparent.

Supported attributes:

Name Type Required
/ Default Description

lineColor color 0 Rectangle border
color.

fillColor color 0 Rectangle fill
color.

lineWidth integer 0 Width of border
in pixels. alpha

integer 255 Alpha component that is added to fill and line
colors. The default value is 255 for 100%

PrizmDoc Viewer v13.17 234

©2021 My Company. All Rights Reserved.

in pixels. alpha
opacity.

opacity integer 255 Synonym of alpha
attribute name.

See also: Common Attributes

rectangle_filled_redact

Redacts a part of the document.

NOTE: This is the only annotation that not only adds new content to a page but updates and removes
some of the page's existing content, by doing what is called a “deep redaction”.

When a drawType="rectangle_filled_redact" is applied to a page, the following happens:

1. All text characters that are fully or partially covered by the area of the redaction get removed from the
resulting document;

2. Images that have some parts of them covered under a redaction area get their content filled with black (this
is always black, no matter the fillColor attribute) in the intersection area, effectively destroying any
security-sensitive image data under the covered area;

NOTE: this feature is currently not supported for 1-bit JPEG 2000 images;

3. A rectangle of the given color gets drawn above the full extend of the redaction area; black by default.
4. Optionally, a text entry can be drawn over the redaction rectangle (usually explains the reason for the

content redaction).

Supported attributes:

Name Type Required /
Default Description

lineWidth int 1 A width of a bounding rectangle border.

lineColor color black Border color of a drawn rectangle.

fillColor color black Fill color of a drawn rectangle.

meta string No A text to draw over a rectangle.

fontColor color white A color of a meta text font; if no “meta” is set, this parameter does not
affect anything.

See also: Common Attributes

rectangle_trans

Same behavior as rectangle_filled.

rectangle_trans_redact

This is effectively a rectangle_filled with different default values: default alpha is set to 25% opaque and default fill
color is set to yellow (#FFFF00).

Name Type Required
/ Default Description

PrizmDoc Viewer v13.17 235

©2021 My Company. All Rights Reserved.

signature_path

Same behavior as freehand.

signature_text

Same behavior as text_redact, but without text wrapping, and with text centering vertically.

stamp

Adds rounded rectangle with centered text in it. Text is drawn exactly as for text_redact annotation with same
attributes set, with the only exception that “stampSize” markup attribute is used for the font size instead of “size”
attribute.

Supported markup attributes:

Name Type Required / Default Description

stampSize 20 number Font size in pixels.

See also: text_redact
See also: Common Attributes

stamp_redact

A legacy synonym for a stamp.

strikethrough

This draw type applies a strikethrough annotation to the text that is specified inside selectedText property.
Annotation that uses strikethrough property should contain <line-rectangles> and <rectangles>
subelements, which define position and length of the strikethrough line.

 <documentAnnotations>
 <pages>
 <page id="1" pageWidth="612" pageHeight="792">
 <annotation nodeId="B4C6BF9B-C220-44B9-577C-8F4ADB7EED17"
 lineColor="0" interactionMode="0" stampSize="122"
 opacity="255" x="163.01" y="167.48"
 height="18.47999999999999" width="38.94"
 drawType="strikethrough" startIndex="70"
 selectedText="True" textLength="4"
 highlightGroupID="13_1488462726580_8836" isHighlight="y"
 lineWidth="2" dragDirection="br" meta=""
 label="" saveDate="Thurs Mar 2 2017"
 saveTime="13:52:12 GMT+0000" uuid="" formUser=""
 created="Thurs Mar 2 13:52:6 GMT+0000 2017" modified="Thurs Mar 2
13:52:6 GMT+0000 2017">
 <line-rectangles>
 <rectangle x="163.01" y="167.48" height="18.47999999999999"
width="38.94"/>
 </line-rectangles>
 <![CDATA[]]>
 </annotation>
 </page>
 <page id="2" pageWidth="612" pageHeight="792"/>
 </pages>
 <highlights />

PrizmDoc Viewer v13.17 236

©2021 My Company. All Rights Reserved.

 </documentAnnotations>

Supported attributes:

Name Type Required / Default Description

lineWidth integer 2 Strikethrough line thickness in pixels.

text

Adds text with border. This acts exactly as applying both rectangle_trans and text_redact annotations with the
attributes set that includes the attributes of both abovementioned draw types.

text_hyperlink_annotation

Adds hyperlink to the document.

Supported attributes:

Name Type Required /
Default Description

href yes string HTTP URL.

lineColor 0 color Base color for hyperlink highlighting. If it is set to 0 or transparent, then default
value will be used, which is blue color.

fillColor 0 color Reserved, should be set to 0.

See also: Common Attributes

Annotation node of this type should contain <line-rectangles> and <rectangles> subelements, which
define hyperlink area. The area, containing of several rectangles, would be highlighted and clickable. Each rectangle
is defined by its top left corner coordinates, width and height as shown in this example:

 <annotation ... >
 ...
 <line-rectangles>
 <rectangle x="226.8" y="225.7" height="11.3" width="315.5"/>
 <rectangle x="72" y="238.4" height="11.3" width="183.4"/>
 </line-rectangles>
 </annotation>

text_input_signature (reserved for internal use)

Reserved for internal use and not currently supported by the Redaction API.

text_redact

This draw type adds a text entry to a document.

There are no specific XML attributes (besides the usual bounding rectangle) for this draw type. For legacy
reasons, parametrization of the text attributes (font, color, positioning and wrapping) are set in an html-like piece
of markup in a CDATA child element of the <annotation>, like this:

PrizmDoc Viewer v13.17 237

©2021 My Company. All Rights Reserved.

<annotation x_percent="0.044" y_percent="0.052" height_percent="0.072"
width_percent="0.21" drawType="text_redact">
 <![CDATA[<TEXTFORMAT><P ALIGN="left" ><FONT FACE="Arial" SIZE= "12"
COLOR="#000000">Sample Text Redaction
With two lines</P></TEXTFORMAT>]]>
</annotation>

Supported HTML-like font markup attributes:

Name Type Required
/ Default Description

ALIGN string No Controls the horizontal alignment of a text entry within the bounding rectangle area.
Can have one of the following self-explanatory values:

RIGHT
MIDDLE or CENTER (synonyms)

Setting ALIGN to any other value will result to default behavior (left aligned text).

FACE string Arial Name of the font to use. For purposes of this annotation, the following font names can
be used:

a font that is available to the OS;
a font that resides in a OS-specific fonts folder;
a font that resides in a specified fonts folder of a product (usually
./modules/fonts).

SIZE float 20 Font size to use.

COLOR string #000000 A usual HTML hex representation of an RGB color of a font to use:

This attribute uses a HTML-like hex color notation unlike the -color attributes of
other annotations;
HTML color names are NOT supported;
You can NOT control the opacity of a text entry, it is always 100% opaque and
will remain as such even when used as part of a semi-opaque complex
annotation like text.

text_selection_redaction (reserved for internal use)

Reserved for internal use and not currently supported by Redaction API.

Markup JSON Specification

Introduction
The following specification describes the PrizmDoc Markup JSON format. A formal JSON schema is also available
for automated validation and can be found within the Use the Markup JSON Schema topic.

PrizmDoc Viewer v13.17 238

©2021 My Company. All Rights Reserved.

Specification
The Markup JSON format consists of a top-level object with a marks property that is an array of all marks related
to a single document.

Example
The following Markup JSON example creates a rectangle annotation with red background and black border near
the top-left corner of the first page in the document:

{
 "marks": [{
 "uid": "bmd3OF8yMDE5LTAxLTE4VDEyOjE5OjU2LjQ0M1pfNGY3MTFx",
 "interactionMode": "Full",
 "pageNumber": 1,
 "type": "RectangleAnnotation",
 "creationDateTime": "2019-01-18T12:19:56.442Z",
 "modificationDateTime": "2019-01-18T12:19:58.089Z",
 "data": {},
 "rectangle": {
 "x": 15.622641509433958,
 "y": 15.622641509433958,
 "width": 143.99999999999997,
 "height": 103.2452830188679
 },
 "pageData": {
 "width": 612,
 "height": 792
 },
 "borderColor": "#000000",
 "borderThickness": 4,
 "fillColor": "#ff0000",
 "opacity": 255
 }
]
}

Properties
For text-based annotations, such as a highlights or strikethroughs, the annotation will only display in
the search results if the text underneath the annotation matches the search terms.

marks (Array of Objects) Required. Array of marks for a document. Each item must be an object that
conforms to one of the supported marks with the following common properties:

type (String) Required. Type of mark. The following values are allowed:
"EllipseAnnotation"
"FreehandAnnotation"
"FreehandSignature"
"HighlightAnnotation"
"ImageStampAnnotation"
"ImageStampRedaction"
"LineAnnotation"
"PolylineAnnotation"

PrizmDoc Viewer v13.17 239

©2021 My Company. All Rights Reserved.

"RectangleAnnotation"
"RectangleRedaction"
"StampAnnotation"
"StampRedaction"
"StrikethroughAnnotation"
"TextAnnotation"
"TextAreaSignature"
"TextHyperlinkAnnotation"
"TextInputSignature"
"TextRedaction"
"TextSelectionRedaction"
"TextSignature"
"TransparentRectangleRedaction"

uid (String) Required. Unique id for this mark. This can be any globally-unique string, like a GUID.
interactionMode (String) Required. Interaction mode for this mark. The following values are
allowed:

"Full" - Indicates that the mark is fully interactive using the mouse, touch-input, and API.
"SelectionDisabled" - Indicates that the mark cannot be selected.

pageNumber (Integer) Required. One-indexed page where this mark is located. For example, the
first page of a document will be 1.
data (Object) A property bag of user-defined values. Property values are only allowed to be strings.
creationDateTime (String) Required. Date and time when this mark was created. Format is RFC
3339 Internet Date/Time profile of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".
modificationDateTime (String) Required. Date and time when this mark was last modified.
Format is RFC 3339 Internet Date/Time profile of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".
conversation (Object) Comments and associated metadata for this mark.

data (Object) Required. A property bag of user-defined values. Property values are only
allowed to be strings.
comments (Array of Objects) Array of comment objects for this mark. Items must contain:

data (Object) Required. A property bag of user-defined values. Property values are
only allowed to be strings.
creationDateTime (String) Required. Date and time when this comment was
created. Format is RFC 3339 Internet Date/Time profile of ISO 8601, e.g. "2016-11-
05T08:15:30.494Z".
text (String) Required. Text of the comment.

Additional properties specific to each mark type are defined in the sections below.

Mark Specific Properties
For text-based annotations, such as a highlights or strikethroughs, the annotation will only display in
the search results if the text underneath the annotation matches the search terms.

EllipseAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

PrizmDoc Viewer v13.17 240

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

borderColor (String) Required. Color of the border specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red border. The special value
"transparent" is also allowed which will create an invisible border.
borderThickness (Integer) Required. Thickness of the border in pixels.
fillColor (String) Required. Color of the background specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red background. The special value
"transparent" is also allowed which will create an invisible background.
opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.

FreehandAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

color (String) Required. Color of the line specified as a 6-character hexadecimal color string with a leading
sign. For example, a value of "#FF0000" will create a red line.
opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.
path (String) Required. An SVG-style path using M, L, and C commands used to draw a line.
thickness (Number) Required. Thickness of the line in pixels. Value must be between 1 and 50.

FreehandSignature

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

color (String) Required. Color of the line specified as a 6-character hexadecimal color string with a leading
sign. For example, a value of "#FF0000" will create a red line.
horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark

PrizmDoc Viewer v13.17 241

©2021 My Company. All Rights Reserved.

"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

path (String) Required. An SVG-style path using M, L, and C commands used to draw a line.
thickness (Number) Required. Thickness of the line in pixels. Value must be between 1 and 50.

HighlightAnnotation

fillColor (String) Required. Color of the highlight specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red highlight.
startIndex (Integer) Required. First zero-indexed character in the first line of text selected for this mark.
selectedText (String) Required. Text selected across all lines for this mark.
textLength (Integer) Required. Number of characters across all lines of text selected for this mark.
lineGroups (Array of Objects) Required. Array of objects describing the selected text on each page where
this mark will be applied. Items must contain:

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value
must be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved.
Value must be greater than or equal to 0.

pageNumber (Integer) Required. One-indexed page where the text selected by this line group is
located. For example, the first page of a document will be 1.
startIndex (Integer) Required. First zero-indexed character of the text selected on this page.
textLength (Integer) Required. Number of characters selected across all lines on this page.
lines (Array of Objects) Required. Array of objects describing each line of the selected text on this
page. Items must contain:

rectangle (Object) Required. Bounding rectangle dimensions of the selected text on a
single line.

x (Number) Required. Distance from the left edge of the page to the left edge of the
selected text.
y (Number) Required. Distance from the top edge of the page to the top edge of the
selected text.
width (Number) Required. Width of the selected text bounding rectangle.
height (Number) Required. Height of the selected text bounding rectangle.

ImageStampAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

imageDataUrl (String) Required. Image data for this mark. Format is RFC 2397 data URL scheme, e.g.
"data: image/png;base64,R0lGOD...". Only image/png and image/gif media types are
supported for burning.
imageId (String) Required. Unique id for this image. This can be any globally-unique string, like a GUID.

ImageStampRedaction

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.

PrizmDoc Viewer v13.17 242

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc2397.html

rectangle (Object) Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

imageDataUrl (String) Required. Image data for this mark. Format is RFC 2397 data URL scheme, e.g.
"data: image/png;base64,R0lGOD...". Only image/png and image/gif media types are
supported for burning.
imageId (String) Required. Unique id for this image. This can be any globally-unique string, like a GUID.

LineAnnotation

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

endPoint (Object) Required. Ending point of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the end point of this mark.
y (Number) Required. Distance from the top edge of the page to the end point of this mark.

startPoint (Object) Required. Starting point of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the start point of this mark.
y (Number) Required. Distance from the top edge of the page to the start point of this mark.

color (String) Required. Color of the line specified as a 6-character hexadecimal color string with a leading
sign. For example, a value of "#FF0000" will create a red line.
endHeadType (String) Required. Shape drawn at the end point of the line. Allowed values are:

"None" - Indicates no shape will be drawn at the end point of the line.
"FilledTriangle" - Indicates a filled triangle will be drawn at the end point of the line which
makes the line look like an arrow.

opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.
thickness (Number) Required. Thickness of the line in pixels. Value must be between 1 and 50.

PolylineAnnotation

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

points (Array of Objects) Required. Array of objects describing each point on the line of this mark. Items
must contain:

startPoint (Object) Required. Starting point of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the start point of this mark.
y (Number) Required. Distance from the top edge of the page to the start point of this mark.

color (String) Required. Color of the line specified as a 6-character hexadecimal color string with a leading
sign. For example, a value of "#FF0000" will create a red line.
opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will

PrizmDoc Viewer v13.17 243

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc2397.html

opacity (Integer) Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.
thickness (Number) Required. Thickness of the line in pixels. Value must be between 1 and 50.

RectangleAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

borderColor (String) Required. Color of the border specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red border. The special value
"transparent" is also allowed which will create an invisible border.
borderThickness (Integer) Required. Thickness of the border in pixels.
fillColor (String) Required. Color of the background specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red background. The special value
"transparent" is also allowed which will create an invisible background.
opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.

RectangleRedaction

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

borderColor (String) Required. Color of the border specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red border.
borderThickness (Integer) Required. Thickness of the border in pixels.
fillColor (String) Required. Color of the background specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red background.
fontColor (String) Required. Color of the text specified as a 6-character hexadecimal color string with a
leading # sign. For example, a value of "#FF0000" will create red text.
reasons (String[]) or reason (String) Required. Text to display in the center of the redaction indicating
why the redaction was made. You can provide either a plural reasons property with an array of strings or a
singular reason property with a single string value. If you provide an array of reasons, they will be
displayed together as a single string with a semicolon separating each reason.

StampAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.

PrizmDoc Viewer v13.17 244

©2021 My Company. All Rights Reserved.

x (Number) Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

color (String) Required. Color of the stamp border and text specified as a 6-character hexadecimal color
string with a leading # sign. For example, a value of "#FF0000" will create a red stamp.
label (String) Required. Text aligned in the center of the mark bounding rectangle.

StampRedaction

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

label (String) Required. Text aligned in the center of the mark bounding rectangle.

StrikethroughAnnotation

color (String) Required. Color of the strikethrough line specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red strikethrough line.
thickness (Number) Required. Thickness of the line in pixels. Value must be between 1 and 50.
textLength (Integer) Required. Number of characters across all lines of text selected for this mark.
startIndex (Integer) Required. First zero-indexed character in the first line of text selected for this mark.
selectedText (String) Required. Text selected across all lines for this mark.
lineGroups (Array of Objects) Required. Array of objects describing the selected text on each page where
this mark will be applied. Items must contain:

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value
must be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved.
Value must be greater than or equal to 0.

pageNumber (Integer) Required. One-indexed page where the text selected by this line group is
located. For example, the first page of a document will be 1.
startIndex (Integer) Required. First zero-indexed character of the text selected on this page.
textLength (Integer) Required. Number of characters selected across all lines on this page.
lines (Array of Objects) Required. Array of objects describing each line of the selected text on this
page. Items must contain:

rectangle (Object) Required. Bounding rectangle dimensions of the selected text on a
single line.

x (Number) Required. Distance from the left edge of the page to the left edge of the
selected text.
y (Number) Required. Distance from the top edge of the page to the top edge of the

PrizmDoc Viewer v13.17 245

©2021 My Company. All Rights Reserved.

y (Number) Distance from the top edge of the page to the top edge of the
selected text.
width (Number) Required. Width of the selected text bounding rectangle.
height (Number) Required. Height of the selected text bounding rectangle.

TextAnnotation

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

borderColor (String) Required. Color of the border specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red border. The special value
"transparent" is also allowed which will create an invisible border.
borderThickness (Integer) Required. Thickness of the border in pixels.
fillColor (String) Required. Color of the background specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red background. The special value
"transparent" is also allowed which will create an invisible background.
fontColor (String) Required. Color of the text specified as a 6-character hexadecimal color string with a
leading # sign. For example, a value of "#FF0000" will create red text.
fontName (String) Required. Font name for the text.
fontSize (Number) Required. Font size for the text specified in pixels. Value must be between 0.1 and
288.
fontStyle (String[]) Required. Font styling applied to the text. An array of String values. The following
values are allowed:

"Bold"
"Italic"
"Strikeout"
"Underline"

maxLength (Integer) Required. Maximum number of characters allowed. Value must be greater than or
equal to 0. A value of 0 indicates a maximum length will not be enforced.
horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

text (String) Required. Text of this mark.
opacity (Integer) Required. Opacity of this mark. Value must be between 0 and 255. A value of 0 will
create an invisible mark. A value of 255 will create a fully opaque mark.

TextAreaSignature

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.

PrizmDoc Viewer v13.17 246

©2021 My Company. All Rights Reserved.

x (Number) Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

fontColor (String) Required. Color of the text specified as a 6-character hexadecimal color string with a
leading # sign. For example, a value of "#FF0000" will create red text.
fontName (String) Required. Font name for the text.
fontStyle (String[]) Required. Font styling applied to the text. An array of String values. The following
values are allowed:

"Bold"
"Italic"
"Strikeout"
"Underline"

horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

maxFontSize (Integer) Required. Maximum size of the font specified in pixels. Value must be greater than
or equal to 0. A value of 0 indicates a maximum font size will not be enforced.
maxLength (Integer) Required. Maximum number of characters allowed. Value must be greater than or
equal to 0. A value of 0 indicates a maximum length will not be enforced.
text (String) Required. Text of this mark.

TextHyperlinkAnnotation

fillColor (String) Required. Color of the background specified as a 6-character hexadecimal color string
with a leading # sign. For example, a value of "#FF0000" will create a red background.
textLength (Integer) Required. Number of characters across all lines of text selected for this mark.
startIndex (Integer) Required. First zero-indexed character in the first line of text selected for this mark.
selectedText (String) Required. Text selected across all lines for this mark.
lineGroups (Array of Objects) Required. Array of objects describing the selected text on each page where
this mark will be applied. Items must contain:

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value
must be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved.
Value must be greater than or equal to 0.

pageNumber (Integer) Required. One-indexed page where the text selected by this line group is
located. For example, the first page of a document will be 1.
startIndex (Integer) Required. First zero-indexed character of the text selected on this page.
textLength (Integer) Required. Number of characters selected across all lines on this page.
lines (Array of Objects) Required. Array of objects describing each line of the selected text on this
page. Items must contain:

rectangle (Object) Required. Bounding rectangle dimensions of the selected text on a

PrizmDoc Viewer v13.17 247

©2021 My Company. All Rights Reserved.

rectangle (Object) Bounding rectangle dimensions of the selected text on a
single line.

x (Number) Required. Distance from the left edge of the page to the left edge of the
selected text.
y (Number) Required. Distance from the top edge of the page to the top edge of the
selected text.
width (Number) Required. Width of the selected text bounding rectangle.
height (Number) Required. Height of the selected text bounding rectangle.

href (String) Required. URL of the hyperlink.

TextInputSignature

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

mask (Object) Required. Object defining the input mask for this mark. An input mask defines the format of
the requested data and automatically rejects invalid input from the user. For example, the following input
mask for a US telephone number allows only parentheses, dashes and numbers: "(###) ###-####". A
value of null indicates an input mask should not be applied.

value (String) Required. String representation of the mask. The user input will look like this string
once they have finished their input. Each character in this string that does not have a translation will
be represented to the user literally.
translations (Object) Required. Translations to use for the given mask character. The key
represents a character present in the mask value, and the value is a regular expression which
validates the acceptable user input for that character. For example, the translation object { "#" :
"/\\d/" } specifies that the "#" character in a mask string will allow only a number to be entered.

fontColor (String) Required. Color of the text specified as a 6-character hexadecimal color string with a
leading # sign. For example, a value of "#FF0000" will create red text.
fontName (String) Required. Font name for the text.
maxLength (Integer) Required. Maximum number of characters allowed. Value must be greater than or
equal to 0. A value of 0 indicates a maximum length will not be enforced.
text (String) Required. Text of this mark.
horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

TextRedaction

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.

PrizmDoc Viewer v13.17 248

©2021 My Company. All Rights Reserved.

width (Number) Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

fontColor (String) Required. Color of the text specified as a 6-character hexadecimal color string with a
leading # sign. For example, a value of "#FF0000" will create red text.
fontName (String) Required. Font name for the text.
fontSize (Number) Required. Font size for the text specified in pixels. Value must be between 0.1 and
288.
maxLength (Integer) Required. Maximum number of characters allowed. Value must be greater than or
equal to 0. A value of 0 indicates a maximum length will not be enforced.
horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

text (String) Required. Text of this mark.

TextSelectionRedaction

lineGroups (Array of Objects) Required. Array of objects describing the selected text on each page where
this mark will be applied. Items must contain:

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value
must be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved.
Value must be greater than or equal to 0.

pageNumber (Integer) Required. One-indexed page where the text selected by this line group is
located. For example, the first page of a document will be 1.
startIndex (Integer) Required. First zero-indexed character of the text selected on this page.
textLength (Integer) Required. Number of characters selected across all lines on this page.
lines (Array of Objects) Required. Array of objects describing each line of the selected text on this
page. Items must contain:

rectangle (Object) Required. Bounding rectangle dimensions of the selected text on a
single line.

x (Number) Required. Distance from the left edge of the page to the left edge of the
selected text.
y (Number) Required. Distance from the top edge of the page to the top edge of the
selected text.
width (Number) Required. Width of the selected text bounding rectangle.
height (Number) Required. Height of the selected text bounding rectangle.

reasons (String[]) or reason (String) Required. Text to display in the center of the redaction indicating
why the redaction was made. You can provide either a plural reasons property with an array of strings or a
singular reason property with a single string value. If you provide an array of reasons, they will be
displayed together as a single string with a semicolon separating each reason.
selectedText (String) Required. Text selected across all lines for this mark.
startIndex (Integer) Required. First zero-indexed character in the first line of text selected for this mark.

PrizmDoc Viewer v13.17 249

©2021 My Company. All Rights Reserved.

startIndex (Integer) First zero-indexed character in the first line of text selected for this mark.
textLength (Integer) Required. Number of characters across all lines of text selected for this mark.

TextSignature

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

color (String) Required. Color of the text specified as a 6-character hexadecimal color string with a leading
sign. For example, a value of "#FF0000" will create red text.
fontName (String) Required. Font name for the text.
horizontalAlignment (String) Required. Horizontal alignment applied to the text of this mark. The
following values are allowed:

"Left" - The left edge of the mark will be horizontally anchored to the left of the mark bounding
rectangle.
"Center" - The center of the mark will be horizontally anchored to the center of the mark bounding
rectangle.
"Right" - The right edge of the mark will be horizontally anchored to the right of the mark
bounding rectangle.

text (String) Required. Text of this mark.

TransparentRectangleRedaction

rectangle (Object) Required. Bounding rectangle dimensions of this mark on the page.
x (Number) Required. Distance from the left edge of the page to the left edge of this mark.
y (Number) Required. Distance from the top edge of the page to the top edge of this mark.
width (Number) Required. Width of the mark bounding rectangle.
height (Number) Required. Height of the mark bounding rectangle.

pageData (Object) Required. Metadata of the page where this mark is located.
width (Number) Required. Width of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.
height (Number) Required. Height of the page, in pixels, at the time the mark is saved. Value must
be greater than or equal to 0.

How To Examples
This section contains the following "How To" information:

Compare Documents
Convert Content with Content Conversion Service

Content Conversion Demo
How to Configure the Demo on Windows
How to Configure the Demo on Linux

Migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer Self-Hosted Servers
Perform Auto-Redaction
Set up a Viewing Session for a CAD Drawing which has XREF Dependencies

PrizmDoc Viewer v13.17 250

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/compare-docs-server.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/convert-content-with-ccs.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/Content_Conversion_Demo.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/How_To_Configure_the_Demo_on_Windows.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/How_to_Configure_the_Demo_on_Linux.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/migrate-cloud-to-enterprise.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/auto-redact.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/cad-xref-viewing.html

Use the Markup JSON Schema
Use a Viewing Session
Watermark Content in a Viewing Session

Compare Documents

Introduction
The Document Comparison feature compares two documents and outputs a document that indicates the
differences between the two, such as formatting changes, grammatical changes, or the addition or omission of
content.

How-To Overview
To compare Microsoft Word documents:

1. Upload the original document used in a comparison viewing session, as well as the revised document used
in a comparison viewing session.

2. Start the viewing session to trigger the comparison process and initiate the view of the differences. If the
original and revised documents have many pages and produce a large number of differences, the
comparison process could take more time than the default timeout values are configured for. In order to let
the long-lasting comparison process complete successfully the DocumentAcquisitionTimeout and
DocumentInteractiveTimeout timeouts should be increased accordingly. The default timeout values allow
you to compare documents having less than 100 pages and less than 1000 differences.

3. Once the viewing session is initiated, you can start issuing API requests to obtain revision data from a
viewing session that compares documents. If the result of comparing two documents contains thousands of
differences, in order to obtain all of them the InternalOperationTimeout timeout should be increased
accordingly. The default timeout value allows you to obtain up to 1000 revisions per session.

PCCIS Timeouts Configuration Examples

Depending of the complexity and the size of the documents being compared, the comparison process could take
more time than the default PCCIS timeouts are configured for. Please consider the following examples below when
comparing such documents and adjust the PCCIS timeouts accordingly.

When comparing documents having less than 100 pages and producing less than 1000 differences:

<DocumentInteractiveTimeout>50000</DocumentInteractiveTimeout>
<DocumentAcquisitionTimeout>45000</DocumentAcquisitionTimeout>
<InternalOperationTimeout>100000</InternalOperationTimeout>

When comparing documents having less than 300 pages and producing less than 3000 differences:

<DocumentInteractiveTimeout>70000</DocumentInteractiveTimeout>
<DocumentAcquisitionTimeout>70000</DocumentAcquisitionTimeout>
<InternalOperationTimeout>350000</InternalOperationTimeout>

When comparing documents having less than 600 pages and producing less than 5000 differences:

<DocumentInteractiveTimeout>90000</DocumentInteractiveTimeout>
<DocumentAcquisitionTimeout>90000</DocumentAcquisitionTimeout>
<InternalOperationTimeout>500000</InternalOperationTimeout>

PrizmDoc Viewer v13.17 251

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.16/HTML/cad-xref-viewing.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/marks-json-schema-usage.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/use-a-viewing-session-pd-server.html
https://help.accusoft.com/PrizmDoc/v13.16/HTML/watermark-content-in-a-viewing-session.html

When comparing documents having more than 600 pages and producing more than 5000 differences:

<DocumentInteractiveTimeout>100000</DocumentInteractiveTimeout>
<DocumentAcquisitionTimeout>100000</DocumentAcquisitionTimeout>
<InternalOperationTimeout>600000</InternalOperationTimeout>

Licensing
The Microsoft Word document (.DOC and .DOCX) comparison feature uses the Microsoft Office Conversion (MSO)
add-on option for PrizmDoc Server running on Windows and provides connectivity for PrizmDoc Server running on
Linux. Therefore, this functionality is triggered by the license key that includes the MSO feature. The MSO feature
can be purchased in addition to your standard PrizmDoc Server license. See Feature Licensing for more
information.

Requirements
The Microsoft Word document comparison feature utilizes Microsoft Office rendering capabilities and therefore
requires the components listed in the Windows Requirements section to be available on the system. Please follow
all the required Windows Installation steps to let the PrizmDoc Server installer successfully pre-configure the
system. When running on a non-pre-configured system, PrizmDoc Server installer for Windows will determine the
required registry configuration settings specific to you server characteristics, make those changes in the registry,
and require a system reboot.

Convert Content with Content Conversion Service
This section describes how to use the PrizmDoc Server content converters REST API and provides examples of the
kinds of operations you can perform with it.

For application development in .NET, we recommend using the PrizmDoc Server .NET SDK instead of
using the PrizmDoc Server REST API directly. See the .NET SDK How to Guides for examples of how to
perform file conversion, OCR, document merging, and more with the .NET SDK.

The following steps walk you through using the PrizmDoc Server content converters REST API:

Step 1: Upload Your Source Document
Step 2: Start the Content Conversion Process
Step 3: Check Status of the ContentConverter Resource
Step 4: Download the Converted Document(s)
Conversion Input Examples

Multipage Word Document to Multipage PDF
Multipage Password Protected Word Document to Multipage PDF
Single-page Word Document to Scaled PNG
Multipage Word Document to Multiple PNG Images
JPEG to PNG
JPEG to Indexed TIFF
PDF to Bitonal TIFF
Single-page document to TIFF with specific resolution
Specific Pages of Two Multipage Documents to Multipage TIFF
All Pages of Three Multipage Documents Including Password Protected Document to Multipage PDF
Positioning and Text Justification within Header and Footer
Dynamic Page Numbering and Page Count with Optional Zero Padding within Header and Footer
Bates Numbering Across Multiple Output Documents

PrizmDoc Viewer v13.17 252

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/

Raster Document to a Searchable PDF

Step 1: Upload Your Source Document
Upload the source document that you want to convert.
This can be a document of any format supported by the PrizmDoc RESTful Web Services.
In response to this request you will receive a file ID that is used to reference the source document in later
requests.

Example

POST http://192.168.0.1:18681/PCCIS/V1/WorkFile?FileExtension=doc
Content-Type: application/octet-stream
[binary data]

200 OK
Content-Type: application/json
{
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
}

Step 2: Start the Content Conversion Process
Using the file ID you obtained for the source document in Step 1, you can now start the process to convert
the document. This is accomplished by sending a POST request which will start a process that runs
asynchronously on the PrizmDoc Server to produce the converted document(s).
Specify in the POST request the output format you wish to convert the source document to. This format may
be SVG, JPEG, PNG, TIFF, or PDF.
For raster output formats (JPEG, TIFF, PNG), you may optionally specify a maxWidth and/or a maxHeight. If
either of these attributes is present then the output document will be scaled to fit them as closely as
possible while maintaining its original aspect ratio. At least one of maxWidth and maxHeight must be
specified if the source document is in a vector format.
If output format is PDF or TIFF, you may specify whether to convert each page of the source document to a
separate output file or to convert all pages to a single document. This attribute is optional with the default
value set to convert all pages to a single document.
If input format is PDF, MS Word, MS Excel, MS PowerPoint or OpenDocument, you may optionally specify a
password.

Example

POST http://192.168.0.1:18681/v2/contentConverters
Content-Type: application/json
{
 "input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {

PrizmDoc Viewer v13.17 253

©2021 My Company. All Rights Reserved.

 "forceOneFilePerPage": true
 }
 }
 }
}

200 OK
Content-Type: application/json
{
 "processId": "bQpcuixhvGmNqn5ElskO6Q",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "pages": ""
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": true
 }
 }
 },
 "state": "processing",
 "percentComplete": 0
}

Step 3: Check Status of the ContentConverter Resource
The process to generate a converted document(s) runs asynchronously on the PrizmDoc Server. The POST
request you sent in Step 2 will return immediately and before the output is ready. This means you will need
to check the status of the process by sending a GET request to the resource you just created.
In response to this request, JSON will be returned that includes a state property. When this property is
"complete", the JSON response will also include an output property which means you can proceed to the
next step.
See the Content Converter API for more details of this request.

Example

GET http://192.168.0.1:18681/v2/contentConverters/bQpcuixhvGmNqn5ElskO6Q

200 OK
Content-Type: application/json
{
 "processId": " bQpcuixhvGmNqn5ElskO6Q ",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "pages": ""
 }
],
 "dest": {

PrizmDoc Viewer v13.17 254

©2021 My Company. All Rights Reserved.

 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": true
 }
 }
 },
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "pages": "1"
 }
],
 "pageCount": 1
 },
 {
 "fileId": "KOrSwaqsguevJ97BdmUbXi",
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "pages": "2"
 }
],
 "pageCount": 1
 },
 {
 "fileId": "o349chskqw93kwaqsgfevJ",
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "pages": "3"
 }
],
 "pageCount": 1
 }
]
 }
}

Step 4: Download the Converted Document(s)
Once the content conversion process completes successfully, the new, converted document(s) are available
for download.
A work file ID is made available for each successfully converted document in the output property from the
JSON response retrieved in Step 3.
See the Work File API for more details about downloading work files.

Example

GET http://192.168.0.1:18681/PCCIS/V1/WorkFile/ek5Zb123oYHSUEVx1bUrVQ

200 OK

PrizmDoc Viewer v13.17 255

©2021 My Company. All Rights Reserved.

Content-Type: application/pdf
[binary data]

Conversion Input Examples
Below are example JSON strings that can be used as input in Step 2 above to create various ContentConverter
processes.

Multipage Word Document to Multipage PDF
This example will convert all pages of a Word document to a single PDF document:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 }
}

Multipage Password Protected Word Document to Multipage PDF
This example will convert all pages of a password protected Word document to a single PDF document:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "password": "secret"
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 }
}

Single-page Word Document to Scaled PNG
This will convert a single page Word Document to a PNG image, scaled to 800 pixels width. Height will adjust
automatically to maintain aspect ratio:

PrizmDoc Viewer v13.17 256

©2021 My Company. All Rights Reserved.

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "png",
 "pngOptions": {
 "maxWidth": "800px"
 }
 }
}

Multipage Word Document to Multiple PNG Images
This will convert a multipage Word Document to multiple, single page PNG images. As PNG is not a multipage
format, each page of the Word Document will be converted to a separate PNG:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "png"
 }
}

JPEG to PNG
This example will convert a JPEG image to a PNG image, scaled to fit within 800 pixels width and 600 pixels height.
The output PNG will be as large as it can be while maintaining aspect ratio and remaining within these bounds:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "png",
 "pngOptions": {
 "maxWidth": "800px",
 "maxHeight": "600px"
 }
 }
}

PrizmDoc Viewer v13.17 257

©2021 My Company. All Rights Reserved.

JPEG to Indexed TIFF
This example will convert a JPEG image to TIFF image with indexed 8-bits per pixel (256) colors. The output TIFF will
have some minor quality loss and its size is usually several times smaller if it is created without the color.mode:
"indexed" option:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "tiff",
 "tiffOptions": {
 "color": {
 "mode": "indexed"
 }
 }
 }
}

PDF to Bitonal TIFF
This example will convert a PDF to a bitonal (black and white, 1-bit per pixel) TIFF using Group 4 compression:

"input": {
 "sources": [
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "tiff",
 "tiffOptions": {
 "compression": {
 "type": "group4"
 },
 "color": {
 "mode": "bitonal"
 }
 }
 }
}

Single-page document to TIFF with specific resolution
This example will convert a single-page document to a TIFF with default compression and color mode using
specific resolution (in dots per inch):

"input": {
 "sources": [

PrizmDoc Viewer v13.17 258

©2021 My Company. All Rights Reserved.

 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 }
],
 "dest": {
 "format": "tiff",
 "tiffOptions": {
 "compression": {
 "type": "auto"
 },
 "color": {
 "mode": "auto"
 },
 "dpi": 300
 }
 }
}

Specific Pages of Two Multipage Documents to Multipage TIFF
This example will merge first page of a Word document with the second and third pages of a PDF document and
convert them to a single TIFF document:

"input": {
 "sources": [
 {
 "fileId": "drxx_2sNVu9VIZTS4VH2Dg",
 "pages": "1"
 },
 {
 "fileId": "qkMQmjk6CxSzt5UEY-UdFQ",
 "pages": "2-3"
 }
],
 "dest": {
 "format": "tiff"
 }
}

All Pages of Three Multipage Documents Including Password
Protected Document to Multipage PDF
This example will merge together all pages of the first PDF document with all pages of the second password
protected Word document and all pages of the third TIFF document and convert them to a single PDF document.

"input": {
 "sources": [
 {
 "fileId": "TP4TX_SxCNF86suTfHHFSw"
 },
 {
 "fileId": "oJo8CWXAgFJ0dns8UF_AzQ",
 "password": "secret"

PrizmDoc Viewer v13.17 259

©2021 My Company. All Rights Reserved.

 },
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf"
 }
}

Positioning and Text Justification within Header and Footer
Multi-dimensional array of lines indicates positioning and text justification of a header or footer content.

To put an address in the top left of every page, you can use a header with lines like this:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "header": {
 "lines": [
 ["Accusoft", "", ""],
 ["4001 N Riverside Dr", "", ""],
 ["Tampa, FL 33603", "", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 }
 }
}

By placing the text in the center position of the inner array, it will be positioned in the center of the page. For
example, to print CONFIDENTIAL centered at the bottom of every page, you can define a footer with lines like this:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "footer": {
 "lines": [
 ["", "CONFIDENTIAL", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"

PrizmDoc Viewer v13.17 260

©2021 My Company. All Rights Reserved.

 }
 }
}

Use the following example to apply header and footer in a single call:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "header": {
 "lines": [
 ["Accusoft", "", ""],
 ["4001 N Riverside Dr", "", ""],
 ["Tampa, FL 33603", "", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 },
 "footer": {
 "lines": [
 ["", "CONFIDENTIAL", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 }
 }
}

Dynamic Page Numbering and Page Count with Optional Zero
Padding within Header and Footer
You can insert the current page number and/or total page count into header or footer text using the special syntax
{{pageNumber}} or {{pageCount}}.

For example, to produce a footer showing "Page 1 of 12" for the first page of a twelve-page document, you can
define a footer with lines like this:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "footer": {
 "lines": [

PrizmDoc Viewer v13.17 261

©2021 My Company. All Rights Reserved.

 ["", "Page {{pageNumber}} of {{pageCount}}", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 }
 }
}

You can optionally pad page number and total page count values with zeroes to guarantee that they fit a particular
character width using the syntax {{pageNumber,n}} or {{pageCount,n}}, where n is the minimum character width. If
the actual page number or page count value does not meet the minimum character width, it will be left-padded
with zeroes. This can be useful for bates numbering.

For example, the following code would produce a header with "Jones000097" in the top left of page 97:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "header": {
 "lines": [
 ["Jones{{pageNumber,6}}", "", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 }
 }
}

Bates Numbering Across Multiple Output Documents
You can apply Bates numbering to multiple output documents, continuing the numbering across the documents.
You can do this by calculating the count of pages in already converted documents and then passing this count as a
page number offset for the next conversion. Specify the offset using the syntax {{pageNumber+c}} where c is an
integer constant.

The total number of pages for a converted document can be obtained from output.results[n].pageCount
field of the response body returned for successfully completed conversion. Here is an example response where
page count of converted document is equal to 15:

 {
 "input": {
 "dest": {
 "format": "pdf"
 },
 "sources": [
 {
 "fileId": "px4x3scw_8OqzZlM24tmnQ",
 "pages": "1-15"

PrizmDoc Viewer v13.17 262

©2021 My Company. All Rights Reserved.

 }
]
 },
 "expirationDateTime": "2017-03-24T15:22:02.532Z",
 "processId": "kQVvYfCtmatmWzigemW8Xw",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "ZLa9F-Jg7M5gq1Wgx82ejg",
 "sources": [
 {
 "fileId": "px4x3scw_8OqzZlM24tmnQ",
 "pages": "1-15"
 }
],
 "pageCount": 15
 }
]
 }
}

See the Content Converter API for more details of this.

You can optionally pad the result with zeroes using the syntax {{pageNumber+c,n}}, where n is the minimum
character width. If the actual page number value does not meet the minimum character width, it will be left-
padded with zeroes.

For example, if you have already converted a document containing 15 pages, and want to continue the numbering
in the next conversion, using 8-digit padding, you can define a footer with lines like this:

"input": {
 "sources": [
 {
 "fileId": "EYsfBhL0JbYgNk80sbnxEg"
 }
],
 "dest": {
 "format": "pdf",
 "footer": {
 "lines": [
 ["", "{{pageNumber+15,8}}", ""]
],
 "fontFamily": "Courier",
 "fontSize": "12pt",
 "color": "#F57B20"
 }
 }
}

Raster Document to a Searchable PDF
This example will perform optical character recognition (OCR) to convert a raster file to a searchable PDF
document. The resulting PDF document will contain the original image and the recognized text in a separate
invisible layer, with each text character position matching its image counterpart. This will allow you to search, select

PrizmDoc Viewer v13.17 263

©2021 My Company. All Rights Reserved.

and copy the text in the resulting PDF document. > NOTE: If you are attempting to make a searchable PDF from an
existing PDF document, please note that the source PDF file should be an image-only PDF. PrizmDoc will not create a
searchable file from already-existing vector content.

"input": {
 "sources": [
 {
 "fileId": "LtrN8HwBiQOaKXvCcn9J8Q"
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "ocr": {
 "language": "english"
 }
 }
 }
}

Content Conversion Demo
This section contains the following information:

How to Configure the Demo on Windows
How to Configure the Demo on Linux

How to Configure the Demo on Windows

Demo Configuration
After the installation, test the sample application in a browser:

The Demo can be Launched by clicking Conversion Sample under Accusoft | PrizmDoc Viewer on the
Start Menu
The following will route you directly to the CCS Sample test page: http://localhost:18001

The demo.config file can be updated to customize the application host address, application port, and services port.

Example

{
 "logging": {
 "consoleLogFilePath":
 "%ALLUSERSPROFILE%\Accusoft\Prizm\Logs\CssDemoService.console.log"
 },
 "httpService": {
 "port": 3000
 },
 "apiService": {
 "port": 18681,
 "host": "localhost"

PrizmDoc Viewer v13.17 264

©2021 My Company. All Rights Reserved.

 }
}

Demo Directory Structure

File \ Folder Description

app.js This is a node-js app which hosts the express app and
proxy’s service requests.

proxyFilter.js This filters requests to the conversion service and white-
lists headers to and from the service.

package.json This is the node-js package json file.

node_modules These are the node-js npm dependencies.

lib\config.js This object reads the configuration file used to define the
application port and service host and port.

demo.config This is a configuration file used to define the application
port and service host and port.

public\app.js This contains angular js app controller, main service and
some helper directives.

public\app.css This is the application CSS.

public\index.js This is the entry point to the app and container for the
child views.

public\uploadView\upload.module.js This is the angular js controller for the upload
functionality.

public\requestCfgView\requestCfg.html This is the markup for the CCS request configuration view.

public\requestCfgView\requestCfg.module.js This is the controller for the CCS request configuration
view.

public\requestView\request.html This is the markup for the request configuration.

public\requestView\request.module.js This is the controller for the request configuration.

public\conversionView\conversion.html This is the markup for the request button.

public\conversionView\conversion.module.js This is the controller for the request button.

public\conversionDataView\conversionData.html This is the markup for the conversion request\response
view.

public\conversionDataView\conversionData.module.js This is the controller for the conversion request\response
view.

public\downloadView\download.html This is the markup for the download view.

public\downloadView\download.module.js This is the controller for the download view.

Starting & Stopping the Demo

PrizmDoc Viewer v13.17 265

©2021 My Company. All Rights Reserved.

On Windows, the PrizmDemo service should ideally be started/stopped from the Windows service management
console. As part of the PrizmDoc Viewer installation, the service should be configured to start automatically. If you
need to start, stop, or restart, use the following instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type services.msc.
4. Press Enter.
5. Find PrizmDemo in the list of services, and right-click on the service to access the context menu.
6. To Start the Service: Click Start and wait for the service to start. The status should update to "started" (this

option will only be available if the service is not running).
7. To Stop the Service: Click Stop in the right-click menu and wait for the service control dialog. The status will

be updated to be blank (this option will only be available if the service is already started).
8. To Restart the Service: Click Restart and wait for the service control dialog. (This option will only be

available if the service is already started.)

If access to the control panel is not available, services can also be started/stopped from the command line using
the following commands:

Example

net start PrizmDemp
net stop PrizmDemo

The PrizmDemo Windows service will log certain status messages to the Windows Event Log. These messages can
be helpful in diagnosing problems while starting and stopping the service. To view the Windows Event Log, use the
following instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type eventvwr.
4. Press Enter.
5. Expand Applications and Services Logs.
6. Click PrizmDemo.

How to Configure the Demo on Linux

Demo Configuration
The demo.config file can be updated to customize the application host address, application port, and services port:

Example

{
 "logging": {
 "consoleLogFilePath":
 "/usr/share/prizm/logs/CcsDemoService.console.log"
 },
 "httpService": {
 "port": 18001
 },
 "apiService": {

PrizmDoc Viewer v13.17 266

©2021 My Company. All Rights Reserved.

 "port": 18681,
 "host": "localhost"
 }
}

Demo Sample Directory Structure

File / Folder Description

app.js This is a node-js app which hosts the express app and proxy’s
service requests.

proxyFilter.js This filters requests to the conversion service and white-lists
headers to and from the service.

package.json This is the node-js package json file.

node_modules These are the node-js npm dependencies.

lib/config.js This object reads the configuration file used to define the
application port and service host and port.

demo.config This is a configuration file used to define the application port and
service host and port.

public/app.js This contains angular js app controller, main service and some
helper directives.

public/app.css This is the application CSS.

public/index.js This is the entry point to the app and container for the child views.

public/uploadView/upload.module.js This is the angular js controller for the upload functionality.

public/requestCfgView/requestCfg.htm This is the markup for the CCS request configuration view.

public/requestCfgView/requestCfg.module.js This is the controller for the CCS request configuration view.

public/requestView/request.html This is the markup for the request configuration.

public/requestView/request.module.js This is the controller for the request configuration.

public/conversionView/conversion.html This is the markup for the request button.

public/conversionView/conversion.module.js This is the controller for the request button.

public/conversionDataView/conversion
Data.html

This is the markup for the conversion request/response view.

public/conversionDataView/conversion
Data.module.js

This is the controller for the conversion request/response view.

public/downloadView/download.html This is the markup for the download view.

public/downloadView/download.module.js This is the controller for the download view.

Starting & Stopping the Demo
To start and stop the demo, use the script found in /usr/share/prizm/scripts/demos.sh.

PrizmDoc Viewer v13.17 267

©2021 My Company. All Rights Reserved.

Starting the demo from the shell:

Example

$ /usr/share/prizm/scripts/demos.sh start

Stopping the demo from the shell:

Example

$ /usr/share/prizm/scripts/demos.sh stop

Using the Demo
Once the demo has started, visit http://localhost:1800 in a browser.

Migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer
Self-Hosted Servers

Introduction
This topic covers the steps you need to migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer Self-Hosted
Servers.

Step 1: Install PrizmDoc Server, PrizmDoc Viewer and PAS
1. First, install PrizmDoc Server (if you do not have it installed already).
2. Next, install PrizmDoc Viewer and PAS.

IMPORTANT: Your PrizmDoc Cloud API key is not the same thing as a PrizmDoc Viewer license. Without
a license, the product will run in evaluation mode with a fixed feature set. For more information about
obtaining a license, please contact info@accusoft.com.

Step 2: Configure PAS to use your new PrizmDoc Server
Now that you have PrizmDoc Server installed, you have to point your PrizmDoc Application Services (PAS) instance to
your new PrizmDoc server as follows:

1. Find your PAS configuration file. If you do not know where it is located, refer to the section "Configuration File
Location" in the topic PrizmDoc Application Services (PAS) Configuration.

2. Next, you will need to modify the PrizmDoc Server connection settings within your PAS configuration file. For
instructions, refer to the section, "Configuring the PrizmDoc Server Connection" in the topic PrizmDoc
Application Services (PAS) Configuration.

3. Remove/comment the unnecessary pccServer.apiKey setting.
4. Restart PAS (see Starting & Stopping PrizmDoc Application Services).

PrizmDoc Viewer v13.17 268

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

You are done! Your PrizmDoc Application Services are now pointing to your new instance of PrizmDoc Server.

Perform Auto-Redaction

Introduction
An auto-redaction is a multi-step process that finds matches of a given regular expression, then permanently
removes the text and blacks out the displayed region for each match. The end result is a new PDF document with
no traces of the text that matched the regular expression.

For application development in .NET, we recommend using the PrizmDoc Server .NET SDK instead of
using the PrizmDoc Server REST API directly. See the How to Create a Redacted PDF topic in the .NET
SDK documentation for an example of how to easily perform auto-redaction with the .NET SDK.

The following steps walk you through using the PrizmDoc Server REST API to perform auto-redaction.

Step 1: Upload Your Source Document
Upload the source document that you want to redact.
This can be a document of any format supported by the PrizmDoc Server RESTful API, except for DICOM
and CAD documents, which are not currently supported for redaction.

In response to this request, you will receive a file ID that is used to reference the source document in later
requests.

Example

 POST /PCCIS/V1/WorkFile?FileExtension=pdf
 Content-Type: application/octet-stream
 [binary data]

 200 OK
 Content-Type: application/json
 {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 }

Step 2: Compose a Regular Expression
Compose the regular expression that will match the text you want to redact in the document.
The regular expression should adhere to the POSIX extended RE (ERE) or basic RE (BRE) syntax. (See details
in this link: http://laurikari.net/tre/documentation/regex-syntax/) > NOTE: Undocumented regex features
may work, however we don't provide support for them.

For example, the following regular expression will redact all US Social Security Numbers in a document:

Example

 "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"

PrizmDoc Viewer v13.17 269

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/redact-to-plain-text.html
http://laurikari.net/tre/documentation/regex-syntax/

NOTE: The regular expression is sent to PrizmDoc in JSON format, so you should adjust the
regular expression according to JSON syntax. Specifically, the backslash symbol should be
duplicated. If you create regular expressions programmatically, using string literals, you may
need to further adjust the string according to the programming language syntax.

Example

 Regular expression (searches whole word "the", case insensitive):
 "(?i:\bthe\b)"

 JSON content:
 "regex": "(?i:\\bthe\\b)";

 C# code:
 string regex = "(?i:\\\\bthe\\\\b)";

Step 3: Create Markup JSON from the Regular Expression
Before the actual redaction process can be started, the regular expression needs to be converted to a format it can
understand. PrizmDoc uses a proprietary XML syntax to define markups used for redaction, which you can generate
by sending a POST request that requires two inputs:

The file ID of source document you uploaded in Step 1.

One or more rules to match and redact the document text:

Each rule includes a regular expression such as the one you created in Step 2, and

An object that describes how to redact the matching text.

Example

POST /v2/redactionCreators
Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 },
 "rules": [{
 "find": {
 "type": "regex",
 "pattern": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "reason": "Redacted"
 }
 }]
 }
}

200 OK

PrizmDoc Viewer v13.17 270

©2021 My Company. All Rights Reserved.

Content-Type: application/json
{
 "processId": "Rr64ma-U_HseoPrs6y0iiw",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "source": {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 },
 "rules": [
 {
 "find": {
 "type": "regex",
 "pattern": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "reason": "Redacted"
 }
 }
]
 },
 "state": "processing",
 "percentComplete": 0
}

Step 4: Check Status of the RedactionCreator Resource
The process to generate markup XML runs asynchronously on the PrizmDoc server. The POST request you
sent in Step 3 will return immediately and before the output is ready. This means you will need to check the
status of the process by sending a GET request to the resource you just created.
In response to this request, JSON will be returned that includes a state property. When this property is
complete, the JSON response will also include an output property, which means you can proceed to the
next step.

See the Redaction Creator API for more details about this request.

Example

 GET /v2/redactionCreators/Rr64ma-U_HseoPrs6y0iiw

 200 OK
 Content-Type: application/json
 {
 "processId": "Rr64ma-U_HseoPrs6y0iiw",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "source": {
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg"
 },
 "rules": [
 {
 "find": {
 "type": "regex",
 "pattern": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {

PrizmDoc Viewer v13.17 271

©2021 My Company. All Rights Reserved.

 "type": "RectangleRedaction",
 "reason": "Redacted"
 }
 }
]
 },
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "markupFileId": "o1bLJwFGxf9QGuTkyrOqig"
 }
 }

Step 5: Start the Markup Burning Process (Redaction)
Using the file IDs you obtained for the source document in Step 1 and the XML markup file in Step 4, you
can now start the process to redact the document by sending a POST request, which will start a process
that runs asynchronously on the PrizmDoc server to produce a redacted document.

Example

 POST /PCCIS/V1/MarkupBurner
 Content-Type: application/json
 {
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": "o1bLJwFGxf9QGuTkyrOqig"
 }
 }

 200 OK
 Content-Type: application/json
 {
 "processId": "bQpcuixhvGmNqn5ElskO6Q",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": "o1bLJwFGxf9QGuTkyrOqig"
 },
 "state": "processing",
 "percentComplete": 0
 }

Step 6: Check Status of the MarkupBurner Resource
The process to generate a redacted document runs asynchronously on the PrizmDoc server. The POST
request you sent in Step 5 will return immediately and before the output is ready. This means you will need
to check the status of the process by sending a GET request to the resource you just created.
In response to this request, JSON will be returned that includes a state property. When this property is
complete, the JSON response will also include an output property, which means you can proceed to the
next step.

See the Markup Burner API for more details about this request.

PrizmDoc Viewer v13.17 272

©2021 My Company. All Rights Reserved.

Example

 GET /PCCIS/V1/MarkupBurner/bQpcuixhvGmNqn5ElskO6Q

 200 OK
 Content-Type: application/json
 {
 "processId": "bQpcuixhvGmNqn5ElskO6Q",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": "o1bLJwFGxf9QGuTkyrOqig"
 },
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "documentFileId": "5ufb3ytUb1BxxgSUAk_G9Q"
 }
 }

Step 7: Download the Redacted Document
Once the markup burning process completes successfully, the new, redacted PDF document is available for
download.

Example

 GET http://192.168.0.1:18681/PCCIS/V1/WorkFile/5ufb3ytUb1BxxgSUAk_G9Q

 200 OK
 Content-Type: application/pdf
 [binary data]

Set up a Viewing Session for a CAD Drawing which has
XREF Dependencies

How to Set Up a Viewing Session for a CAD Drawing Which Has
XREF Dependencies
This topic explains how to set up a viewing session for a CAD drawing which depends upon external files via XREF.

Many documents, such as a PDF, are self-contained in a single file. Setting up a viewing session for these sorts of
documents is relatively simple: after creating a viewing session, you make one HTTP call to upload the source
document's file bytes.

Setting up a viewing session for a CAD drawing which is made up of multiple files is slightly more complicated. You
will need to:

1. POST to create a new viewing session.

PrizmDoc Viewer v13.17 273

©2021 My Company. All Rights Reserved.

2. POST to upload each file to the work file API, both the primary CAD drawing and all its dependencies,
creating distinct fileId values for each one.

3. POST a JSON object to the work file API to create a special "package" work file for the entire set. This
"package" work file defines which of the files is the primary file for viewing, specifies path information for
each of the files (typically relative to the primary file), and has its own distinct fileId.

4. Assign the "package" fileId to the viewing session so that the entire CAD drawing may be viewed.

This topic walks through examples of this in detail. It has two parts:

Preparing to view a CAD XREF document for the first time
Preparing to view a CAD XREF document which has already been uploaded

Preparing to view a CAD XREF document for the first time

Step 1: Identify the necessary files and their local paths

Imagine a CAD engineer has prepared a master.dwg file which depends on several other files and has stored all of
the files on the disk in the following way:

./master.dwg

./parts/desk.dwg

./parts/desk-extension.dwg

./other/chair.dwg

./common/logo.png

In order for other CAD engineers to be able to open master.dwg and view the entire contents, they will need all of
these files, stored in the same way as they are here.

In the same way, in order for PrizmDoc to prepare master.dwg for viewing by an end user in the browser, it too will
need all of these files and information about how they were stored by the CAD engineer on the local disk.

Step 2: Create a new viewing session

Submit a POST to creating a new viewing session:

POST /PCCIS/V1/ViewingSession
Content-Type: application/json

{
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 }
}

HTTP/1.1 200
Content-Type: application/json

{
 "viewingSessionId": "AqQp3wrrSZ5YhJoFdj44Z_rT4629XnO6j7bEjjSRA5fiQUljuiYgi-
ng9sP4v95VTVqilte6bsaC6eGpUulMUWid1VN9qwH6rN5wp82eSfM",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

PrizmDoc Viewer v13.17 274

©2021 My Company. All Rights Reserved.

Hold on to the viewingSessionId (and affinityToken, if provided). You will need it again later.

Step 3: Deliver the configured HTML5 viewer resources to the end user

Now that you have a viewingSessionId, you can go ahead and deliver the Viewer, configured with the given
viewingSessionId, to your end user's browser. This allows their browser to start parsing the Viewer's JavaScript
resources as early as possible.

NOTE: We currently do not support the Viewer's download option when viewing CAD with XREF. When
configuring the Viewer, make sure you set uiElements.download to false.

Step 4: Upload the files to the back end

POST each of the necessary files to the work file API, creating a unique fileId for each one. If you are using
PrizmDoc Self-Hosted (in cluster-mode) or PrizmDoc Cloud, be sure to include the affinityToken value
returned after creating the viewing session in an Accusoft-Affinity-Token header of each request.

master.dwg:

POST /PCCIS/V1/WorkFile
Content-Type: application/octet-stream
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

<<master.dwg bytes>>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "CVBuD7DbQYNoJDqByGierQ",
 "fileExtension": "dwg",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

parts/desk.dwg:

POST /PCCIS/V1/WorkFile
Content-Type: application/octet-stream
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

<<parts/desk.dwg bytes>>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "fileExtension": "dwg",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

parts/desk-extension.dwg:

POST /PCCIS/V1/WorkFile

PrizmDoc Viewer v13.17 275

©2021 My Company. All Rights Reserved.

Content-Type: application/octet-stream
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

<<parts/desk-extension.dwg bytes>>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "o1bLJwFGxf9QGuTkyrOqig",
 "fileExtension": "dwg",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

other/chair.dwg:

POST /PCCIS/V1/WorkFile
Content-Type: application/octet-stream
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

<<other/chair.dwg bytes>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "KxonBTYJyRpCswOLn_paiw",
 "fileExtension": "dwg",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

common/logo.png:

POST /PCCIS/V1/WorkFile
Content-Type: application/octet-stream
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

<<common/logo.png bytes>>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "JcskB6w8D5_qlf4OA3xspQ",
 "fileExtension": "png",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

At this point, you have a unique fileId for each of the uploaded files.

Step 5: Create a final "package" work file

This is the step where you tie all of the files together under a single new fileId and provide some crucial
information which is necessary for the back end to actually prepare the content for viewing.

PrizmDoc Viewer v13.17 276

©2021 My Company. All Rights Reserved.

When uploading simple work files, the POST body is simply the bytes of the file. However, by submitting a POST
with a Content-Type of application/json, you can instead instruct the back end to create a new "package"
work file from a set of existing work files.

A "package" file defines the following:

A list of files in the package, specified by fileId.
A unique path for each file in the package.
The primary file in the package, identified by its path.

To create a new "package" for the files already uploaded in Step 4 above, we would submit a POST like this:

POST /PCCIS/V1/WorkFile
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/desk.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/desk-extension.dwg"
},
 { "fileId": "KxonBTYJyRpCswOLn_paiw", "path": "other/chair.dwg" },
 { "fileId": "JcskB6w8D5_qlf4OA3xspQ", "path": "common/logo.png" }
]
}

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "nkG9fiAmj27X3MhqGdbsXA",
 "fileExtension": "dwg",
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/desk.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/desk-extension.dwg"
},
 { "fileId": "KxonBTYJyRpCswOLn_paiw", "path": "other/chair.dwg" },
 { "fileId": "JcskB6w8D5_qlf4OA3xspQ", "path": "common/logo.png" }
],
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

The new fileId which is returned ("nkG9fiAmj27X3MhqGdbsXA") is a single id we can use to refer to this
entire set of files, with master.dwg being the primary file for viewing.

Step 6: Attach the "package" work file to the viewing session

Now that your "package" work file exists, you can attach it as the source document for the viewing session with this
PUT request. > NOTE: The viewingSessionId used in the URL is prefixed with the letter u:**

PUT
/PCCIS/V1/ViewingSession/uAqQp3wrrSZ5YhJoFdj44Z_rT4629XnO6j7bEjjSRA5fiQUljuiYgi-
ng9sP4v95VTVqilte6bsaC6eGpUulMUWid1VN9qwH6rN5wp82eSfM/SourceRef

PrizmDoc Viewer v13.17 277

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "refType": "workFile",
 "fileId": "nkG9fiAmj27X3MhqGdbsXA"
}

HTTP/1.1 200 OK

(If you are wondering, an Accusoft-Affinity-Token is not required in this particular request; the viewing
session id itself serves the role of the affinity token.)

At this point, the back end will begin converting the CAD content for viewing in the browser and delivering content
to the end user as it becomes ready.

Preparing to view a CAD XREF document which has already been
uploaded
All work files do eventually expire, and there is never a guarantee that a particular fileId will be available.
However, each time you use a fileId as the source document of a viewing session, we will extend the amount of
time that fileId will remain available. In many cases, you can simply continue reusing the existing fileId when
creating a new viewing session for the same CAD drawing.

Step 1: Create a new viewing session

Submit a POST to create a new viewing session. If you are using PrizmDoc Self-Hosted (in cluster-mode) or
PrizmDoc Cloud, make sure that you add an Accusoft-Affinity-Token header which matches the
affinityToken of the work file. This is crucial to ensure that the viewing session will be created on a
machine in the cluster that will actually have access to the existing fileId in the next step.

POST /PCCIS/V1/ViewingSession
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 }
}

HTTP/1.1 200
Content-Type: application/json

{
 "viewingSessionId": "HO9MagQSyIizShhzLpjp-H73-
IRtoqcPlJZmLP0PPwI3HxJ36Ds_HunbqMmtKfT1gt4h4-
96X67t7onW2P9XfV5Rw4pSddBrNoFp4A8bdFw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Step 2: Attach the existing "package" work file to the viewing session

PrizmDoc Viewer v13.17 278

©2021 My Company. All Rights Reserved.

Simply attach the existing fileId to the new viewing session as you did before. Remember that the
viewingSessionId used in this URL must be prefixed with the letter u:

PUT /PCCIS/V1/ViewingSession/uHO9MagQSyIizShhzLpjp-H73-
IRtoqcPlJZmLP0PPwI3HxJ36Ds_HunbqMmtKfT1gt4h4-
96X67t7onW2P9XfV5Rw4pSddBrNoFp4A8bdFw/SourceRef
Content-Type: application/json

{
 "refType": "workFile",
 "fileId": "nkG9fiAmj27X3MhqGdbsXA"
}

HTTP/1.1 200 OK

(Although it was crucial you provided an Accusoft-Affinity-Token in the previous POST request, it is not
required in this PUT request; the viewing session id itself serves the role of the affinity token.)

That's it. The new viewing session is ready to provide viewing content for the previously-uploaded CAD drawing
files.

What if the existing "package" work file has expired?

When you make the PUT request to associate the existing fileId to the new viewing session, the PUT request will
fail if no such fileId can be found:

HTTP/1.1 480 NotFound
Content-Type: application/json

{
 "errorCode": "NotFound",
 "errorDetails": {
 "in": "body",
 "at": "fileId"
 }
}

If the fileId has indeed expired, this is the response you will receive. At this point, you will need to re-upload all
of the CAD files again and create a new "package" fileId which you can then attach to the viewing session.

Note that this error technically only means that the specified fileId could not be found, and it may occur for
several reasons:

The fileId has expired.
The fileId value itself was incorrect.
You forgot to provide the correct Accusoft-Affinity-Token header value when creating the viewing
session, and as a result the viewing session has been assigned to a machine in the cluster that does not have
access to the work file (even though the work file itself may still exist). To prevent this, make sure you are
providing the work file's affinityToken value in an Accusoft-Affinity-Token header when making
the POST request to create the new viewing session.

Use the Markup JSON Schema

PrizmDoc Viewer v13.17 279

©2021 My Company. All Rights Reserved.

Introduction
The PrizmDoc Server and PAS Markup Burner APIs support JSON Markup content and use a JSON Schema definition
to validate incoming JSON content for structure, required properties, and value types. You can validate JSON Markup
against this Schema manually to determine root causes of schema validation errors.

See the Markup JSON Specification topic for a human-readable version of the schema.

Usage
You can use one of the libraries/tools listed in the The JSON Schema documentation to validate your Markup content
outside of PrizmDoc using your language of choice. PrizmDoc uses everit-org/json-schema internally.

Caveats
Because the Schema definition uses a oneOf directive to compare against all of our possible mark types, most
validators will return error messages for all mark types, not just the type you specify in the markup type property. You
will need to filter for the errors related to the Schema that most closely matches the mark type.

Download the Schema
Click here to view the JSON Schema definition. To download it, right-click on the same link and select "Save
link/target as...".

Use a Viewing Session

Introduction
This section provides instructions on how to use a Viewing Session in PrizmDoc Server:

Step 1: Create a Viewing Session
Step 2: (Optional) Upload the Source Document
Step 3: (Optional) Start the Session
Step 4: Request Content
Step 5: (Optional) Stop the Session

Step 1: Create a Viewing Session
The recommended method of creating a Viewing Session is through the POST /ViewingSession endpoint in PAS.

The body of the request specifies details of how the Viewing Session’s content will be generated and how its
source document will be transferred to PrizmDoc, but does not necessarily provide the source document itself.

Example Request

http://localhost:18681/PCCIS/V1/ViewingSession

Content-Type: application/json
{
 "render": {

PrizmDoc Viewer v13.17 280

©2021 My Company. All Rights Reserved.

https://json-schema.org/implementations.html
https://github.com/everit-org/json-schema

 "html5": {
 "alwaysUseRaster": false
 }
 }
}

Example Response

200 OK

Content-Type: application/json
{
 "viewingSessionId":"-gchUEYvBE5OCgcWJajgoXcW7QD0I8zNDFlexD9hzbXkmrYlw8DrxJ-
KiHAf2oTAL_HiHK1MsstBlNgZFCrcJQ"
}

Step 2: (Optional) Upload the Source Document
If a Viewing Session was created with a documentSource of "api", a second request is required to provide it with
the source document. For other source types, the source document will have already been specified in the
externalId property, and this step should be skipped.

Example Request

http://localhost:18681/PCCIS/V1/ViewingSession/u-
gchUEYvBE5OCgcWJajgoXcW7QD0I8zNDFlexD9hzbXkmrYlw8DrxJ-
KiHAf2oTAL_HiHK1MsstBlNgZFCrcJQ/SourceFile

Content-Type: application/octet-stream

{binary data}

Example Response

200 OK

Step 3: (Optional) Start the Session
By default, content generation for a Viewing Session does not begin until content is first requested from it.
However, it is possible to manually kick off conversion beforehand in order to improve the response time of
subsequent content requests.

Example Request

http://localhost:18681/PCCIS/V1/ViewingSession/u-
gchUEYvBE5OCgcWJajgoXcW7QD0I8zNDFlexD9hzbXkmrYlw8DrxJ-

PrizmDoc Viewer v13.17 281

©2021 My Company. All Rights Reserved.

KiHAf2oTAL_HiHK1MsstBlNgZFCrcJQ/Notification/SessionStarted

Content-Type: application/json
{
 "Viewer": "HTML5"
}

Example Response

200 OK

Step 4: Request Content
Once a Viewing Session has been created and provided with its source document, it becomes possible to make
requests for content from it, as described in the HTML5 Viewing API reference.

Example Request

http://localhost:18681/PCCIS/V1/Page/q/0?DocumentID=u-
gchUEYvBE5OCgcWJajgoXcW7QD0I8zNDFlexD9hzbXkmrYlw8DrxJ-
KiHAf2oTAL_HiHK1MsstBlNgZFCrcJQ&ContentType=png

Example Response

200 OK

Content-Type: image/png

{image data}

Step 5: (Optional) Stop the Session
A Viewing Session may be made unavailable prior to the time it would normally expire with a SessionStopped
request. See the API reference for details of what properties can be set for the error response returned for
subsequent requests against the stopped session.

Example Request

http://localhost:18681/PCCIS/V1/ViewingSession/u-
gchUEYvBE5OCgcWJajgoXcW7QD0I8zNDFlexD9hzbXkmrYlw8DrxJ-
KiHAf2oTAL_HiHK1MsstBlNgZFCrcJQ/Notification/SessionStopped

Example Response

PrizmDoc Viewer v13.17 282

©2021 My Company. All Rights Reserved.

200 OK

Watermark Content in a Viewing Session

Introduction
The PrizmDoc Services supports Text, Diagonal Text and Image watermarks for a viewing session. This means that
the viewable content that is displayed in the browser will contain the specified watermarks. The watermarks will not
be applied to the source document.

NOTE: Specifying watermarks in a viewing session will disable cache reuse. This means that the process
to convert a document to viewable content will be executed for each viewing session even if the source
document is the same as one in an existing viewing session. See the topic Adjusting Caching
Parameters for PrizmDoc Server for more information about cache reuse and the side-effects of
disabling it.

NOTE: Watermarks are currently only supported when viewing some SVG content. When viewing CAD
files such as .dwg, .dxf, .dwf or .dgn, then watermarks are not supported.

NOTE: If viewing watermarked raster content, then multi-line text, text decoration, and complex
Unicode fonts (for example, Hebrew, Arabic) are not supported.

Applying Watermarks
Watermarks are defined by setting additional JSON properties in the body of the HTTP request that you send to
create a new Viewing Session. These properties are described in more detail in the Viewing Sessions topic under
the POST ViewingSession request.

The watermark properties you set for the viewing session will be applied to all pages of the document. You can
specify more than one watermark in a viewing session. You can also apply watermarks of mixed types. For example,
a diagonal text watermark can be used to apply the text "Confidential" across each page and an image watermark
can be added to apply your company logo to the top-right corner of each page.

Text Watermarks
The following sections describe special characteristics of text watermarks that warrant additional explanation.

Special Characters

The control character \n has a special meaning inside the text string of a text watermark. If present, a line break
will be applied at its position.

Example

"text": "ACME Corporation\nConfidential"

Dynamic Page Number and Page Count

Use the special replacement syntax "{{pageNumber}}" and "{{pageCount}}" in the text string of a text watermark to

PrizmDoc Viewer v13.17 283

©2021 My Company. All Rights Reserved.

display the current page number and/or page count on each page.

Example

"text": "Page {{pageNumber}} of {{pageCount}}"

Font Considerations

The "fontFamily" property can be used to specify a font for text watermarks.

When viewing SVG content, please be aware that text watermarks will be created using SVG that is rendered on the
browser. This means that the font specified in this property must be available on the Viewer. When the "fontFamily"
property is not set, the default font of the client browser executing the Viewer will be used to render text
watermarks.

Text Length Considerations

The PrizmDoc Server API does not define a limit for the watermark text length. Note that very long text watermarks
may not fit entirely onto the document page and will not be fully visible.

Image Watermarks
The following sections describe special characteristics of image watermarks that warrant additional explanation.

Supported Formats

The source format of image watermarks must be PNG. Transparency options of a PNG will be honored so that
transparent sections of the image will reveal the page content beneath it.

The PrizmDoc Server API does not define a limit for the watermark image size or resolution.

Source Locations

The source of image watermarks can be either a URL or work file ID.

The URL should specify an absolute location with a scheme of HTTP or HTTPS. Please be sure that the URL is
accessible from the server where PrizmDoc Services are running.

See the Work Files topic for more information about creating work files and getting their IDs.

Aligning Watermarks
Text and Image watermarks can be aligned with nine commonly used locations in a page. Diagonal Text can only
be aligned in the center of the page.

PrizmDoc Viewer v13.17 284

©2021 My Company. All Rights Reserved.

You can select any one of these nine positions for Text and Image watermarks using two properties:

horizontalAlign - May be "left", "right", or "center". Default is "center".
verticalAlign - May be "bottom", "middle", or "top". Default is "middle".

For example, to place a text watermark at the bottom-right corner of a page set horizontalAlign to right and
verticalAlign to bottom.

Setting the autoSize property for an Image watermark will override these alignment settings.

Examples
The following examples demonstrate how to apply the various types of watermarks.

Text Watermark Example

This example demonstrates how to apply a single text watermark. In the sample output, notice that the \n control
character in the text string creates line breaks in the text.

Example

POST http://localhost:18681/PCCIS/V1/ViewingSession Content-Type:
application/json
{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 },
 "watermarks": [
 {
 "type": "text",
 "opacity": 0.6,
 "text": "jdoe\n67.79.169.114\n11/13/2014 2:24 PM\nNOT FOR
DISTRIBUTION",
 "color": "red",
 "fontFamily": "Consolas",
 "fontSize": "16pt",
 "fontWeight": "bold",
 "verticalAlign": "bottom",
 "horizontalAlign": "right"
 }

PrizmDoc Viewer v13.17 285

©2021 My Company. All Rights Reserved.

]
}

Sample Output

Diagonal Text Watermark Example

This example demonstrates how to apply a single diagonal text watermark. Diagonal text watermarks can only be
applied to the center of the page. In the sample output, the text "Accusoft\nConfidential" is displayed diagonally
over the center of the page. Notice that the \n control character in the text string creates a line break in the text.

PrizmDoc Viewer v13.17 286

©2021 My Company. All Rights Reserved.

Example

POST http://localhost:18681/PCCIS/V1/ViewingSession Content-Type:
application/json
{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 },
 "watermarks": [
 {
 "type": "diagonalText",
 "slope" : "up",
 "opacity": 0.25,
 "text": "Accusoft\nConfidential",
 "fontSize": "50pt",
 "color": "#FF0000",
 "fontWeight": "bold",
 "fontFamily": "Arial"
 }
]
}

Sample Output

PrizmDoc Viewer v13.17 287

©2021 My Company. All Rights Reserved.

Image Watermark Example

This example demonstrates how to apply a single image watermark over the entire page. In the sample output, the
tri-color Accusoft logo spans the center of the page. Notice that the transparent areas of the PNG image source do
not obstruct the page content beneath it.

Example

POST http://localhost:18681/PCCIS/V1/ViewingSession Content-Type:
application/json
{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 },
 "watermarks": [
 {
 "type": "image",
 "opacity": 0.3,
 "src": "http://localhost/watermark_images/logo.png",
 "autoSize": "fit"
 }
]
}

Sample Output

PrizmDoc Viewer v13.17 288

©2021 My Company. All Rights Reserved.

Multiple Watermarks Example

This example demonstrates how to apply multiple watermarks to a viewing session. In the sample output, the tri-
color Accusoft logo spans the center of the page and the text watermark near the bottom-right corner displays
information about the user.

Example

POST http://localhost:18681/PCCIS/V1/ViewingSession Content-Type:
application/json
{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 },
 "watermarks": [
 {
 "type": "text",
 "opacity": 0.6,
 "text": "jdoe\n67.79.169.114\n11/13/2014 2:24 PM\nNOT FOR
DISTRIBUTION",
 "color": "red",

PrizmDoc Viewer v13.17 289

©2021 My Company. All Rights Reserved.

 "fontFamily": "Consolas",
 "fontSize": "16pt",
 "fontWeight": "bold",
 "verticalAlign": "bottom",
 "horizontalAlign": "right"
 },
 {
 "type": "image",
 "opacity": 0.3,
 "src": "http://localhost/watermark_images/logo.png",
 "autoSize": "fit"
 }
]
}

Sample Output

PrizmDoc Viewer v13.17 290

©2021 My Company. All Rights Reserved.

PrizmDoc Viewer v13.17 291

©2021 My Company. All Rights Reserved.

Administrator Guide

Administrator Guide (Self-Hosted)
This section explains how to deploy and administer your own self-hosted PrizmDoc Viewer backend.

Architecture Overview
The PrizmDoc Viewer backend is comprised of two tiers, PAS and PrizmDoc Server:

PrizmDoc Server, the technical heart of the product, is a document processing and conversion engine. It is compute
intensive but has no permanent storage.

PAS is a layer in front of PrizmDoc Server responsible for viewing concerns, such as saving and loading of annotations.
As such, PAS requires access to a storage system which you manage (there are several supported options; see more
below).

An application can send REST API requests to both of these tiers:

For viewing, an application will send HTTP requests to PAS (and PAS will, in turn, send requests to PrizmDoc Server):

For document processing (like file conversion or redaction), an application will send HTTP requests directly to

PrizmDoc Viewer v13.17 292

©2021 My Company. All Rights Reserved.

PrizmDoc Server:

Load Balancing and Cluster Management
It is common in a production deployment to run multiple instances of PAS and PrizmDoc Server. The PAS and PrizmDoc
Server tiers are conceptually independent, and each should be fronted by a load balancer of your choice:

Application developers needing to make PAS or PrizmDoc Server REST API calls should only send their requests to the load
balancer sitting in front of the tier they are calling.

For PAS, any incoming request to the PAS tier can be routed to any PAS instance. You can use any off-the-shelf load balancer
in front of your PAS instances (there is no need for anything like sticky sessions). Any PAS instance is capable of directly
handling any request.

For PrizmDoc Server, the process is similar. Any incoming request to the PrizmDoc Server tier can be sent to any PrizmDoc
Server instance. You can use any off-the-shelf load balancer in front of your PrizmDoc Server instances (there is no need for
anything like sticky sessions). However, this is not because any PrizmDoc Server is capable of directly handling a request.
Rather, this is because PrizmDoc Server instances are capable of routing any incoming request to the correct PrizmDoc Server
instance in the cluster (the instance where document processing is actually occurring).

In order for PrizmDoc Server's automatic routing to work correctly, each PrizmDoc Server instance MUST have an up-to-date,
accurate list of all of the instances in the PrizmDoc Server cluster. Each time you add or remove PrizmDoc Server instances to

PrizmDoc Viewer v13.17 293

©2021 My Company. All Rights Reserved.

your cluster, you must inform each instance that the server list has changed (you can do this with a REST API call to each
instance). For more information about this, see Cluster Server Environments > PrizmDoc Server.

Supported Storage Options for PAS
Your PAS instances will need to be configured to use some sort of shared storage. PAS supports several options for this:

File system (such as network attached storage)
Microsoft SQL Server
MySQL
Amazon S3
Azure Blob Storage (beta)

For more information, see PAS Configuration.

Licensing
Self-hosted licensing is based upon your use of PrizmDoc Server. Each PrizmDoc Server instance you run must be configured
with your license key (PAS instances do not require a license key to run).

For your convenience, PrizmDoc Server automatically runs in evaluation mode without a license: images may be displayed
with a watermark on them and occasionally dialogs may be posted reminding you that PrizmDoc Viewer is in evaluation
mode with a fixed feature set. When you are ready to deploy to production, a license will be required to run PrizmDoc Server
in your production environment. Please contact info@accusoft.com to obtain a deployment license. For more information,
see Deployment Licensing.

Deployment Options
For both PAS and PrizmDoc Server, we offer ready-to-run Docker images as well as Windows and Linux installers.

PAS

For PAS, deploying is easiest with Docker, and we recommend you use the PAS Docker image if possible.

 PAS Pre-Installed

Docker Yes

Windows Installer No

Linux Installer No

To use the PAS Docker image, see Install PAS > Using Docker.

To install PAS directly on Windows, see Install PAS > Install on Windows.

To install PAS directly on Linux, see Install PAS > Install on Linux.

PrizmDoc Server

For PrizmDoc Server, deploying is easiest with Docker, and we recommend you use the PrizmDoc Server Docker image if
possible.

It largely depends on whether you need to render with Microsoft Office. If you do, then your only option is to deploy to a
Windows machine with our Windows installer. However, if you plan to use PrizmDoc Server's built-in LibreOffice rendering,
you can use any of our deployment options, including the Docker image.

 PrizmDoc Server Pre-Installed Office Rendering

Docker Yes LibreOffice

PrizmDoc Viewer v13.17 294

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

Windows Installer No LibreOffice or Microsoft Office

Linux Installer No LibreOffice

To use the PrizmDoc Server Docker image, see Install PrizmDoc Server > Using Docker.

To use the PrizmDoc Server Windows installer, see Install PrizmDoc Server > Install on Windows.

To use the PrizmDoc Server Linux installer, see Install PrizmDoc Server > Install on Linux.

Minimal Backend Quick Start
If you just want to quickly setup a single instance of PAS and PrizmDoc Server running on a single machine (perhaps for
evaluation), check out our Minimal Backend Quick Start.

 PrizmDoc Server Pre-Installed Office Rendering

PrizmDoc Server
This section contains the following information:

Server Sizing
Security Guidance
Document Rendering Specifics
Installing

Using Docker
Install on Windows

Windows Requirements & Supported Environments
Install on Windows
Registry Changes
Natively Render MSO Documents
Unattended Install & Uninstall
Uninstall PrizmDoc Server on Windows

Installing with Traditional Linux Install Packages (deprecated)
Requirements & Supported Environments for Traditional Linux Install Packages
Install Using Traditional Linux Install Packages
Install Asian Fonts on Traditional Linux Install Packages
Install Using Traditional Linux Install Packages on a Headless Environment
Uninstall Traditional Linux Install Packages

Check PrizmDoc Server Health
Upgrade PrizmDoc Viewer
Configure a Cluster

Licensing
Metered License
OEM License
Cloud License (Deprecated)
Node-Locked License (Deprecated)

Configuring
Central Configuration
PCCIS Configuration
Implement Caching Strategies
Adjust Caching Parameters
Change Encryption Keys for Public use Token Generation
Configure Microsoft Office Conversion Connectivity
Substitute Fonts for Office Rendering Fidelity
Upgrade from Legacy Configuration

PrizmDoc Viewer v13.17 295

©2021 My Company. All Rights Reserved.

Clustering
Optimize Cache Performance for Cluster Mode
Affinity Tokens & Cluster Mode

Starting & Stopping
Linux
Windows

Server Sizing

Overview
This topic provides some general guidance on the factors that will impact performance of PrizmDoc Server so that
you can adequately plan your deployment to ensure that you have sufficient hardware to handle your needs. You
should consider the type of documents that you will be processing and based on the information provided below,
adjust our recommendations accordingly to fit your use-case. If you have more specific questions regarding your
specific usage of PrizmDoc Server, please contact our Support team.

How Content Can Affect These Recommendations
How Hardware Can Affect System Performance
Example Server Configurations
Additional Considerations for Pre-Conversion Services

How Content Can Affect These Recommendations
PrizmDoc Server can process many different types of files. The majority of files processed by PrizmDoc Server
displayed in the Viewer are PDF, Microsoft Office formats (Word, PowerPoint, and Excel), and scanned images. The
system is capable of processing many files types outside of this basic set. For benchmarking purposes, we focus on
processing the more commonly used formats.

The content of files can vary greatly, and their construction can affect PrizmDoc Server’s ability to process them.
Any of the factors mentioned below could cause file processing and rendering time to deviate from the
performance expected from a basic document set.

Document Elements

The number of elements that exist within a file will affect how quickly the PrizmDoc Server services can convert the
content in the necessary viewing format. CAD Drawings and PDF Documents using path elements to represent CAD
data will contain many elements and require more time to convert. Elements within a file are not limited to the
path elements, but text content can also be a factor.

Image Size

Images can be content on their own, but images are also embedded into PDF and Office files. The size of the
images that the system needs to process can affect the system’s ability to load the content being supplied. As the
size of the image(s) increases, the amount of time needed to process the content increases. For example, the PDF
standard allows for images to be stored within the file, while only displaying a small portion of the image. While
the image may appear to be small in size, the information stored in the file can be larger than expected.

File Size

Uploading a file to the server before it can be processed will take some time. The size of a file can also be
representative of the complexity of the file. As the file size increases, the amount of time to transfer and load the
data will increase.

PrizmDoc Viewer v13.17 296

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/support/

File Types

Certain file types, by their nature, may contain more of the above defined factors. CAD drawings will contain many
line and path elements to represent the information that is needed. As these files grow in size, they will contain
more data and require more processing for the system to generate content for display.

How Hardware Can Affect System Performance
There is not one single piece of hardware that will address the performance concerns that you might have. In order
to avoid under-utilizing your hardware, Accusoft recommends keeping these different characteristics in balance
within your environment.

Disk IO

In its default configuration on common hardware of the day, the biggest limiting resource for PrizmDoc Server is
most likely to be disk IO. PrizmDoc Server caches a considerable amount of data on a local drive consisting of
document data, both original and converted, as well as state and other information.

As the load increases on a server, the data being written and read from disk will continue to grow with each new
request. We often see customers proposing hardware configurations that possess high-end CPUs but only a single,
~7200 RPM Hard Disk Drive. A single IO device in this situation can quickly become overburdened, causing the
queue length for the IO device to grow to the point where much of the actual time used for document conversions
is spent waiting for IO requests. There are options today that can greatly improve IO transfer rates:

SSD drives: A good option to minimize the IO wait time, allowing for the use of high-end multi-core
processors to extract the most performance out of PrizmDoc Server.
Shared Memory Drive (Linux): In this case, a chunk of the available RAM is shared and appears as a mounted
file system. This storage is not persistent, but this is acceptable for the PrizmDoc Server cache with the
understanding that PrizmDoc Server will reconvert documents to rebuild the cache if it is deleted.

Maximizing the number of Disk I/O operations your system can perform will be the most beneficial investment you
can make in order to allow the system hosting PrizmDoc Server to perform at its peak.

CPU

The CPU is another resource that should be considered when determining hardware requirements for PrizmDoc
Server. Assuming PrizmDoc Server performance is not bottlenecked by Disk IO (either SSD, Shared Memory, or
other Disk IO optimization is in use), the ideal range for CPU usage is about 60% total, across all available logical
cores. The 60% target is a guideline to where system activity should be for the system to be at peak productivity.

RAM

We recommend each server have 4GB of memory per logical core and no less than 16GB total memory. If you
intend to use a RAM Disk or Shared Memory Volume, you'll need to account for that separately.

Example Server Configurations
The throughput expressed in this document is defining the number of unique documents the system can convert
for viewing per minute. If a document has already been converted for display and is cached, the system resources
needed to transfer that data are minimal and are not considered in these estimates. The documents included in the
recommendation represent a standard mix of Office and PDF files ranging in size from a few pages to a few
hundred pages.

Minimum Recommendation

PrizmDoc Viewer v13.17 297

©2021 My Company. All Rights Reserved.

Windows: 5 per minute
Linux: 10 per minute

Hardware Details

Logical Cores: 4
Memory: 16GB
Hard Drive Type: SSD
AWS: m5.xlarge

Moderate Recommendation

Windows: 10 per minute
Linux: 18 per minute

Hardware Details

Logical Cores: 8
Memory: 32GB
Hard Drive Type: SSD
AWS: m5.2xlarge

High-End Recommendation

Windows: 15 per minute
Linux: 30 per minute

Hardware Details

Logical Cores: 16
Memory: 64GB
Hard Drive Type: SSD
AWS: m5.4xlarge

Additional Considerations for Pre-Conversion Services
When enabling the Work with Viewing Packages feature, there are additional considerations for hardware
requirements. Since the Viewing Package creation process creates all of the necessary artifacts that a future
Viewing Session may require, it is much more computationally and resource expensive than an on-demand Viewing
Session. As a general rule-of-thumb, creating a Viewing Package is about as resource intensive as having 5
concurrent users trying to view a document that has been uploaded for an on-demand Viewing Session.

When creating a Viewing Package, PrizmDoc will begin generating all of the artifacts for the document that is
uploaded (e.g., svg, text, etc.). This is fundamentally different from on-demand Viewing Session creation in that
PrizmDoc will only generate the artifacts that are immediately needed for viewing. Since everything is being
converted at once, this puts additional strain on the PrizmDoc Back-end Services.

Security Guidance

Introduction
This topic covers the essential items that you should consider before deploying your application. For example, how
PrizmDoc Server is designed, ports that need to be open for single-server and cluster modes, PrizmDoc Server

PrizmDoc Viewer v13.17 298

©2021 My Company. All Rights Reserved.

adminstration, and creating secure viewing sessions.

PrizmDoc Server
PrizmDoc Server is designed to run as an internal web service. Take steps to ensure that PrizmDoc Server is not
accessible to end-users or the public internet by configuring a firewall in front of PrizmDoc Server to block access
to the port it is using.

Ports

The following default ports should be open to access PrizmDoc Server:

Single-server Mode

18681 – PrizmDoc Server Entry Point (SEP) default port

Cluster Mode

18681 – PrizmDoc Server Cloud Entry Point (CEP) default port
18682 – PrizmDoc Server Entry Point (SEP) default port

NOTE: PrizmDoc Server uses a number of ports for internal purposes and must not be accessible from
outside of the server.

PrizmDoc Server Administration
PrizmDoc Server includes a Health Status API to request real-time information about the state and health of the
system. A sample ASP.NET web application is also included in the Windows installation that takes advantage of the
Health Status API and demonstrates potential use cases.

The Health Status API provides information that can be helpful in diagnosing problems. However, it also contains
sensitive information such as document information and specific processing tasks. Because of this, the ASP.NET
WebForms sample or any application accessing the Health Status API of PrizmDoc Server should not be accessible
to end-users or the public internet.

Secure Viewing Sessions
The central configuration file contains properties that can help prevent users from setting inappropriate values to
try and attack the PrizmDoc Server, which could render performance problems with the server. These values are
properties in the ViewingSessionProperties object that a client-user passes to PrizmDoc Server to start a viewing
session.

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

For more information on creating secure viewing sessions, refer to the following topics:

Enabling Content Encryption
Viewing Sessions API

The following configuration properties put limits on viewing session properties sensitive to abusive attacks:

PrizmDoc Viewer v13.17 299

©2021 My Company. All Rights Reserved.

Central Configuration Properties Example

Defines the min and max allowed values for the countOfInitialPages viewing
session creation option.
#
viewing.sessionConstraints.countOfInitialPages.min: 0
viewing.sessionConstraints.countOfInitialPages.max: 10

A regex which defines the pattern of an acceptable value for the
documentExtension viewing session creation option.
#
viewing.sessionConstraints.documentExtension.regex: ".*"

A regex which defines the pattern of an acceptable value for the
externalId viewing session creation option.
#
viewing.sessionConstraints.externalId.regex: ".*"

Defines the list of allowed values for the serverCaching viewing session
creation option.
#
Must be an array with one or more of the following strings:
#
"none" - Allow REST API callers to create a new viewing session with caching
explicitly disabled.
#
"full" - Allow REST API callers to create a new viewing session with caching
explicitly enabled.
#
viewing.sessionConstraints.serverCaching.allowedValues: \["none","full"\]

Defines the list of allowed values for the alwaysUseRaster viewing session
creation option.
#
Must be an array with one or more of the following values:
#
false - Allow REST API callers to create a new viewing session which will
generate both raster and vector page content. Ideal for modern
browsers.
true - Allow REST API callers to create a new viewing session which will
only generate raster content; vector content will not be generated.
This is useful for some older browsers.
#
viewing.sessionConstraints.render.alwaysUseRaster.allowedValues: \[false\]

Server Side Request Forgery Concerns
Some source files, such as HTML, email, and Microsoft Office files, reference content that resides on another server.
When rendering or converting these kinds of files, PrizmDoc Server may make network requests for this external
content. Depending on what your deployment servers have network access to, this can be a security vulnerability.
An attacker may leverage this to gain access to internal data and/or cause undesirable behavior. We recommend
you take steps to prevent this.

There are two primary kinds of files you should be concerned with: 1) HTML and email files and 2) Microsoft Office
files.

HTML and Email Files

PrizmDoc Viewer v13.17 300

©2021 My Company. All Rights Reserved.

HTML code can be found in both HTML and email (EML and MSG) files. When rendering or converting these files,
the content may include an HTML tag (like an image or iframe) which refers to external content. The presence of
something like an iframe tag could allow an attacker a way to gain access to any URL or HTTP resource in your
network, potentially exposing a variety of data you never intended to.

If you do not need to render or convert HTML or email files, or if you do but you never need to include external
content, we recommend you block all requests for external content by setting
security.htmlRendering.blockExternalContent to true. When you do this, PrizmDoc Server will avoid making any
external requests when rendering or converting HTML and email files.

Microsoft Office Files

When rendering or converting Office files, both PrizmDoc Server's built-in LibreOffice and Microsoft Office on
Windows may make external requests for image data.

Additionally, Microsoft Excel may make external requests for text data. If you are using Microsoft Office for
rendering, we recommend you disable the Excel WEBSERVICE function:

Microsoft Office 2013: change the policy value for User Configuration -> Administrative Templates ->
Microsoft Excel 2013 -> Excel Options -> Security -> "WEBSERVICE Function Notification Settings" to
"Disabled".
Microsoft Office 2016 / 2019: change the policy value for User Configuration -> Administrative Templates ->
Microsoft Excel 2016 -> Excel Options -> Security -> "WEBSERVICE Function Notification Settings" to
"Disabled".

Firewall Rules

In addition to the recommendations above, we also recommend you put in place firewall rules to prevent
unintended access to hosts in your network.

Windows

On Windows, we recommend setting up per-process firewall rules.

For HTML and email files, the following PrizmDoc Server executables may make requests for external content:

C:\Prizm\modules\wkhtmltopdf.exe
C:\Prizm\modules\wkhtmltoimage.exe

When using Microsoft Office, the following executables are known to potentially request external content:

C:\Program Files\Microsoft Office\Office16\EXCEL.EXE
C:\Program Files\Microsoft Office\Office16\WINWORD.EXE
C:\Program Files\Microsoft Office\Office16\POWERPNT.EXE
C:\Program Files\Microsoft Office\Office15\WINWORD.EXE
C:\Program Files\Microsoft Office\Office15\EXCEL.EXE
C:\Program Files\Microsoft Office\Office15\POWERPNT.EXE

When using PrizmDoc Server's built-in LibreOffice, the following executable may make requests for external
content:

C:\Prizm\libreoffice\program\soffice.bin

If you do not need to render external content, we recommend you set up firewall rules which prevent all of the
above executables from being able to make outgoing network requests.

However, if you need to allow rendering of some external content, we still recommend you set up firewall rules
which only allow these executables to access hosts you consider to be safe or, at the very least, prevent access to

PrizmDoc Viewer v13.17 301

©2021 My Company. All Rights Reserved.

https://admx.help/?Category=Office2013&Policy=excel15.Office.Microsoft.Policies.Windows::L_WebContentWarningLevel
https://admx.help/?Category=Office2016&Policy=excel16.Office.Microsoft.Policies.Windows::L_WebContentWarningLevel

all internal hosts an attacker should not have access to (like metadata services, typically running on
169.254.169.254, or any other sensitive internal services or servers).

Linux

On linux, you cannot set up per-process firewall rules, but there are a variety of ways you can prevent PrizmDoc
Server from making unintended network requests (user-specific firewall rules, Docker networking rules, and more).
How exactly you set this up will depend upon your environment, but we recommend putting some sort of firewall
rules in place which prevent PrizmDoc Server from being able to make network requests to hosts an attacker
should not have access to.

Document Rendering Specifics

MSO Rendering Engine
When rendering MS Word documents containing comments with MSO add-on, the following specifics should be
taken into account:

If there are a lot of comments on the page that cannot be fully fit into the sidebar on a single page, some of
the comments might not be rendered.
If there are comments containing a long text, they are rendered partially and appended by a 3 dot ellipse,
indicating the truncated state of the comment.

This is expected MS Office behavior when exporting document content with a large number of comments located on
the same page, or comments containing a long text.

Meeting Information in Email Files
When the experimental central configuration option for rendering meeting information associated with email files is
enabled, the following additional headers can be rendered by PrizmDoc Viewer:

When - describes the meeting date-time and recurrence rule. PrizmDoc Viewer supports the basic recurrence
settings and does not support all of the custom complex variations. Here is a list with examples of which
occurrence settings are supported:

Daily. Example: Occurs every day from March 13, 2021 2:00 PM - 2:15 PM
(UTC+07:00)
Weekly on specified weekday(s). Example: Occurs every Sunday, Monday, Saturday from
March 13, 2021 5:00 PM - 6:00 PM (UTC+07:00)
Monthly on specified day. Example: Occurs day 13 of every month from March 13, 2021
2:00 PM - 3:00 PM (UTC+07:00)
Monthly on n-th weekday. Example: Occurs the third Saturday of every month from
March 20, 2021 7:00 PM - 8:00 PM (UTC+07:00)
Annually on specified month and day. Example: Occurs every year from March 13, 2021
4:00 PM - 5:00 PM (UTC+07:00)

The recurrence interval, end date, occurrence count, and other more complex rules are not supported. When
the recurrence rule is not supported, the following message is displayed "this event has a recurrence
rule that cannot be displayed".

Who - lists meeting attendees.

NOTE: This feature is a work-in-progress that is not officially supported by Accusoft. Its behavior may change at any time

PrizmDoc Viewer v13.17 302

©2021 My Company. All Rights Reserved.

in a future release of the product. We are collecting and reviewing any feedback you can provide about this feature at
https://ideas.accusoft.com/ideas/PDV-I-745.

Installing
This section covers how to deploy an instance of PrizmDoc Server:

Using Docker
Installing on Windows

Windows Requirements & Supported Environments
Install on Windows
Registry Changes
Natively Render MSO Documents
Unattended Install & Uninstall
Uninstall PrizmDoc Server on Windows

Installing with Traditional Linux Install Packages (deprecated)
Requirements & Supported Environments for Traditional Linux Install Packages
Install Using Traditional Linux Install Packages
Install Asian Fonts on Traditional Linux Install Packages
Install Using Traditional Linux Install Packages on a Headless Environment
Uninstall Traditional Linux Install Packages

Checking PrizmDoc Server Health
Upgrade PrizmDoc Viewer
Configuring a Cluster

Using Docker

Using Docker
This section explains how to deploy a PrizmDoc Server instance using the official PrizmDoc Server docker image,
available on Docker Hub as accusoft/prizmdoc-server.

Requirements
To run PrizmDoc Server as a Docker container, you simply need a Docker host (a machine with Docker installed).
See the Docker documentation for more information.

1. Create a PrizmDoc Server config file
Before you can run PrizmDoc Server, you'll need a config file. We've included a special init-config command in
our Docker image which you can use to create an initial config file.

Windows (PowerShell)

First, make sure you've created a config directory on your host file system. This will be the directory where your
new config file will be created:

mkdir config

PrizmDoc Viewer v13.17 303

©2021 My Company. All Rights Reserved.

https://ideas.accusoft.com/ideas/PDV-I-745
https://hub.docker.com/r/accusoft/prizmdoc-server
https://docs.docker.com/

Then, use the Docker image's init-config command to create a new PrizmDoc Server config file:

docker run --rm -e ACCEPT_EULA=YES --volume $pwd/config:/config
accusoft/prizmdoc-server init-config

This will create a new PrizmDoc Server config file on your Windows host filesystem at .\config\prizm-
services-config.yml.

Linux (bash)

Use the init-config command to create a new PrizmDoc Server config file:

docker run --rm -e ACCEPT_EULA=YES --volume $(pwd)/config:/config
accusoft/prizmdoc-server init-config

This will create a new PrizmDoc Server config file on your host filesystem at ./config/prizm-services-
config.yml.

2. Configure your license

To start an instance of PrizmDoc Server, you need a license key from Accusoft. If you don't have a license, please
contact info@accusoft.com.

To configure the license, set the values of license.solutionName and license.key in your PrizmDoc Server
config file (prizm-services-config.yml).

NOTE: On a Linux system, because the config file was created by a Docker container, you will need to
either edit the config file as root or change the owner of the file before editing it.

For more information about configuring PrizmDoc Server, see Configuring PrizmDoc Server.

3. Start PrizmDoc Server

If you are using the default configuration, you can start PrizmDoc Server like so:

Windows (PowerShell)

First, create a directory on your host file system to store log files:

mkdir logs

Then, start a prizmdoc-server container:

docker run --rm --env ACCEPT_EULA=YES --publish 18681:18681 --volume
$pwd/config:/config --volume $pwd/logs:/logs --name prizmdoc-server
accusoft/prizmdoc-server

Linux (bash)

PrizmDoc Viewer v13.17 304

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

Start a prizmdoc-server container:

docker run --rm --env ACCEPT_EULA=YES --publish 18681:18681 --volume
$(pwd)/config:/config --volume $(pwd)/logs:/logs --volume $(pwd)/data:/data --
name prizmdoc-server accusoft/prizmdoc-server

In the examples above:

--rm ensures the container is automatically deleted when it stops.
--env ACCEPT_EULA=YES indicates you have accepted the PrizmDoc Viewer license agreement.
--publish 18681:18681 publishes the container's network.publicPort port to the host. If you
enable clustering (network.clustering.enabled: true), you will also want to publish the
network.clustering.clusterPort (18682 in a default configuration).
--volume $(pwd)/config:/config maps a host config directory into the container. Your local config
directory must contain the prizm-services-config.yml config file created earlier.
--volume $(pwd)/logs:/logs maps a local logs directory into the container. After the container stops,
the logs will remain in this directory.
--volume $(pwd)/data:/data (Linux only) maps a local data directory into the container. After the
container stops, the data will remain in this directory. Because PrizmDoc Server uses memory-mapped files
when writing to the data directory, and because Docker only supports memory-mapped file access to a
mapped volume on a Linux host, setting up this particular volume is only supported on a Linux docker
host.
--name prizmdoc-server sets the name of the running container.
accusoft/prizmdoc-server is the image that should be run.

If you want to start the Docker container in the background, add the -d option to docker run to run the
container in disconnected mode.

4. Check PrizmDoc Server has finished starting and is healthy

It may take several minutes for PrizmDoc Server to finish starting. But, once fully started, GET
/PCCIS/V1/Service/Current/Health should return HTTP 200, indicating PrizmDoc Server is healthy (while
starting, this request will return nothing or an error).

Windows (PowerShell)

Invoke-WebRequest -Uri http://localhost:18681/PCCIS/V1/Service/Current/Health

Should eventually output something like:

StatusCode : 200
StatusDescription : OK
Content : {79, 75}
RawContent : HTTP/1.1 200 OK
 X-Server-Chain: 2b95007f011f
 X-Server-Response-Time: 0
 Connection: keep-alive
 Transfer-Encoding: chunked
 Date: Thu, 21 Nov 2019 17:01:04 GMT
Headers : {[X-Server-Chain, 2b95007f011f], [X-Server-Response-Time, 0],
[Connection, keep-alive], [Transfer-Encoding, chunked]...}

PrizmDoc Viewer v13.17 305

©2021 My Company. All Rights Reserved.

RawContentLength : 2

NOTE: It may take several minutes for PrizmDoc Server to start. You will not get a 200 result until
PrizmDoc Server has fully started.

Linux (bash)

curl -i http://localhost:18681/PCCIS/V1/Service/Current/Health

Should eventually output something like:

HTTP/1.1 200 OK
X-Server-Chain: 69a6d22f90b9
X-Server-Response-Time: 1
Date: Wed, 20 Nov 2019 20:25:31 GMT
Connection: keep-alive
Transfer-Encoding: chunked

OK

NOTE: It may take several minutes for PrizmDoc Server to start. You will not get a 200 result until
PrizmDoc Server has fully started.

Troubleshooting: Check the admin status page

If you're not getting a 200 response at all, try checking the PrizmDoc Server admin status page in a browser:
http://localhost:18681/admin

5. Stopping the container

You can stop your named container with:

docker stop prizmdoc-server

Install on Windows
This section contains the following information:

Windows Requirements & Supported Environments
Install on Windows
Registry Changes
Natively Render MSO Documents
Unattended Install & Uninstall
Uninstall PrizmDoc Server on Windows

Windows Requirements & Supported Environments

PrizmDoc Viewer v13.17 306

©2021 My Company. All Rights Reserved.

Introduction
This section provides information about the system requirements for PrizmDoc Server when using the PrizmDoc
Viewer Self-Hosted installation:

TIP: PrizmDoc Viewer is only supported on 64-bit operating systems.

PrizmDoc Server
PrizmDoc Server is a suite of RESTful APIs that control document conversion processes. It requires significant
memory and processing power.

Supported Operating Systems

Windows

NOTE: When using Windows Server 2016 or Windows Server 2019, you must use the Desktop
Experience version. The core version doesn't contain the components needed for PrizmDoc.

Windows Server 2012, 2012 R2
Windows Server 2016, 2019 with Desktop Experience

System Requirements
Windows Microsoft .NET Framework 4.0

Hardware Requirements
Requirements vary greatly based on usage and it is generally a good idea to find what best fits your expected
usage. The Sizing Guide is a good place to start understanding what resources PrizmDoc Server uses and how to
optimize them for your needs.

Requirements

.NET 4.0 Framework

In order to install the PrizmDoc Server on a Windows system, the following item needs to be installed and available
before the installer is run:

.NET 4.0 Framework: The Windows Service that starts PrizmDoc Viewer and the PrizmDoc Server are built
targeting the .NET 4.0 framework.

Microsoft Office Conversion

In order to use the Microsoft Office Conversion (MSO) rendering feature on a Windows system, the following
components are required to be installed and available before the installer is run:

Microsoft Office 2013, 2016, or 2019 (not included in the PrizmDoc Server distribution and licensed
separately) and the corresponding Windows Updates (Please refer to https://www.microsoft.com/en-
us/microsoft-365/microsoft-365-and-office-resources in order to get system requirements for MS Office
versions).

PrizmDoc Viewer v13.17 307

©2021 My Company. All Rights Reserved.

https://www.microsoft.com/en-us/microsoft-365/microsoft-365-and-office-resources
https://www.microsoft.com/en-us/microsoft-365/microsoft-365-and-office-resources

Microsoft XPS Document Writer printer driver.
Ink and Handwriting Services feature from the Server Manager.

NOTE: The installed copy of Microsoft Office must be activated in order for PrizmDoc Viewer's
Microsoft Office Conversion Service to work properly. If the installed copy of Microsoft Office is not
licensed, not activated, or an expired or trial version, then Microsoft Office will not work with PrizmDoc
Viewer. Also note that subscription-based Microsoft Office versions like Office 365 must be downloaded
as a desktop version in order to work with PrizmDoc Viewer.

NOTE: If you are running PrizmDoc Viewer in cluster mode, all servers in the Windows MSO cluster
must use the same version of Microsoft Office.

NOTE: When considering using Microsoft Office 2019 as a rendering engine for Excel source
documents, please be aware that its performance could be up to three times slower compared to the
Excel performance of Microsoft Office 2016. So, we recommend using Microsoft Office 2019 when its
new features are required or for Windows version compatibility, otherwise prefer Microsoft Office 2016
for better Excel rendering performance if possible.

Install on Windows

Windows Installation
This section covers everything you need to install PrizmDoc Server. If you have questions about requirements
before installing, refer to the System Requirements & Supported Environments topic.

Registry Changes
The installer may make changes to the registry and require a reboot, if the registry is not pre-configured. For more
information about this, see Registry Changes for more detailed information.

Cloud Deployment
Before saving an image of a system, onto which a future non-interactive installation of PrizmDoc Server will occur,
perform the Before Installation steps (below) and configure the registry manually.

Before Installation
These actions must be taken before PrizmDoc Server is installed, regardless of whether the installation is interactive
or non-interactive.

IMPORTANT: Make sure you back up your configuration files before upgrading from any previous
versions of PrizmDoc.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the
new license.

All the required components listed below must be installed and manually configured prior to installation.

Configure Rendering With Microsoft Office

If your license includes the MSO Conversion feature, which allows the server to render Microsoft Office documents
natively with Microsoft Office, follow the pre-installation steps to Natively Render Microsoft Office Documents.

PrizmDoc Viewer v13.17 308

©2021 My Company. All Rights Reserved.

https://support.microsoft.com/en-us/office/what-s-new-in-excel-2019-for-windows-5a201203-1155-4055-82a5-82bf0994631f

Installation
To install PrizmDoc Server on your own Windows server, follow these steps:

1. Download PrizmDoc Server from the website.

2. Double-click on the PrizmDocServer-xx application file to launch the installer (where xx represents the
version). Click Install PrizmDoc Server.

3. Carefully read the information contained in the License Agreement form before making a decision to accept
the terms of the License Agreement. Choose I accept the terms in the License Agreement to accept the
conditions outlined in the License Agreement and then click the Next button to continue the installation (or
click Cancel to exit the installation process).

4. If your machine does not meet the PrizmDoc Server minimum system requirements, a dialog displays
indicating the requirements that are not met. (You may choose to continue installation, but may experience
poor performance.) Click Next.

5. The Installation Path dialog is displayed. Specify the destination directory where the PrizmDoc product
should be installed or choose the default installation destination directory, then click Next.

6. Specify the login account (account name and password) that PrizmDoc Server will run under. Please note
that the "login account" should have enough privileges to start Windows Service - it should have Log on as
a service user right. If you are using the Microsoft Office Conversion (MSO) add-on, please make sure that
the "login account" is a real user account with Administrator rights. Running PrizmDoc under the
LocalSystem user or another Microsoft Windows integrated service account is not supported for this option.
Please consider the cases below for the "login account" and the Microsoft Office installation account:

The "login account" is the same administrative account that has been used for the installation of
Microsoft Office on the system - no additional steps are required.
The "login account" is not the same administrative account that has been used for the installation of
Microsoft Office on the system. Before installing PrizmDoc, make sure to log into the "login account"
and run Microsoft Word, Excel, and PowerPoint applications once so that the corresponding registry
keys for Microsoft Office are created for the "login account".

7. Click Install to continue. The Installation dialog is displayed with a progress bar. While PrizmDoc Server is
installing, you can click on the links to review the Release Notes, Online Demos or Code Examples.

8. Part way through the installation, the installer will launch the PrizmDoc Licensing Utility, a tool which allows
you to either install a paid license or configure the product for evaluation.

If you are evaluating the product, simply select I want to evaluate the product.
If you have a paid license, select I have purchased a license and follow the instructions on the
following screens to install your license.

9. Once you have finished installing your license or configuring the product for evaluation, click the Exit
button to close the PrizmDoc Licensing Utility and return to the installation process.

10. Once complete, the Installation Complete dialog is displayed. If a reboot is necessary to finalize the
installation, a Restart Now checkbox will be present. By default this option will be checked, indicating the
installer will automatically restart your machine when you click finish (if you would prefer to delay this
restart and perform it yourself, you can uncheck the Restart Now option before clicking finish, but you
MUST restart the machine before using PrizmDoc Server). Click finish to exit the installer.

11. If you purchased PrizmDoc with the Microsoft Office Conversion service, continue to the next section below.
If you did not purchase PrizmDoc with the Microsoft Office Conversion service, then your installation is

PrizmDoc Viewer v13.17 309

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/

complete.

12. It is important to block specific Windows firewall ports to prevent SMB traffic from leaving the configured
Windows instance. The following outbound ports should be blocked: TCP: 137, 138, 139, 445 and UDP: 137,
138. Please refer to the Microsoft guidelines for blocking specific firewall ports to prevent SMB traffic.

13. It is important to block all outbound traffic of Microsoft Excel application in Windows firewall. Please refer to
the Microsoft guidelines for blocking of application outbound traffic.

NOTE: For a production installation of PrizmDoc on Windows, you can improve your performance by
enabling Gzip compression.

Registry Changes

Registry Changes
The PrizmDoc installer will modify the registry to increase the size of the non-interactive heap, allowing the Prizm
service to create more than the default number of child processes to run its micro-services.

If the registry already contains a value greater than necessary, no changes to the registry will be made. If the
registry is modified, and PrizmDoc is un-installed, the original registry values will be replaced.

NOTE: Upon start up, the PrizmDoc Server checks whether or not the system's non-interactive heap size
corresponds to the CPU cores count, and in the case of a discrepancy, the Admin page will never show a
'Running' status, and the OfficeConversionService.log will contain the error message: "Non-interactive
heap size does not correspond to CPU cores count, going to 'Unhealthy' state". Please follow the
recommendations provided in the next two sections below to avoid server configuration errors related
to a mismatch between the non-interactive heap size and the CPU cores count.

Interactive Installation
A manual heap size value adjustment process is not required when the PrizmDoc Windows Server installer is
running in its interactive UI mode, where it will make all of the necessary registry changes and require a system
reboot.

Please make sure to install the product on the system, with the final CPU cores count to be used in production, so
that the product installer will adjust the non-interactive heap size accordingly, corresponding to the actual CPU
cores count.

Due to a known issue with the installer, it might not ask for a reboot after the installation, so please
make sure to reboot the system manually. This issue will be addressed in the future release.

Non-Interactive Installation
In order to avoid a system reboot when installing PrizmDoc Server for Windows in non-interactive mode, such as
for cloud-based systems using auto-deployment, the cloud image must have its registry modified as described
below.

Registry Changes
Registry Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems

Value: Windows

PrizmDoc Viewer v13.17 310

©2021 My Company. All Rights Reserved.

https://support.microsoft.com/en-us/help/3185535/guidelines-for-blocking-specific-firewall-ports-to-prevent-smb-traffic-from-leaving-the-corporate-environment
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-firewall/create-an-outbound-program-or-service-rule

The value is a complex, space separated set of system wide settings, one of which is named "SharedSection". This
is a comma-separated string value containing 3 numeric values that may look like: SharedSection=1024,20480,768.

The third numeric value is a non-interactive desktop heap size in kilobytes, which must be set to the Heap Size
Value (see table below) corresponding to the number of CPU cores in the server:

CPU Cores Instance Count Heap Size
Multiplication Factor Heap Size Value

1 1 1 768 (default)

2, 3 Number of Cores 2 1536

4 <= Cores < 8 4 2 1536

8 8 3 2304

12 12 4 3072

16 16 5 3840

20 20 6 4608

24 24 7 5376

28 28 8 6144

32 32 9 6912

The heap size value is calculated from the default size by applying a heap size multiplier corresponding to the
number of CPU cores available on the server.

The instance count indicates the number of concurrent Office document converter processes the Office
Conversion Service will handle when using the MSO option. The total number of running Office document
converter processes will be twice the number of concurrent instances - this is done in order to improve the
performance of the Office Conversion Service.

NOTE: The PrizmDoc Server limits the max CPU core usage to 32 for Office documents processing. If
your machine has more CPU cores, the extra ones will not be utilized to avoid server's overload and
instability - this is related to the system resources usage by MSO. So if you need to utilize more CPU
power for Office documents viewing and conversion, please consider using PrizmDoc Server Clustering.

Natively Render MSO Documents

Natively Render Microsoft Office Documents
Accusoft offers a Microsoft Office Conversion (MSO) add-on option for PrizmDoc Server running on Windows. The
Microsoft Office Conversion service allows you to have native rendering of Microsoft documents in PrizmDoc’s Viewer,
Content Conversion and MarkupBurner services. Available as an add-on licensed option to your PrizmDoc Windows
product, this enhanced rendering offers a solution for companies who have a business requirement of native
rendering of Microsoft Office documents. Please refer to Supported File Formats section for complete list of
document formats supported by MSO.

The MSO conversion option is triggered by a license key that includes the MSO feature. The MSO feature can be
purchased in addition to the standard features of your PrizmDoc Server license.

Prerequisites Before Installing PrizmDoc Server

PrizmDoc Viewer v13.17 311

©2021 My Company. All Rights Reserved.

Before installing PrizmDoc Server, make sure you've done the following:

1. Ensure the Microsoft XPS Document Writer printer is installed. For Microsoft Office rendering, PrizmDoc
Server requires the Microsoft XPS Document Writer printer driver to be installed (it does not need to be the
default printer, but it does need to be installed and available).

2. Ensure that Ink and Handwriting Services are enabled (for versions of Windows Server prior to v2016).
For Microsoft Office rendering, PrizmDoc Server requires the "Ink and Handwriting Services" desktop
experience feature be enabled from the Server Manager.

3. Ensure Microsoft Office is activated. For Microsoft Office rendering, PrizmDoc Server requires your installed
copy of Microsoft Office licensed and activated. If Microsoft is not licensed, not activated, or an expired or
trial version, Microsoft Office rendering with PrizmDoc Server will not function.

4. Ensure you run PrizmDoc Server with the same Windows user account you used to install Microsoft
Office. When installing PrizmDoc Server, you will be asked which Windows login account (account name and
password) PrizmDoc Server should use when it is running. We recommend you use the same Windows user
account which you used to install Microsoft Office.

If you choose to run PrizmDoc Server with a different Windows user account than the user you used to
install Microsoft Office, you will need to take an additional step before installing PrizmDoc Server: You
must login using the Windows account you used to install Microsoft Office and run Microsoft Word,
Excel, and PowerPoint each one time to ensure that Office applications will run smoothly when
PrizmDoc Server uses them.

5. Ensure that all PrizmDoc Server instances are using the same version of Microsoft Office. If you are
running PrizmDoc Server in clustered mode, all servers in the Windows MSO cluster must use the same
version of Microsoft Office.

6. Ensure that the Printer Spooler service is enabled. The Windows Print Spooler service must be enabled for
the login account in order for the Microsoft XPS Document Writer printer to work properly.

Unattended Install & Uninstall

Introduction
The PrizmDoc Server Windows installer can be installed unattended, however certain properties must be set:

IMPORTANT: PrizmDoc requires a clean installation when migrating from a version earlier than v12.0.
You must first uninstall any previous versions of PrizmDoc and reboot your system. Only then should
you install PrizmDoc v12.0 or later. Make sure you back up your configuration files before uninstalling
any previous versions of PrizmDoc. Once you have installed v12.0, you do not need to uninstall if you
want to migrate to v12.1 or later.

Property Description Default

ServiceUser Required - The service account user name. This defines what user the PrizmDoc
Server should run as. It should be in the format DOMAIN\USER. If you are using the
Microsoft Office Conversion (MSO) add-on, please make sure that the required
"ServiceUser" parameter value corresponds to a real user account with
Administrator rights. Running PrizmDoc Server under the LocalSystem user or
another Microsoft Windows integrated service account is not supported for this
option.

None

ServicePassword Required - The password for the ServiceUser. None

PrizmDoc Viewer v13.17 312

©2021 My Company. All Rights Reserved.

InstallFolder Optional - The base installation directory for the product. "C:\Prizm"

Unattended Install
To start the unattended install:

1. The PrizmDocServer.exe can be used to launch the installer and specify the above parameters in silent
mode. Open a command line prompt as an Administrator, change to the folder where the .exe is located,
and run the following (note that the values shown below for ServiceUser and ServicePassword are examples,
and you will need to change them to specify your ServiceUser and ServicePassword):

Example

> PrizmDocServer.exe ServiceUser=accusoft.com\PrizmUser
ServicePassword=pdpassword -s -l output.log

NOTE: The -s flag is required to trigger silent mode and prevent the UI from opening. Leaving
this out will open the UI.

The -l output.log flag is optional. If specified, it will output a log of the entire install process to a file using the
specified name for the filename. For a complete install, this will output 3 files. If the install fails, include these
files in bug reports.

2. You may wish to run this with the start command to wait for completion, otherwise the install will start in
the background and on a console or script, it will return immediately.

Example

 > start /wait PrizmDocServer.exe ServiceUser=accusoft.com\PrizmUser
ServicePassword=pdpassword -s -l output.log

3. If you have a paid license, configure your license (see Licensing for more information). If you are evaluating
the product, you can skip this step.

4. Finally, start the service. See the Getting Started with PrizmDoc Viewer > Starting & Stopping PrizmDoc
Server > Windows for more information on stopping and starting the service.

Example

 > net start prizm

5. PrizmDoc Server should now be installed, licensed and started.

NOTE: When installing from the command line on Windows, the use of 8.3 notation to specify
the install directory is not supported. While this may result in an error free install, some services
may not start as expected.

Property Description Default

PrizmDoc Viewer v13.17 313

©2021 My Company. All Rights Reserved.

Silent Uninstall
You can use the -u flag as shown below to silently uninstall PrizmDoc Server on Windows:

Example

> PrizmDocServer.exe -s -u -l output.log

Uninstall PrizmDoc Server on Windows
To uninstall Prizm from your Windows system, please perform the following steps:

1. Run Add/Remove Programs, or select Programs and Features from the Control Panel, or Apps & features
from Settings.

2. Choose PrizmDoc Server from the list of installed applications.
3. Click the Uninstall button.
4. You will be prompted to confirm your desire to remove the product, answer affirmatively to continue.
5. The Uninstaller will start and remove PrizmDoc Server from your system.

If a reboot is necessary to completely uninstall PrizmDoc Server, a Restart Now checkbox will be present. By default
this option will be checked, indicating the uninstaller will automatically restart your machine when you click finish (if
you would prefer to delay this restart and perform it yourself, you can uncheck the Restart Now option before
clicking finish, but you MUST restart the machine for PrizmDoc Server to be completely uninstalled). Click finish to
exit the uninstaller.

Installing with Traditional Linux Install Packages
(deprecated)

DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages for
direct installation on a Linux host, these have largely become obsolete now that Docker deployment is an
option. We have announced deprecation of our traditional Linux install packages and, in a future
product release, we intend to only offer our Docker-based deployment option.

This section contains the following information:

Requirements & Supported Environments for Traditional Linux Install Packages
Install Using Traditional Linux Install Packages
Install Asian Fonts on Traditional Linux Install Packages
Install Using Traditional Linux Install Packages on a Headless Environment
Uninstall Traditional Linux Install Packages

Requirements & Supported Environments for Traditional
Linux Install Packages

DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages
for direct installation on a Linux host, these have largely become obsolete now that Docker deployment
is an option. We have announced deprecation of our traditional Linux install packages and, in a

PrizmDoc Viewer v13.17 314

©2021 My Company. All Rights Reserved.

future product release, we intend to only offer our Docker-based deployment option. The rest of this
topic applies to traditional Linux install packages only.

Introduction
PrizmDoc Server is a suite of RESTful APIs that control document conversion processes. It requires significant
memory and processing power.

Hardware Requirements
Requirements vary greatly based on usage and it is generally a good idea to find what best fits your expected
usage. The Sizing Guide is a good place to start understanding what resources PrizmDoc Server uses and how to
optimize them for your needs.

Supported Linux Distributions
64-bit editions of:

CentOS 7
Red Hat Enterprise Linux 7
Ubuntu 18.04 LTS

Required Libraries
libbz2.so.1
libc.so.6
libcairo.so.2
libcups.so.2
libdbus-glib-1.so.2
libdl.so.2
libexpat.so.1
libfontconfig.so.1
libfreetype.so.6
libgcc_s.so.1
libgif.so.4
libGL.so.1
libjpeg.so.62
libm.so.6
libnsl.so.1
libopenjpeg.so.2
libpixman-1.so.0
libpng12.so.0
libpthread.so.0
librt.so.1
libstdc++.so.6
libthread_db.so.1
libungif.so.4
libuuid.so.1
libX11.so.6
libXau.so.6
libxcb.so.1
libXdmcp.so.6

PrizmDoc Viewer v13.17 315

©2021 My Company. All Rights Reserved.

libXext.so.6
libXi.so.6
libXinerama.so.1
libxml2.so.2
libXrender.so.1
libXtst.so.6
libz.so.1
linux-vdso.so.1

NOTE: PrizmDoc Server requires x86-64 versions of the libraries listed above.

To verify that the required libraries are installed, use "ldconfig" as shown in the following example:

Example

\# ldconfig -p | grep libcairo
 libcairo.so.2 (libc6,x86-64) => /lib64/libcairo.so.2

Required Libraries (Ubuntu 18.04)
The following packages are included in the prizmdoc_server<version>.amd64.deb.tar.gz package which is located
in the 'packages' subfolder:

libgif4_4.1.6-11+deb8u1_amd64.deb
libopenjpeg2_1.3+dfsg-4.8_amd64.deb

Install Using Traditional Linux Install Packages

Introduction
DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages for direct
installation on a Linux host, these have largely become obsolete now that Docker deployment is an option. We have
announced deprecation of our traditional Linux install packages and, in a future product release, we intend to only
offer our Docker-based deployment option. The rest of this topic applies to traditional Linux install packages only.

If you have questions about requirements before installing, refer to the System Requirements & Supported Environments topic.

IMPORTANT: PrizmDoc requires a clean installation when migrating from a version earlier than v12.0. You must first
uninstall any previous versions of PrizmDoc and reboot your system. Only then should you install PrizmDoc v12.0 or
later. Make sure you back up your configuration files before uninstalling any previous versions of PrizmDoc.
Once you have installed v12.0, you do not need to uninstall if you want to migrate to v12.1 or later.

NOTE: PrizmDoc relies on a fontconfig package that is not shipped with the product and that might be missing from
some distributions of Ubuntu. This was resolved by adding automated checks in the PrizmDoc 13.0 installation scripts. As
a workaround for older versions of PrizmDoc, we recommend installing the fontconfig package manually by using sudo
apt-get install fontconfig.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the new license.

Verify the System's Locale
Step 1 - Download PrizmDoc Server
Step 2 - Unpack and Install the Downloaded Archive
Step 3 (Optional) - Including PrizmDoc Services to the Boot Sequence
Step 4 - Configure

PrizmDoc Viewer v13.17 316

©2021 My Company. All Rights Reserved.

Step 5 - Verify that the Installation was Successful
How to Install Common Certificate Authority Root Certificates on Linux

Some steps may be specific to a particular Linux distribution; these steps will be labeled as being specific to one of the following:

"Red Hat / CentOS Linux Distributions"
"Ubuntu Linux Distributions"

Make sure you log in as root to the machine.

Verify the System's Locale
1. To ensure your system's locale is specified, run the command:

Example

 locale

2. If the LC_ALL entry is not set, you must specify it with the following:

Example

 export LC_ALL="en_US.UTF-8"
 sudo localedef -v -c -i en_US -f UTF-8 en_US.UTF-8

Step 1 - Download PrizmDoc Server

IMPORTANT: Before you download PrizmDoc, note that packages are only available for 64-bit systems.

1. Download PrizmDoc Server from the website by selecting the desired Linux Distribution.

OR

2. Download directly to the Linux server using the 'wget' command for the specific distribution as shown below:

NOTES:

1. You must substitute the version of the package you are using in the code examples below. For example, if you are using
v13.8, then specify "13.8" instead of "<version>". If the version is a hot fix, you will also need to specify the hot fix number, for
example, "13.8.1".

2. Instructions assume that 'wget' has already been installed on the server OS.

Red Hat Enterprise Linux and CentOS v7 (and later)

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.RHEL7.tar.gz

Ubuntu Linux Distributions

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.amd64.deb.tar.gz

PrizmDoc Viewer v13.17 317

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/

Generic .tar.gz Distribution

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.x86_64.tar.gz

For license questions, please contact info@accusoft.com.

Step 2 - Unpack and Install the Downloaded Archive

Open a command line and change to the location where you downloaded the tarball. Use the following command line examples
appropriate for your distribution to:

1. Decompress and unpack the downloaded file. After you have unpacked the archive, the contents will have been
decompressed into a directory named prizmdoc_server_<version>.<arch>[.rpm|.deb].

2. Change to the unpacked directory and install the packages.

Red Hat, CentOS, and Older Linux Distributions

The following example is for Red Hat, CentOS, and older Linux distributions:

Example

 tar -xzvf prizmdoc_server_*.tar.gz
 cd prizmdoc_server_*
 yum install --nogpgcheck *.rpm

Ubuntu Linux Distributions

The following example is for Ubuntu Linux distributions:

Example

 tar -xzvf prizmdoc_server_*.deb.tar.gz
 cd prizmdoc_server_*.deb

 # Note for Ubuntu 18.04, you must run the following commands before installing
PrizmDoc.

 sudo dpkg -i packages/*.deb
 sudo dpkg -i *.deb

 # Note that 'dpkg' does not resolve dependencies automatically, so please ignore
possible errors.
 # If there are errors about missing dependencies, invoke the following commands to
install
 # the dependencies and complete the configuration of the packages.

 sudo apt-get update
 sudo apt-get -f install

Generic .tar.gz Distribution

PrizmDoc Viewer v13.17 318

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

We also provide a generic .tar.gz package. Please review the System Requirements and Supported Environments topic to
ensure compatibility. You will also need to install the dependencies described in the Requirements section. Once the
dependencies are installed, you can install the .tar.gz with the following commands as root:

Example

 tar -xzvf prizmdoc_server_*.tar.gz
 cd prizmdoc_server_*
 ls prizm-*.tar.gz | xargs -n1 tar zxf
 cp -R prizm /usr/share/

Add symbolic links to the fonts directory and update the system fonts cache to enable the usage of installed fonts by
PrizmDoc services.

Example

 ln -s /usr/share/prizm/modules/poppler/fonts/accusoft_prizm_fonts.conf
/etc/fonts/conf.d/99-accusoft_prizm_fonts.conf
 fc-cache -f

Step 3 (Optional) - Including PrizmDoc Services to the Boot Sequence

You can configure PrizmDoc Services to start/stop together with the system in two steps:

1. Create a symbolic link to /usr/share/prizm/scripts/pccis.sh in the /etc/init.d/ directory:

Example

 ln -s /usr/share/prizm/scripts/pccis.sh /etc/init.d/pccis

2. Register PrizmDoc Services as an init script, so that it is managed by the system. This step is platform-dependent.

Red Hat, Fedora, CentOS, and Older Linux Distributions

Example

 chkconfig --add pccis

Ubuntu Linux Distributions

Example

 update-rc.d pccis defaults

Once this is done, the system should stop PrizmDoc Services when rebooting or shutting down, and will start again when the
server boots up.

Excluding PrizmDoc Services from the Boot Sequence

If you want to prevent PrizmDoc Services from starting/stopping together with the system, you need to revert Step 2 from

PrizmDoc Viewer v13.17 319

©2021 My Company. All Rights Reserved.

the section above. This can be performed as follows:

Red Hat, Fedora, CentOS, and Older Linux Distributions

Example

 chkconfig --del pccis

Ubuntu Linux Distributions

Example

 update-rc.d -f pccis remove

Step 4 - Configure

1. If you have a paid license, configure your license (if you are evaluating the product, you can skip this step). See Licensing for
more information.

2. For a production installation, you will want to configure where log files are stored. See the Logging section in the Central
Configuration topic.

3. If you are licensed to use the Microsoft Office Conversion add-on for PrizmDoc Servers running on Linux, you need to
configure your server as described in the topic: Configure Microsoft Office Conversion Connectivity.

4. Open ports in your firewall according to the Security Guidance.

Step 5 - Verify that the Installation was Successful

1. If PrizmDoc Server is already running, stop PrizmDoc Server:

 /usr/share/prizm/scripts/pccis.sh stop

2. Start PrizmDoc Server:

 /usr/share/prizm/scripts/pccis.sh start

If you want PrizmDoc Server to automatically start on boot, see Adding PCCIS to the Boot Sequence.

3. Wait for PrizmDoc Server to become healthy. Poll
http://yourserver:18681/PCCIS/V1/Service/Current/Health with a GET request until it returns HTTP 200,
indicating the server is healthy. See the Health Status API for more information.

Once PrizmDoc Server reports healthy, your installation is complete.

How to Install Common Certificate Authority Root Certificates on Linux

The following commands should all be run as root. Additionally, if prompted for addition/removal permission, then yes/no should
be entered as the response.

There are a few options for installing SSL certificates. In all cases, the certificates are stored in /usr/share/.mono/certs/.

Install Mozilla's root CA certificates

You can do it with cert-sync tool, which synchronizes the Mono SSL certificate store against your OS certificate store:

Ubuntu Linux Distributions

PrizmDoc Viewer v13.17 320

©2021 My Company. All Rights Reserved.

/usr/share/prizm/mono/64/bin/cert-sync /etc/ssl/certs/ca-certificates.crt

Red Hat and CentOS Linux Distributions

/usr/share/prizm/mono/64/bin/cert-sync /etc/pki/tls/certs/ca-bundle.crt

NOTE: Your distribution might use a different path to the CA certificates file, if it’s not derived from one of those.

Install the CA certificates that are provided by your operating system

Distributions will generally contain CA certificates already, to be used by various tools. They will be stores in a ca-bundle.crt file.
You can import those certificates using mono's certmgr utility, as such:

awk 'BEGIN {c=0;} /BEGIN CERT/{c++} { print > "cert." c ".crt"}' < /etc/ssl/certs/ca-
bundle.crt
find . -name 'cert.*.crt' -exec sudo /usr/share/prizm/mono/64/bin/certmgr -add -c -m Trust {}
\;

NOTE: this will split the bundle file into individual certificate files and import each certificate. It is best to execute this
from an empty directory in order to avoid file conflicts. The individual certificates can be deleted after the import.

Install individual certificate files

If you already have a list of custom certificates you need to trust, you can import each certificate file, as such:

/usr/share/prizm/mono/64/bin/certmgr -add -c -m Trust /path/to/certificatefile

Install Asian Fonts on Traditional Linux Install Packages

Introduction
DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages
for direct installation on a Linux host, these have largely become obsolete now that Docker deployment
is an option. We have announced deprecation of our traditional Linux install packages and, in a
future product release, we intend to only offer our Docker-based deployment option. The rest of this
topic applies to traditional Linux install packages only.

This section contains important information for installing Asian fonts:

Red Hat & CentOS
Ubuntu

Red Hat and CentOS
By default, Asian language support is not installed on the RHEL / CentOS systems. In order to properly render
documents with Asian fonts, support for corresponding languages should be installed. There is a single Fonts
package which includes support for these languages:

PrizmDoc Viewer v13.17 321

©2021 My Company. All Rights Reserved.

Example

yum groupinstall Fonts

Ubuntu
By default, Asian language support is not installed on Ubuntu systems. In order to properly render documents with
Asian fonts, support for corresponding languages should be installed.

To install Japanese language support, run following commands:

Example

sudo apt-get install language-pack-ja
sudo apt-get install japan*

To install Chinese language support, run following commands:

Example

sudo apt-get install language-pack-zh
sudo apt-get install chinese*

To install Korean language support, run following commands:

Example

sudo apt-get install language-pack-ko
sudo apt-get install korean*

And finally, you will need to add additional fonts:

Example

sudo apt-get install fonts-arphic-ukai fonts-arphic-uming fonts-ipafont-mincho
fonts-ipafont-gothic fonts-unfonts-core

NOTE: If PrizmDoc Viewer was running when you installed language/font support, you must restart
PrizmDoc Viewer in order to apply the changes.

Install Using Traditional Linux Install Packages on a Headless
Environment

PrizmDoc Viewer v13.17 322

©2021 My Company. All Rights Reserved.

Install on a Headless Environment
DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages for direct
installation on a Linux host, these have largely become obsolete now that Docker deployment is an option. We have
announced deprecation of our traditional Linux install packages and, in a future product release, we intend to only
offer our Docker-based deployment option. The rest of this topic applies to traditional Linux install packages only.

Use the following steps to install PrizmDoc in a Linux headless environment:

IMPORTANT: PrizmDoc requires a clean installation when migrating from a version earlier than v12.0. You must first
uninstall any previous versions of PrizmDoc and reboot your system. Only then should you install PrizmDoc v12.0 or
later. Make sure you back up your configuration files before uninstalling any previous versions of PrizmDoc.
Once you have installed v12.0, you do not need to uninstall if you want to migrate to v12.1 or later.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the new license.

Verify the System's Locale
Step 1 - Download PrizmDoc
Step 2 - Unpack and Install the Downloaded Archive
Step 3 - Configure Your License
Step 4 - Verify that the Installation was Successful

Make sure you log in as root to the machine. All command lines preceded by the '>' sign are the example output of that command,
where applicable.

Verify the System's Locale
1. To ensure your system's locale is specified, run the command:

Example

 locale

2. If the LC_ALL entry is not set, you must specify it with the following:

Example

 export LC_ALL="en_US.UTF-8"
 sudo localedef -v -c -i en_US -f UTF-8 en_US.UTF-8

Step 1 - Download PrizmDoc

IMPORTANT: Before you download PrizmDoc, note that packages are only available for 64-bit systems.

1. Download PrizmDoc from the website by selecting the desired Linux Distribution.

OR

2. Download directly to the Linux server using the 'wget' command for the specific distribution as shown below:

NOTES:

1. You must substitute the version of the package you are using in the code examples below. For example, if you are using
v13.8, then specify "13.8" instead of "<version>". If the version is a hot fix, you will also need to specify the hot fix number, for
example, "13.8.1".

2. Instructions assume that 'wget' has already been installed on the server OS.

PrizmDoc Viewer v13.17 323

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/

Red Hat Enterprise Linux and CentOS v7 (and later)

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.RHEL7.tar.gz

Ubuntu Linux Distributions

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.amd64.deb.tar.gz

Generic .tar.gz Distribution

Example

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_server_<version>.x86_64.tar.gz

For license questions, please contact info@accusoft.com.

Step 2 - Unpack and Install the Downloaded Archive

Open a command line and change to the location where you downloaded the tarball. Use the following command line examples
appropriate for your distribution to:

1. Decompress and unpack the downloaded file. After you have unpacked the archive, the contents will have been
decompressed into directories named: prizmdoc_client_<version>.<arch>[.rpm|.deb] and prizmdoc_server_<version>.
<arch>[.rpm|.deb].

2. Change to the unpacked directory and install the packages.

Red Hat, CentOS, and Older Linux Distributions

The following example is for Red Hat, CentOS, and older Linux distributions:

Viewer Example

 tar -xzvf prizmdoc_client_*.tar.gz
 cd prizmdoc_client_*
 yum install --nogpgcheck *.rpm

Server Example

 tar -xzvf prizmdoc_server_*.tar.gz
 cd prizmdoc_server_*
 yum install --nogpgcheck *.rpm

PrizmDoc Viewer v13.17 324

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

The Prizm installer does not install them automatically. Please manually download these packages and then install them
using --nogpgcheck flag as follows:

Example

 yum install --nogpgcheck ./openjpeg-libs-1.3-7.el5.x86_64.rpm
 yum install --nogpgcheck ./pixman-0.22.0-2.2.el5_10.x86_64.rpm

Ubuntu Linux Distributions

The following example is for Ubuntu Linux distributions:

Viewer Example

 tar -xzvf prizmdoc_client_*.deb.tar.gz
 cd prizmdoc_client_*.deb
 sudo dpkg -i *.deb
 # 'dpkg' does not resolve dependencies automatically, so please ignore possible errors,
if you did not install required dependencies yet, and invoke next commands
 sudo apt-get update
 sudo apt-get -f install

Server Example

 tar -xzvf prizmdoc_server_*.deb.tar.gz
 cd prizmdoc_server_*.deb
 sudo dpkg -i *.deb
 # 'dpkg' does not resolve dependencies automatically, so please ignore possible errors,
if you did not install required dependencies yet, and invoke next commands
 sudo apt-get update
 sudo apt-get -f install

Generic .tar.gz Distribution

We also provide a generic .tar.gz package. Please review the System Requirements and Supported Environments topic to
ensure compatibility. You will also need to install the dependencies described in the Requirements section. Once the
dependencies are installed, you can install the .tar.gz with the following commands as root:

Viewer Example

 tar -xzvf prizmdoc_client*.tar.gz
 cd prizmdoc_client_*
 ls prizm-*.tar.gz | xargs -n1 tar zxf
 cp -R prizm /usr/share/

Server Example

 tar -xzvf prizmdoc_server*.tar.gz
 cd prizmdoc_server_*
 ls prizm-*.tar.gz | xargs -n1 tar zxf
 cp -R prizm /usr/share/

PrizmDoc Viewer v13.17 325

©2021 My Company. All Rights Reserved.

3. Add symbolic links to the fonts directory and update system fonts cache to enable the usage of installed fonts by PrizmDoc
services.

Server Example

 ln -s /usr/share/prizm/modules/poppler/fonts/accusoft_prizm_fonts.conf
 /etc/fonts/conf.d/99-accusoft_prizm_fonts.conf fc-cache -f

Step 3 - Configure Your License

1. If you have a paid license, configure your license (see Licensing for more information). If you are evaluating the product, you
can skip this step.

Step 4 - Verify that the Installation was Successful

1. Start PrizmDoc Server:

 /usr/share/prizm/scripts/pccis.sh start

See Starting and Stopping PrizmDoc Server on Linux for more information.

2. Wait for PrizmDoc Server to become healthy. Poll
http://yourserver:18681/PCCIS/V1/Service/Current/Health with a GET request until it returns HTTP 200,
indicating the server is healthy. See the Health Status API for more information.

Once PrizmDoc Server reports healthy, your installation is complete.

Uninstall Traditional Linux Install Packages
NOTE: This topic applies to traditional Linux install packages only.

Introduction
To uninstall PrizmDoc from your Linux system, perform the following steps:

Make sure you log in as root to the machine.

1. Stop the service:

NOTE: This will depend on where the product is installed. The command for default installations
will look like the following:

/usr/share/prizm/scripts/pccis.sh stop

2. Remove the installed files:

Ubuntu:

apt-get purge prizm-services.*

NOTE: This will remove all configuration files. If you would like to keep configuration files you

PrizmDoc Viewer v13.17 326

©2021 My Company. All Rights Reserved.

can instead run apt-get remove prizm-services.* however this will leave behind configuration
files and may cause issues in the future. You may want to create a backup of configuration files
before purging as an alternative.

Red Hat/CentOS:

yum remove prizm-services*

IMPORTANT: This will not properly execute if run in a directory with files matching the
wildcard, for example, the /usr/share/prizm/ directory or the directory where the downloaded
Prizm services .deb or .rpm files are located.

Generic Package:

Remove symbolic links to the fonts directory and update system fonts cache.

rm /etc/fonts/conf.d/99-accusoft_prizm_fonts.conf
fc-cache -f**

Remove PrizmDoc Server files.

rm -rf /usr/share/prizm/bin
rm -rf /usr/share/prizm/conf
rm -rf /usr/share/prizm/consul
rm -rf /usr/share/prizm/java
rm -rf /usr/share/prizm/libreoffice
rm -rf /usr/share/prizm/libs
rm -rf /usr/share/prizm/modules
rm -rf /usr/share/prizm/mono
rm -rf /usr/share/prizm/node.js
rm -rf /usr/share/prizm/pccis
rm -rf /usr/share/prizm/plu
rm -rf /usr/share/prizm/schemas
rm -rf /usr/share/prizm/scripts
rm -rf /usr/share/prizm/services
rm -rf /usr/share/prizm/src

NOTE: There may be temporary files left behind, like log and cache files, because they are not
part of the installation packages. You may leave the temporary files or review them before
deleting them.

Check PrizmDoc Server Health

Introduction
While running, a PrizmDoc Server instance is either considered healthy or unhealthy. When an instance reports as
healthy, it is capable of handling new work normally. When an instance reports as unhealthy, that indicates something
is wrong and may be unable to handle incoming work correctly.

PrizmDoc Viewer v13.17 327

©2021 My Company. All Rights Reserved.

Sometimes, an instance going unhealthy is temporary. After a brief period of time, the instance becomes healthy
again. In these kinds of situations, there may be nothing you need to do as the administrator.

However, other times, an instance becomes stuck in an unhealthy state. When this happens, you will need to restart
the PrizmDoc Server instance to restore it to a healthy state. For more details, refer to Resolving PrizmDoc Server
Health Issues for both Linux & Windows.

As an administrator of PrizmDoc Server instances, you should adopt an appropriate policy for monitoring instance
health and restarting any instances which remain unhealthy for too long. The exact policy you adopt is up to you and
will depend upon your infrastructure and workflow, but you might consider something like checking instance health
once every 30 seconds and restarting any instance if it reports unhealthy two consecutive times.

Using the Health API
To check whether or not a server is healthy, simply send an HTTP request GET /PCCIS/V1/Service/Current/Health. If
the server is healthy, HTTP 200 will be returned; if unhealthy, HTTP 500 will be returned. Note that if PrizmDoc
Viewer has just started, HTTP 500 may be returned for a short time until the system has completely started up.

Cluster Mode: Use the CEP
If you are running in cluster mode, send your request to the Cloud Entry Point (CEP), typically running on port 18681:

GET server:18681/PCCIS/V1/Service/Current/Health

Single-Server Mode: Use the SEP
If you are running in single-server mode, send your request to the Server Entry Point (SEP), typically running on port
18681:

GET server:18681/PCCIS/V1/Service/Current/Health

HTTP Response

HTTP 200 - Server is healthy and running normally.
HTTP 500 - Server is unhealthy.

Upgrade PrizmDoc Viewer

Introduction
This topic covers the details you need to upgrade PrizmDoc Viewer.

PrizmDoc Server Upgrade
Starting with version 13.14, PrizmDoc Server provides the ability to retain configuration settings when upgrading
from a previous version.

PrizmDoc Viewer v13.17 328

©2021 My Company. All Rights Reserved.

PrizmDoc Server Upgrading Version 13.3 and Higher

Starting with version 13.14, when the installed version to upgrade is 13.3 or higher, the PrizmDoc Server preserves
the server-side prizm-services-config.yml and pcc.config files.

PrizmDoc Server Upgrading a Version Prior to 13.3

IMPORTANT: Before starting, make a backup of the following configuration files so you can use them
as a reference when re-configuring the new version after installation. This should be done before you
run the PrizmDoc Viewer installer, as all configuration files will be replaced with new ones (resetting
them to their default configuration):

Linux:
PrizmDoc Server Configuration:

/usr/share/prizm/prizm-services-config.yml
/usr/share/prizm/PCCIS/ServiceHost/pcc.config

Windows:
PrizmDoc Server Configuration:

C:\Prizm\prizm-services-config.yml
C:\Prizm\PCCIS\ServiceHost\pcc.config

PrizmDoc Application Services Upgrade
Starting with version 13.14, the PrizmDoc Application Services provide the ability to retain configuration settings
when upgrading from a previous version.

PrizmDoc Application Services Upgrading Version 13.8 and Higher

Starting with version 13.14, when the installed version to upgrade is 13.8 or higher PrizmDoc Application Services
are preserving pcc.nix.yml and pcc.win.yml files.

PrizmDoc Application Services Upgrading a Version Prior to 13.8

IMPORTANT: Before starting, make a backup of the following configuration file so you can use them
as a reference when re-configuring the new version after installation. This should be done before you
run the PrizmDoc Application Services installer, as configuration file will be replaced with new one
(resetting them to their default configuration):

Linux:
PrizmDoc Application Services Configuration:

/usr/share/prizm/pas/pcc.nix.yml
Windows:

PrizmDoc Application Services Configuration:
C:\Prizm\pas\pcc.win.yml

How To Upgrade
1. Download the latest version of PrizmDoc Server and PrizmDoc Viewer client packages for your operating

system from PrizmDoc Viewer: Current Builds.

NOTE: On Linux, stop PrizmDoc Server before upgrade to prevent any possible side effects.

2. Install PrizmDoc Server first, and then the PrizmDoc Application Services. This will perform an in-place
upgrade of the PrizmDoc Server and the PrizmDoc Application Services to the new version.

PrizmDoc Viewer v13.17 329

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/prizmdoc-viewer-builds/

3. At the end of the server installation, the install may request a reboot.

4. Make a backup of your new configuration files as listed above.

5. Modify each of the new configuration files and make the same changes that you had in the older
configuration files.

NOTE: Do not just replace the new configuration files with the older version of the configuration files,
as new configurations may have been introduced in the new version and they would be lost.

6. Restart the PrizmDoc Server and PrizmDoc Application Services to ensure the newly configured file
changes take effect.

NOTE: If either service fails to start with an error after modifying the configuration files, replace the
configuration files with the original copy of the configuration files and try making the changes again.

7. If you are upgrading PrizmDoc Application Services from version 12.x and you are using viewing
packages and have an existing database then you need to update your existing database by executing an
additional script called addTenantId.sql to add a new field to one of the existing tables. The script is in
the following location:

Linux:
/usr/share/prizm/pas/mssql-scripts/addTenantId.sql (for MS SQL database)
/usr/share/prizm/pas/mysql-scripts/addTenantId.sql (for MySQL database)

Windows:
C:\Prizm\pas\db\mssql-scripts\addTenantId.sql (for MS SQL database)
C:\Prizm\pas\db\mysql-scripts\addTenantId.sql (for MySQL database)

Follow your database management system's documentation to run the script. (For example, use the 'mysql'
command line client for MySQL database and 'sqlcmd' for MS SQL.) If you need database connection parameters,
refer to the database parameters in the PrizmDoc Application Services configuration file:

Linux:
/usr/share/prizm/pas/pcc.nix.yml

Windows:
C:\Prizm\pas\pcc.win.yml

Configure a Cluster

Introduction
Setting up multiple servers is not required for evaluation purposes.

However, if you are interested in installing and configuring PrizmDoc Server on multiple servers, this topic provides an
overview with links to specific how-to instructions.

Setup Options
PrizmDoc Server default installation and configuration is designed with the intent to handle all requests and
processing on a single server; however, running a single server will limit the bandwidth available for fulfilling requests.
To address that problem, PrizmDoc Server can be installed on multiple servers and configured to route requests
among them.

A cluster installation follows the same process as a single-server installation with some additional configuration steps
once installation and licensing have been completed.

PrizmDoc Viewer v13.17 330

©2021 My Company. All Rights Reserved.

For an overview of how Cluster Mode works and steps to configure your server for cluster use, please see our Cluster
Mode introduction. If you’re an existing customer and already familiar with Cluster Mode, you can find information on
our Cluster Management API here.

With a cluster configuration, there are special considerations for optimizing PrizmDoc Server’s performance by
configuring viewing sessions to use cached content. To learn more about relying on PrizmDoc Server’s caching and to
configure its use, see our topic on Optimizing Cache Performance.

Some of the APIs also require special consideration when used with Cluster Mode. In Cluster Mode, each server
handles a request from start to finish. For that reason, some requests (for example Work File, Markup Burner, and
Content Conversion requests) will require an Affinity Token. For more information on Affinity Tokens, and the steps
required to use those APIs in Cluster Mode, please see our Affinity Tokens & Cluster Mode topic.

Licensing

License Types

Metered License
A Metered License allows you to use all features of the product on as many servers as you want as long as your
license is current. As you use the product, the number of documents processed will be automatically reported to
Accusoft. When you renew your license, the new expiration date is applied automatically.

To purchase a Metered License, contact info@accusoft.com.

OEM License
An OEM License allows you to use the features you have paid for according to the terms of your agreement until
your license expiration date. All usage reporting is manual, and no network requests are made to Accusoft. When
you renew your license, you will be given a new license key with an updated expiration date, and you will be
required to reconfigure and redeploy your PrizmDoc Server instances with your new license key.

To purchase an OEM License, contact info@accusoft.com.

Cloud License (Deprecated)
A Cloud License allows you to use the features you have paid for on a limited number of logical CPU cores until
your license expiration date. At runtime, the total number of server virtual CPU cores is tracked and, if bringing up a
server exceeds the core limit, its functionality is disabled. In order to track the number of cores in use, a Cloud
License requires you to configure an AWS S3 bucket which all of your PrizmDoc Server instances can read and write
from.

Despite the name, a Cloud License can be used for both on-premise and cloud deployments as long as your
PrizmDoc Server instances have access to an S3 bucket which you own. But a Cloud License has several
disadvantages: 1) you must correctly configure an AWS S3 bucket and properly configure your PrizmDoc Server
instances to access it, 2) renewing your license requires reconfiguration and redeployment, and 3) you cannot scale
beyond the number of virtual CPU cores you paid for without upgrading to a new license.

The Cloud License type has been deprecated, and the ability to run the product with a Cloud License will be
removed in a future release. If you are currently using a Cloud License, we recommend you migrate to a
new Metered License.

To purchase a new Metered License or renew your existing Cloud License, contact info@accusoft.com.

PrizmDoc Viewer v13.17 331

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com
mailto:info@accusoft.com
mailto:info@accusoft.com

Node-Locked License (Deprecated)
A Node-Locked License allows you to use the features you have paid for on a specific number of physical
machines ("nodes") which your license has been "locked" to. Because this license type is locked to physical
machines, installing the license is not as simple as configuring the product with a particular license key. Instead,
you must run a tool (the Prizm Licensing Utility) which communicates with Accusoft to register the physical
machine with your license.

A Node-Locked License is not suitable for use with virtual machines, Docker containers, or the cloud.

The Node-Locked License type has been deprecated, and the ability to run the product with a Node-Locked
License will be removed in a future release. If you are still using a Node-Locked License, we recommend you
migrate to a new Metered License.

To purchase a new Metered License or renew your existing Node-Locked License, contact info@accusoft.com.

Feature Licensing
For OEM Licenses, Cloud Licenses, and Node-Locked Licenses, you can choose whether or not you want to pay to
activate the following features:

Microsoft Office Conversion (MSO) - Native rendering of Word, Excel, and PowerPoint documents when
Microsoft Office is installed on the machine where PrizmDoc Server is running. For configuration, see:

Working with PrizmDoc Viewer > Developer Guide > PrizmDoc Server > How To > Natively Render
Microsoft Office Documents

Form Field Detection - Enables APIs for automatically detecting form fields in PDFs and images. See:

PAS API > Developer Reference > Form Extractors
PrizmDoc Server API > Developer Reference > Form Extractors
E-Signature API > Module: form-extraction

OCR - Enables Content Conversion Service option to automatically recognize text in raster documents (such
as image-only PDFs or TIFFs) to produce a text-searchable PDF. See:

API Reference > PrizmDoc Server API > Content Conversion Service

For Metered Licenses, there are never any restrictions on features; all product features are always enabled.

If you need to purchase a feature which your current license does not enable, contact info@accusoft.com.

Metered License

Overview
A Metered License is an internet-connected license which allows you to use all features of the product on as many
servers as you want as long as your license is current and your PrizmDoc Server instances are able to periodically
contact Accusoft.

At runtime, each PrizmDoc Server instance will periodically contact Accusoft to 1) report the number of documents
you have processed and 2) validate your license is still current. See the FAQ below for more information.

To purchase a Metered License, contact info@accusoft.com.

Requirements

PrizmDoc Viewer v13.17 332

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com
mailto:info@accusoft.com
mailto:info@accusoft.com

You must be running PrizmDoc Server v13.15 or greater.
Your PrizmDoc Server instances must be able to send HTTP requests to Accusoft
(https://license.accusoft.com) during startup and periodically while running (see the FAQ below
for more information).

Usage
To configure a PrizmDoc Server instance to use a Metered License:

1. Update two values in your Central Configuration file (prizm-services-config.yml):

license.key - Set to your Metered License key (like abc...).
license.solutionName - Set to any value of your choice. The value does not matter, but a value
must be set or the product will not start.

2. Start/Restart PrizmDoc Server to apply the new license key.

Once PrizmDoc Server starts and reports healthy, you are licensed and ready for production traffic.

FAQ

What counts as a "processed document"?

We count the number of times any document is processed.

A process is anything that does work on a document, such as a viewing session, a markup burning operation, or a
content conversion operation. For example:

Creating a viewing session for one document counts as 1 processed document.
Creating a viewing session to compare two DOCX files counts as 2 processed documents.
Creating a viewing session for an email with attachments will count as 1 processed document for the email
itself and 1 processed document for each top-level attachment.
Creating redaction definitions by looking for text in a document by regex patterns counts as 1 processed
document.
Burning redactions or annotation definitions into a document counts as 1 processed document.
Using the Content Conversion Service to convert or combine documents will count as n processed
documents based on the number of input documents you use. For example, if you convert a DOCX to a
PDF, there is only one input document, so this will count as 1 processed document. If you convert a PDF to
multiple PNG files, one output per page, there is still only one input document, so this will count as 1
processed document. If you combine three files into a single output, there are three input documents, so
this will count as 3 processed documents.

If the same document is processed repeatedly, we will count each time it is processed. For example, if a single
document is viewed 25 times, it will count as 25 processed documents.

NOTE: You can view your usage statistics for processed documents in the Usage tab of the Accusoft
Customer Portal.

What data is reported back to Accusoft?

We report the number of processed documents for various periods of time (typically 4 hour intervals).

A report back to Accusoft will include a list of time periods. Each reported time period will include:

Timestamp of when the period began
Duration of the period

PrizmDoc Viewer v13.17 333

©2021 My Company. All Rights Reserved.

https://my.accusoft.com/
https://my.accusoft.com/

Count of documents processed
An auto-generated id

No other data is reported back to Accusoft.

How often does PrizmDoc Server contact Accusoft at runtime?

By default, PrizmDoc Server instances will contact Accusoft once every 18 hours. The exact interval used by your
license is subject to change by Accusoft.

What happens if PrizmDoc Server is unable to reach Accusoft?

When starting, PrizmDoc Server MUST be able to reach Accusoft to validate your license is current. If it cannot, it
will refuse to start.

While running, PrizmDoc Server will gracefully allow a temporary disruption in connectivity to Accusoft. However, if
PrizmDoc Server is unable to reach Accusoft for a long period of time (6 hours by default), it will disable product
functionality and cause all REST API requests to return HTTP 580 ProductNotLicensed. Once product
functionality is disabled, you must restart PrizmDoc Server for functionality to be restored.

OEM License

Overview
An OEM License allows you to use the features you have paid for according to the terms of your agreement until your
license expiration date.

All usage reporting is manual, and no network requests are made to Accusoft.

Whenever you renew an OEM License, you will be given a new license key with an updated expiration date,
and you will be required to reconfigure and redeploy your PrizmDoc Server instances with the new license key.

To purchase an OEM License, contact info@accusoft.com.

Usage
To configure a PrizmDoc Server instance to use an OEM License:

1. Update two values in your Central Configuration file (prizm-services-config.yml):

license.key - Set to your OEM License key (like 2.0.abc...).
license.solutionName - Set to your solution name (like My Product), chosen at the time of
purchase. This value must match the value encoded in the license key itself.

2. Start/Restart PrizmDoc Server to apply the new license key.

That's it. Once PrizmDoc Server starts and reports healthy, you are licensed and ready for production traffic.

Cloud License (Deprecated)

Overview
A Cloud License allows you to use the features you have paid for PrizmDoc Server instances across a paid number of total
logical CPU cores until your license expiration date. At runtime, the total number of logical CPU cores is tracked and, if

PrizmDoc Viewer v13.17 334

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

bringing up a server exceeds the core limit, its functionality is disabled. In order to track the total number of logical cores in
use, a Cloud License requires you to configure an AWS S3 bucket which all of your PrizmDoc Server instances can read and
write from (see requirements below).

Despite the name, a Cloud License can be used for both on-premise and cloud deployments as long as your PrizmDoc Server
instances have access to an S3 bucket which you own. However, a Cloud License has some disadvantages: 1) you must
correctly configure an AWS S3 bucket and properly configure your PrizmDoc Server instances to access it, 2) renewing your
license requires reconfiguration and redeployment, and 3) you cannot scale beyond the number of virtual CPU cores you
paid for without upgrading to a new license.

Deprecation Notice
The Cloud License type has been deprecated, and the ability to run the product with a Cloud License will be removed
in a future release. If you are currently using a Cloud License, we recommend you migrate to a new Metered License.

Requirements
NOTE: PrizmDoc Cloud Licensing does not support Docker orchestration systems, such as AWS Fargate/ECS/EKS,
Google Kubernetes, Azure Container Instances, etc.

S3 Bucket with Appropriate Permissions Configured
To use a Cloud License, you need to provide an S3 bucket to PrizmDoc with read, write, and delete permissions:

listObjects

AWS S3 listObjects docs
Requires s3:ListBucket

putObject

AWS S3 putObject docs
Requires s3:PutObject

deleteObjects

AWS S3 deleteObjects docs
Requires s3:DeleteObject

At runtime, each of the PrizmDoc Server instances in your cluster will read and write extremely-small, temporary files into this
bucket as part of licensing enforcement.

Usage
To set up a Cloud License, you will need to do the following:

1. Set up an S3 bucket.
2. Purchase a Cloud License from Accusoft.
3. Get your license key from the Accusoft customer portal.
4. Configure your PrizmDoc Server instances with the necessary AWS credentials.
5. Configure your PrizmDoc Server instances with your license key.

The sections below provide additional information for each step.

1 - Set up an S3 bucket

PrizmDoc Viewer v13.17 335

©2021 My Company. All Rights Reserved.

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.aws.amazon.com/AmazonS3/latest/API/v2-RESTBucketGET.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObjects-property
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectDELETE.html
https://my.accusoft.com/

First, you must have an Amazon AWS account in order to create an S3 bucket. Log into your AWS account console and create
an S3 bucket which PrizmDoc can read and write to at runtime. See the Amazon S3 documentation for more information on
setting up an S3 bucket and acquiring credentials.

NOTE: We recommend that you create a dedicated AWS user and bucket with read/write credentials.

2 - Purchase a Cloud License from Accusoft
To purchase a Cloud License for PrizmDoc Viewer, contact info@accusoft.com.

During purchase, specify the maximum number of logical cores to be provided by the license. Make sure to account for
production, support, and any ongoing development usage; you may want to consider purchasing separate licenses for both
production and development.

3 - Get Your License Key from the Accusoft Customer Portal
Once purchased, visit the Accusoft Customer Portal to view your purchased license and provide the S3 bucket name that you
will use for Cloud Licensing. After providing your S3 bucket name, your Cloud License key will be given to you. > NOTE: It is
your responsibility to provide a valid S3 bucket and to ensure that you have the proper credentials to access that bucket.

1. Enter your Amazon S3 bucket name in the field provided and click Activate License:

NOTE: You must enter your S3 bucket name correctly. Make sure there are no leading or trailing spaces! If you make a
mistake, your license key will be unusable.

2. Select and copy all of the text in the License Key field below. This is your activated license key and you will need to
save it for later use when configuring PrizmDoc Viewer on your server:

PrizmDoc Viewer v13.17 336

©2021 My Company. All Rights Reserved.

https://aws.amazon.com/free/
http://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
mailto:info@accusoft.com
https://my.accusoft.com/Account/LogIn?ReturnUrl=

3. Click Download to go to the product download page and download your product.

4. Continue with Section 4 below.

4 - Configure Your PrizmDoc Server Instances with the Necessary AWS
Credentials
When running PrizmDoc with a Cloud License on your server, it will require access to the Amazon S3 bucket you provided
when your license was generated. It is important to note that PrizmDoc Server itself requires no knowledge of your S3
credentials. PrizmDoc Server accesses Amazon S3 assuming your credentials have been provided using one of the methods
defined in the Amazon SDK documentation that do not require explicitly providing them to our product. As shown below,
using method 1, 2, or 3 will provide access to AWS S3.

If you are new to Amazon Web Services (AWS), you should familiarize yourself with the Security Credentials to get an
overview.

There are three options for configuring your AWS credentials for Cloud Licensing. They are listed in the order of
recommendation:

1. Configure IAM roles for Amazon EC2 (if running on EC2), or
2. Configure the Shared Credentials File (~/.aws/credentials), or
3. Configure Environment Variables.

NOTE: When setting credentials, be sure that the user under which the PrizmDoc service is running is the same
user for which you are configuring the credentials. For example, consider the case where you configure the
credentials for your personal user, but PrizmDoc is running as the root user. In this case the service will start, but
then shut down shortly after because the root user will be unable to access the S3 bucket specified in your Cloud
License key.*

PrizmDoc Viewer v13.17 337

©2021 My Company. All Rights Reserved.

http://docs.aws.amazon.com/AWSJavaScriptSDK/guide/node-configuring.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Examples using IAM Roles are beyond the scope of this topic, but if your cluster is running on AWS EC2 instances, you can
find information about IAM Roles and their configuration in the Amazon IAM documentation.

An example using method 2 above, Shared Credentials Files, are shown below. You can configure a shared credentials file for
the user under which PrizmDoc will execute:

In both Linux and Windows, the credentials file content is the same.

Example Credentials File Content

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Credential files are stored under an .aws directory for the user under which PrizmDoc is executing. The credential file paths
below are for an example called: prizmdocuser.

In Linux

/home/prizmdocuser/.aws/credentials

_NOTE: If your PrizmDoc Server is configured to start/stop with the system, you must modify the configuration
section of /usr/share/prizm/pccis.sh script: set the AWS_HOME variable to the path of the directory
which contains the AWS folder (.aws). For the example above, it will be AWS_HOME=/home/prizmdocuser._

When using Docker

Map the .aws directory to prizmdoc container's file system when starting the container:

docker run --rm --env ACCEPT_EULA=YES --publish 18681:18681 --volume
$(pwd)/config:/config --volume $(pwd)/logs:/logs --volume $(pwd)/data:/data --volume
$(pwd)/.aws:/root/.aws --name prizmdoc-server accusoft/prizmdoc-server

In Windows

C:\Users\prizmdocuser\.aws\credentials

Examples using method 3 above, Environment Variables, are shown below. You can configure your server to export the
credentials to the environment for the user under which PrizmDoc will execute:

In Linux

Exporting environment variables under Linux is usually done in the user's .profile file in their home directory (e.g. for a
user named prizmdocuser these would be added to /home/prizmdocuser/.profile). > NOTE: The following
environment variables need to be configured on the Docker container since the licensing component in the app will use them to
access the S3 bucket.

Example

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

PrizmDoc Viewer v13.17 338

©2021 My Company. All Rights Reserved.

https://aws.amazon.com/iam/details/manage-roles/

In Windows

Exporting environment variables under Windows is done in the Environment Variables control panel under the System
Properties.

Example

5 - Configure Your PrizmDoc Server Instances with Your License Key
To configure a PrizmDoc Server instance to use a Cloud License key:

1. Update two values in your Central Configuration file (prizm-services-config.yml):

license.key - Set to your OEM License key (like 2.0.abc...).
license.solutionName - Set to your solution name (like My Product), chosen at the time of purchase.
This value must match the value encoded in the license key itself.

2. Start/Restart PrizmDoc Server to apply the new license key.

Once PrizmDoc Server starts and reports healthy, you are licensed and ready for production traffic.

Limiting the Number of CPU Cores Used by Docker Containers
If you run multiple prizmdoc-server containers on the same host, or want to limit the CPU consumption for prizmdoc-server
containers, you should use the CPU affinity mask when starting the container. This allows PrizmDoc to correctly count the
logical CPU cores used by the container, as opposed to the total number of host's CPU cores. Use Docker run command

PrizmDoc Viewer v13.17 339

©2021 My Company. All Rights Reserved.

logical CPU cores used by the container, as opposed to the total number of host's CPU cores. Use Docker run command
parameter --cpuset-cpus to specify the affinity mask.

Example
This example assigns cores 0 and 1 for running the container:

docker run --rm --env ACCEPT_EULA=YES --publish 18681:18681 --volume
$(pwd)/config:/config --volume $(pwd)/logs:/logs --volume $(pwd)/data:/data --volume
$(pwd)/.aws:/root/.aws --name prizmdoc-server --cpuset-cpus 0-1 accusoft/prizmdoc-server

Node-Locked License (Deprecated)

Overview
A Node-Locked License allows you to use the features you have paid for on a specific number of physical machines
(“nodes”) which your license has been “locked” to. Because this license type is locked to physical machines, installing the
license is not as simple as configuring the product with a particular license key. Instead, you must run a tool (the Prizm
Licensing Utility, or PLU) which communicates with Accusoft to register the physical machine with your license.

A Node-Locked License is not suitable for use with virtual machines, Docker containers, or the cloud.

Deprecation Notice
The Node-Locked License type has been deprecated, and the ability to run the product with a Node-Locked License
will be removed in a future release. If you are currently using a Node-Locked License, we recommend you migrate to
a new Metered License.

Usage

Using the GUI

On a Machine with Internet Access (GUI)

1. Obtain Licensing Information

When you signed up to evaluate PrizmDoc Viewer, you received an email with your Software Registration Information.
The email message will contain a link to the Customer Portal, where you can obtain your licensing information for
PrizmDoc Viewer. You will need to obtain the following information from the Customer Licensing Portal:

Solution Name - This string is used to validate the configuration file.
Configuration File - This file contains the information the Prizm Licensing Utility (PLU) requires in order to
obtain a license for your system.
Access Key - If you purchased several licenses, the Access Key is used to denote a specific license within the
"pool" of purchased licenses. If this value is not provided, the Prizm Licensing Utility (PLU) will use the next
license in your pool of licenses. If you purchased an Annual License of PrizmDoc Viewer, it is required that you
supply an Access Key. If you have multiple licenses that expire on different days, the Access Key will allow you
to differentiate between the licenses and ensure that the product will expire on the expected date.

2. Download and Install the Product

NOTE: If you have already installed the product for evaluation or other purposes you can skip this step.

The PrizmDoc Viewer product can be downloaded from the Accusoft web site: PrizmDoc Viewer. After you have

PrizmDoc Viewer v13.17 340

©2021 My Company. All Rights Reserved.

https://docs.docker.com/engine/reference/run/#runtime-constraints-on-resources
https://www.accusoft.com/products/prizmdoc/get-it/

downloaded the appropriate product installer, run the installer according the version's installation instructions.

3. Run the Prizm Licensing Utility (PLU)

You can launch the utility from the following location:

4. Select Deployment Option

The Prizm Licensing Utility (PLU) provides options for both Evaluation and obtaining Deployment licensing. For this
walk-through, we’re using Deployment Licensing, so click the I have purchased a license button:

5. Select Node-Locked Option

Click the Node-Locked option:

PrizmDoc Viewer v13.17 341

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc/get-it/

6. Provide Configuration File

In Step 1 above, you acquired a "configuration file". Specify the path to the file directly using the text box, or browse
to the file using the Browse option:

7. Enter Solution Name

In Step 1 above, you acquired the Solution Name. Enter the value that was assigned to your distribution into the text
box below:

NOTE: This field is case-sensitive.

PrizmDoc Viewer v13.17 342

©2021 My Company. All Rights Reserved.

8. Enter your Access Key

The use of an Access Key is required for Annual Licenses. If you have multiple licenses that expire on different
days, the Access Key will allow you to differentiate between the licenses and ensure that the product will expire on the
expected date.

NOTE: The Access Key is a unique identifier for each distribution license purchased and may be required
for your deployment.

For Annual Licenses, the use of an Access Key is required. If you have multiple licenses that expire on different days, the
Access Key will allow you to differentiate between the licenses and ensure that the product will expire on the expected
date. If an Access Key is not provided for an Annual License, the Prizm Licensing Utility (PLU) will use the next license
available in your licensing "pool".

For Perpetual Licenses, the use of an Access Key is not required.

PrizmDoc Viewer v13.17 343

©2021 My Company. All Rights Reserved.

9. Acquire a License

Once all of the information has been provided, click the Acquire License button to register your system with Accusoft.

NOTE: If your system does not have Internet access to reach the Accusoft Licensing Services, then the
Prizm Licensing Utility (PLU) will fail to register your system. In this case, you will need to follow the
manual registration instructions below under the section, On a Machine without Internet Access (GUI).

10. Registration Complete

Your system has been licensed for use. If you purchased an Annual License, the Prizm Licensing Utility (PLU) will
display the expiration date for the license which was acquired.

11. Restart PrizmDoc Server

Restart PrizmDoc Server for the licensing changes to take effect. See Start & Stop PrizmDoc Server for instructions.

On a Machine without Internet Access (GUI)

1. If the Prizm Licensing Utility (PLU) is not able to contact the Accusoft Licensing Services, a dialog box will display
stating that the "application could not reach the licensing services". You will have the option to retry the registration
or to "License Manually". Select the License Manually option to proceed:

PrizmDoc Viewer v13.17 344

©2021 My Company. All Rights Reserved.

2. The Manually License dialog box will display a text box with your system Hardware Key. This key is used to identify
your system during the registration process. This key will need to be supplied to the Accusoft Licensing Center in
order to obtain a license to register the system. Using your mouse or keyboard select all of the text within the text box
and copy it to the clipboard. (The shortcut keys of Ctrl+C will copy the selected data to the clipboard.)

3. Next, you will need to go to the Accusoft Licensing Center to obtain your license. The URL to this website is provided
by the Prizm Licensing Utility (PLU), https://licensing.accusoft.com/v1/WebDeployUser/WebDeployUser.aspx. You
have two options for getting this URL:

License on this system via the Web

Choosing this option will open the default web browser on your machine and navigate directly to the Accusoft
Licensing Center. This option is recommended if, for example, your organization allows access to the public Internet
only within the web browser through the use of proxy servers.

License on another system

Choosing this option will create an Internet Shortcut file (.URL). This is a simple text file that contains the full URL to
the Accusoft Licensing Center website. In Windows environments, these files can be double-clicked to open the
default web browser and navigate directly to the Accusoft Licensing Center website. If this action does not work in
your environment, simply open the file in a text editor, copy the URL, and paste it into the address bar of your web

PrizmDoc Viewer v13.17 345

©2021 My Company. All Rights Reserved.

https://licensing.accusoft.com/v1/WebDeployUser/WebDeployUser.aspx

browser. This option is recommended if the system being registered does not have any connection to the Internet.

4. Once you have navigated your web browser to the Accusoft Licensing Center, you will need to paste your Hardware
Key into the text box labeled Hardware Key (use the shortcut keys Ctrl + V to paste the Hardware Key):

5. Click Download License to have the Accusoft Licensing Center generate a license for your system. The license will be
created and sent to your system as a text file.

6. Enter the License into the Prizm Licensing Utility (PLU) by copying and pasting the license information into the text
box. Click Apply License to apply the License on the current system.

PrizmDoc Viewer v13.17 346

©2021 My Company. All Rights Reserved.

NOTE: If the Prizm Licensing Utility (PLU) was closed after you left it to go to the Accusoft Licensing Center,
restart the application and perform all the previous steps to return to this screen in the Prizm Licensing Utility.
You do not need to repeat the steps on the Accusoft Licensing Center web site.

Using the Command Line
In the steps above, we used the Prizm Licensing Utility (PLU) UI. However, the PLU also supports performing the same steps
from the command line.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the new
license.

On a Machine with Internet Access (Command Line)

Usage

deploy get <configuration file> <solution name> \[<access key> outputUrl\]

Parameters

<configuration file> – Path to the deployment configuration file. Required.

<solution name> – Solution name for deployment licensing. Required.

<access key> – Access key for annual deployment licensing. Required.

<outputUrl> – A flag to output URL that can be used for licensing through the web portal in case of connectivity
error. Can also be used if you are offline or have no Internet access. Optional.

Examples

The following example demonstrates obtaining and installing a deployment license:

java.exe –jar plu.jar deploy get "C:\Path to\YourSolutionName_Config.txt" "Your Solution
Name"

The following example demonstrates obtaining and installing a deployment license with the access key:

java.exe –jar plu.jar deploy get "C:\Path to\YourSolutionName_Config.txt" "Your Solution
Name" Your-Access-Key

The following example demonstrates obtaining and installing a deployment license with error handling to automatically
output a URL to be used for licensing through the web portal. The URL should be opened from a browser on a computer
with network connectivity. The URL will provide a license key:

java.exe –jar plu.jar deploy get "C:\Path to\YourSolutionName_Config.txt" "Your Solution
Name" outputUrl

On a Machine without Internet Access (Command Line)

If you are licensing a server that does not have access to the internet, you can use the following example to set it up.

1. On the machine that does not have access to the internet, enter the following command:

PrizmDoc Viewer v13.17 347

©2021 My Company. All Rights Reserved.

java.exe -jar plu.jar deploy get "C:\Path to\YourSolutionName_Config.txt" "Your
Solution Name" Your-Access-Key outputUrl

The outputUrl is shown below highlighted in white:

2. Copy the URL to a file, save it to a USB flash drive, and take it to a machine that has access to the Internet.

3. Copy the URL from the file on the USB flash drive and paste it into a browser. The following page is displayed:

4. Click Download license button to download the license file.

5. Save the downloaded file on the USB flash drive, and take it back to the machine without internet access.

6. Copy the License text from the file on the USB flash drive and enter it in the command line and run the following
command:

java.exe -jar plu.jar deploy write "Your Solution Name"
2.0.YourLicenseKeyTextFromUSBFlashDrive

7. The machine now has a deployment license installed.

Installing an Existing License Key Generated through the Web Portal

Usage

deploy write <solution name> <license key>

Parameters

<solution name> – Solution name for deployment licensing. Required.

<license key> – License key generated through the web portal. Required.

Examples

PrizmDoc Viewer v13.17 348

©2021 My Company. All Rights Reserved.

The following example demonstrates installing a deployment license generated through the web portal:

java.exe –jar plu.jar deploy write "Your Solution Name" 2.0.YourDeploymentLicenseKey

Configuring
This section covers common configuration options that you, as a PrizmDoc Viewer admin, will want to consider for
PrizmDoc Server:

Central Configuration - Information for configuring the cache, fidelity, file types, licensing, logging, networking,
process Ids, resource usage, security, user documents, viewing, work files, and PrizmDoc Cloud default values.
Implement Caching Strategies - Discussion of cache management, optimizing cache performance, and cache
strategy scenarios.
Adjust Caching Parameters - Information to consider for setting cache lifetime, location, and reuse.
Change Encryption Keys for Public use Token Generation - How to configure your own encryption keys (a
security best practice).
Configure Microsoft Office Conversion - How to configure a Linux deployment of PrizmDoc Server to delegate
all Microsoft Office conversion work to a separate Windows deployment of PrizmDoc Server which has
Microsoft Office installed.
Substitute Fonts for Office Rendering Fidelity - Description of how PrizmDoc Server's logic selects the right font
for rendering and recommendations for installing additional font packages.
Upgrade from Legacy Configuration - How to migrate from legacy configuration to the new, single, central
configuration file.

Central Configuration

Central Configuration
Configure PrizmDoc Server using the services configuration file for both Windows and Linux.

The configuration file will perform environment variable expansion in path values. The environment variable must be contained within a quoted string and enclosed with the % character. For example, "%ALLUSERSPROFILE%" or
"%my_path%/subpath" are both valid paths containing environment variables which will be expanded at runtime.

NOTES:

1. Given the default installation directory, the paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

2. After making any changes to the configuration files, you need to restart the PrizmDoc Server. IMPORTANT: Any time you make a change to the configuration files that affects document output, you must clear your cache.
3. PrizmDoc Server uses central configuration by default (that is, watchdog.config contains the paths.central_config_file property, whose value is a path to the central configuration file relative to the PrizmDoc Server install directory).

The following options are available for configuration within the central configuration file:

NOTE: PrizmDoc Cloud uses specific default values that differ from the self-hosted default values as noted in the PrizmDoc Cloud Default Values section below.

Cache
Fidelity
File Types
License
Logging
Network
Process Ids for API Process Resources
Resource Usage
Security
User Documents
Viewing
Work Files
JVM Options
PrizmDoc Cloud Default Values

Cache

Property Default Value Supported Values Description

cache.directory <install_dir>/cache

e.g.:

/usr/share/prizm/cache

C:\Prizm\cache

Any valid path to a directory with read and write permissions. Directory where cache data is stored.

Fidelity

PrizmDoc Viewer v13.17 349

©2021 My Company. All Rights Reserved.

Property Default
Value Supported Values Description

fidelity.svgMaxImageSize 8000 Any integer greater than 0 For source documents which contain images, ensures that the images in the SVG delivered to the browser do not exceed a particular pixel width
and/or height. For example, a value of 8000 would ensure that any images in a PDF whose width or height were greater than 8000 pixels would be
down-sampled before the image was added to the final SVG. A typical value is 8000.

The default value for this property is configurable. The out-of-box configuration uses a default value of 8000.

Use 0 to disable the optimization.

fidelity.vectorBackgroundColor.view.default white CSS color name, e.g. "gray",
or a hex RGB value, e.g.
#FFFFFF

Defines the background color for viewing CAD documents if the background is not specified in the document. Also defines the background color
for converting CAD documents to SVG, PNG, JPEG and TIFF. Please note, DGN documents define their background color, so this property does not
affect them. Use fidelity.vectorBackgroundColor.view.override to define background color, ignoring the background color specified in the
document.

fidelity.vectorBackgroundColor.view.override none CSS color name, e.g. "gray",
or a hex RGB value, e.g.
#FFFFFF, or “none”

Defines the background color for viewing CAD documents, ignoring the background specified in the document. Also defines the background color
for converting CAD documents to SVG, PNG, JPEG and TIFF, ignoring the background specified in the document. Overrides
fidelity.vectorBackgroundColor.view.default.

fidelity.vectorTolerance 0.3 A positive Floating point
value with a minimum value
of 0.0 and a maximum value
of 10.0

For CAD documents, controls how much path simplification is allowed. The path simplification algorithm will merge points which are "close
together" to create an optimized SVG. You can think of this value as defining what "close together" means. A typical value is 0.3. Higher values
introduce more simplification, but also more distortion. The value cannot be greater than 10.0.

The default value for this property is configurable. The out-of-box configuration uses a default value of 0.3.

Use 0 to disable the optimization.

fidelity.msOfficeDocumentsRenderer "auto" One of the following strings:
"auto", "libreoffice", and
"msoffice"

Specifies the renderer to use with Microsoft Office documents.

When set to "auto", PrizmDoc decides which renderer to use based on the MSO feature license state. If the MSO feature is present, then the
Microsoft Office renderer will be used. Otherwise, Libreoffice will be used.

When set to "libreoffice", PrizmDoc will be using the Libreoffice renderer. If you are intending to use the Libreoffice renderer permanently on a
server that does not have Microsoft Office installed, contact info@accusoft.com to obtain the license key with the MSO feature disabled.

When set to "msoffice", PrizmDoc will be using the Microsoft Office renderer, if the MSO feature is enabled in the license key, otherwise the
licensing error will be reported.

The parameter affects only Microsoft Office documents, RTF and CSV files. Other documents will continue to be rendered with LibreOffice.

For a complete list of supported file types see Supported File Formats.

NOTE: For PrizmDoc Cloud, the default value for fidelity.msOfficeDocumentsRenderer is "msoffice".

fidelity.msOfficeCluster.host "" A valid IP address or
hostname

This value is used to enable Microsoft Office Conversion connectivity for PrizmDoc servers running on Linux.

Set this value on a PrizmDoc server running on Linux to the hostname (or the IP of a single PrizmDoc server, or a load balancer of a cluster running
on Windows) to utilize the Microsoft Office Conversion service running on Windows to have native rendering of Microsoft documents in PrizmDoc.

fidelity.msOfficeCluster.port 0 Any open HTTP port on the
server

This value is used to enable Microsoft Office Conversion connectivity for PrizmDoc servers running on Linux.

Set this value on a PrizmDoc server running on Linux to the public port of a single PrizmDoc server (or a load balancer of a cluster running on
Windows) to utilize the Microsoft Office Conversion service running on Windows to have native rendering of Microsoft documents in PrizmDoc.

To connect to a single server specify network.publicPort parameter of the remote server.

To connect to a load balancer specify network.clustering.clusterPort parameter of the cluster.

File Types

Property Default
Value Supported Values Description

fileTypes.pdf.pageBoundaries mediaBox One of the following
strings: "mediaBox",
"cropBox"

Controls which set of page boundaries should be used when interacting with PDF files. The PDF format specification defines five separate "Page
Boundaries" that control various aspects of the imaging process. PrizmDoc Server supports "Media box" or "Crop box" to convert a source PDF
document image.

fileTypes.excel.margins.mode remove One of the following
strings: "preserve",
"remove"

Controls how the page margins should be handled in Excel documents.

"preserve" - Preserve (do not remove) document pages margins. Requires that fileTypes.excel.pagination.dimensions.mode be set to
"preserve" and the Office documents renderer to be set to Microsoft Office (see fidelity.msOfficeDocumentsRenderer for more details).

"remove" - Remove all margins from the document pages. Requires that fileTypes.excel.pagination.dimensions.mode be set to
"override".

NOTE: Changing this setting can affect rendered layout and page count.

NOTE: For PrizmDoc Cloud, the default value for fileTypes.excel.margins.mode is "preserve".

fileTypes.office.disableExternalHyperlinks false true, false Controls whether the external hyperlinks are enabled or disabled when viewing or converting Microsoft Office documents to PDF.

false - All external hyperlinks are enabled.

true - All external hyperlinks are disabled.

fileTypes.excel.pagination.enabled true true, false Controls whether or not pagination is enabled for Excel documents.

true (paginated mode) - Each Excel sheet is divided into a number of pages, such that each page fits into a specific size.

false (non-paginated mode) - Each Excel sheet, irrespective of its size, is rendered onto a single page. If the number of columns and/or rows is
large, then this might result in very small and unreadable output.

NOTE: Changing this setting can affect rendered layout and page count.

fileTypes.excel.pagination.dimensions.mode override One of the following
strings: "preserve",
"override"

Controls which pagination mode to use if pagination is enabled for Excel documents (fileTypes.excel.pagination.enabled is set to
"true").

"preserve" - Use the page dimensions specified in the Excel file. Requires that fileTypes.excel.margins.mode be set to "preserve" and the
Office documents renderer to be set to Microsoft Office (see fidelity.msOfficeDocumentsRenderer for more details).

"override" - Ignore the page dimensions of the Excel file and instead always use the following settings in this config file:

fileTypes.excel.pagination.dimensions.minWidth, fileTypes.excel.pagination.dimensions.maxWidth,
fileTypes.excel.pagination.dimensions.minHeight, fileTypes.excel.pagination.dimensions.maxHeight

Requires that fileTypes.excel.margins.mode be set to "remove".

NOTE: For PrizmDoc Cloud, the default value for fileTypes.excel.pagination.dimensions.mode is "preserve".

fileTypes.excel.pagination.dimensions.minWidth "11.0in" String consisting of a
positive number
followed by "in"

Controls the minimum page width for pagination of Excel files when fileTypes.excel.pagination.dimensions.mode is set to "override".

fileTypes.excel.pagination.dimensions.maxWidth "22.0in" String consisting of a
positive number
followed by "in"

Controls the maximum page width for pagination of Excel files when fileTypes.excel.pagination.dimensions.mode is set to "override".

fileTypes.excel.pagination.dimensions.minHeight "8.5in" String consisting of a
positive number
followed by "in"

Controls the minimum page height for pagination of Excel files when fileTypes.excel.pagination.dimensions.mode is set to "override".

fileTypes.excel.pagination.dimensions.maxHeight "17.0in" String consisting of a
positive number
followed by "in"

Controls the maximum page height for pagination of Excel files when fileTypes.excel.pagination.dimensions.mode is set to
"override".

fileTypes.excel.renderGridlines true true, false Specifies whether or not the Excel gridlines in all worksheets of the workbook should be rendered.

fileTypes.excel.renderOnlyPrintArea false true, false Specifies whether the print areas defined in Excel workbook are to be honored or not. When set to "true", only the content defined within the
print areas will be rendered. When set to "false", the content that goes beyond print areas will be rendered as well. NOTE: For PrizmDoc Cloud, the
default value for fileTypes.excel.renderOnlyPrintArea is "true".

PrizmDoc Viewer v13.17 350

©2021 My Company. All Rights Reserved.

mailto:info@accusoft.com

fileTypes.excel.renderHeadersAndFooters true true, false Specifies whether or not headers and footers of an Excel workbook should be rendered. When set to "true", even if the original document is
missing the headers and footers, a space for headers and footers shall be reserved when rendering an Excel document.

fileTypes.excel.renderHiddenContent true true, false Specifies whether or not the hidden rows, hidden columns, and whole spreadsheets that are hidden in the original Excel workbook are to be
rendered.

__experimental.fileTypes.email.renderMeetingInfo false true, false Controls whether email headers containing the meeting information (When, Who) should be rendered in email documents.

NOTE: This feature is a work-in-progress that is not officially supported by Accusoft. Its behavior may change at any time in a future release of the
product. We are collecting and reviewing any feedback you can provide about this feature at https://ideas.accusoft.com/ideas/PDV-I-745

NOTE: If you change the __experimental.fileTypes.email.renderMeetingInfo setting, you must clear your cache in order for the new
settings to take effect on the files that were previously converted with the old rendering mode.

NOTE: This setting affects the rendering layout of email documents. Markup generated for documents rendered with this setting turned off cannot not
be used for documents rendered with this setting turned on and vice versa.

License

Property Default Value Supported Values Description

license.solutionName None (Required) Valid solution name string PrizmDoc Server solution name.

license.key None (Required) Valid license key string PrizmDoc Server license key.

Logging

Property Default Value Supported Values Description

logging.directory <install_dir>/logs

e.g.:

/usr/share/prizm/logs

C:\Prizm\logs

Any valid path to a
directory with write
permissions.

Directory where all log files will be stored. PrizmDoc Server is made up of several different processes, each of which create and maintain their own logs. The logs are
invaluable for diagnosing issues with PrizmDoc Server if they arise. If you find yourself in this situation, please see the topic Packaging Log Files for Product Support to
expedite your support request.

logging.daysToKeep 7 Any natural number The number of rotated logs to keep in addition to the active log file. Logs are rotated each day at midnight (UTC).

NOTE: This value does not currently apply to all services. Some services will always keep 7 rotated logs.

Logs with 7 day archives:

AutoRedactionService.log
FormatDetectionService.log
HTMLConversionService.log
OfficeConversionService.log
PDFConversionService.log
RasterConversionService.log
VectorConversionService.log

Network

Property Default
Value Supported Values Description

network.publicPort None
(Required)

Any open HTTP port on the server The public port the REST API will be available on. The chosen port must be accessible by all servers that need to call the PrizmDoc Viewer APIs.

network.internalStartingPort None
(Required)

Any open HTTP port on the server The product requires a range of 200 ports which are reserved for its own internal use. This setting defines the starting port of that range (e.g. a value of
19000 means that ports 19000 through 19199 would be reserved for use by the product). These ports must not be accessible from outside of the server,
for security reasons.

network.clustering.enabled false true, false Set to true to enable cluster mode.

network.clustering.clusterPort - Any open HTTP port on the server The port used to route requests to other servers in the cluster. This port needs to be exposed to the other servers in the cluster.

network.clustering.servers - Array containing hostnames or ip
addresses of other servers within
the cluster.

The server list can be set once via config, or repeatedly at runtime via a REST API call. Setting the list of servers here is useful if you have a static set of
machines that will not change.

Process Ids

Property Default
Value

Supported
Values Description

processIds.lifetime "20m" Formatted
Value, see
Description

The length of time that a redaction creator, markup burner, content converter, form extractor, search context, search task or plain text redactor process remains usable. This must be an integer,
followed by "s", "m", "h", or "d". The suffixes stand for second, minute, hour, or day, respectively. There should not be any space characters between the number and suffix. For example, "20m"
indicates viewing sessions will timeout after 20 minutes.

Please see the topic Implement Caching Strategies for more details.

NOTE: For PrizmDoc Cloud, the default value for processIds.lifetime is 5h.

Resource Usage

Property Default
Value Supported Values Description

resourceUsage.pccis.instances 3 Any integer greater than 0 The number of PCCIS ASP.NET application instances to run concurrently.

resourceUsage.ocs.numInstances "auto" Any integer greater than 0, or the string
"auto"

The number of LibreOffice conversion service instances to run concurrently, or "auto" to let the product choose an appropriate value.

We recommend using the default value of "auto". If you do provide a specific value, it should not be set higher than the number of physical cores
available on your server.

resourceUsage.ocs.numThreads "auto" Any integer greater than 0, or the string
"auto"

The number of threads each instance should create to handle document processing requests, or "auto" to let the product choose an appropriate
value.

We recommend using the default value of "auto". If you do provide a specific value, it should not be higher than 2 x ocs.instances.

resourceUsage.ocs.numPorts "auto" Any integer greater than 0, or the string
"auto"

The number of ports which can be used internally for communication with the LibreOffice conversion instances, or "auto" to let the product choose
an appropriate value.

We recommend using the default value of "auto". If you do provide a specific value, it should be no higher than 4 x ocs.instances.

Security

Property Default
Value Supported Values Description

PrizmDoc Viewer v13.17 351

©2021 My Company. All Rights Reserved.

https://ideas.accusoft.com/ideas/PDV-I-745

Property Default Value Supported Values Description

security.aesEncryption.key "E9rU73lZ2vd0he8Ls/hD8A==" Base64 encoded value of a byte array
representing an AES key with a size
of 128, 192 or 256 bits.

The AES encryption key used to create external viewing session IDs. The external viewing session ID is a AES
encrypted, Base64 encoded value of a string in the format of:

<internal ID>/<server’s host name>/<Auth-Token header value>

Internal ID: This value is a unique GUID that is internally created by PCCIS for each new viewing session.

Server’s Host Name: Aptly named, this value is the hostname of the server on which PCCIS is running.

Auth-Token Header Value: If the "Auth-Token" HTTP header exists in the initial POST request to create a viewing
session, its value will be used here. Otherwise, "accusoft" is used. This value is useful if you have the need to store
an authorization token for each viewing session which a proxy might need.

See PrizmDoc Cluster Management for more details.

security.aesEncryption.iv "jTN2XBjybtfA2fpsv6mylQ==" Base64 encoded value of a byte array
representing an AES initialization
vector with a size of 128 bits.

The AES encryption initialization vector (iv) used to create external viewing session IDs.

security.htmlRendering.blockExternalContent false true, false When rendering any source document which uses HTML content, controls whether or not externally-referenced
content, such as images and iframes, will be blocked. This option affects any source document file type which uses
HTML, including HTML, EML, and MSG.

NOTE: Changing this setting can affect rendered layout and page count.

NOTE: If you change the security.htmlRendering.blockExternalContent setting, you must clear your
cache in order for the new settings to take effect on files previously converted with the old rendering mode.

false - When rendering HTML, issue network requests for externally-referenced content in images, iframes, etc., and
include that content in the final output. Any URL accessible from this machine may be loaded and included in the
final output. See the Security Guidance page for more details.

true - When rendering HTML, block externally-referenced content in images, iframes, etc. No network requests will
be issued when rendering HTML and the final output will only include the content that is directly-present in the
source HTML.

User Documents

Property Default Value Supported Values Description

userDocuments.directory <install_dir>/cache/ UserDocuments

e.g.:

/usr/share/prizm/cache

C:\Prizm\cache /UserDocuments

Any valid path to a directory with read permissions. A directory that contains your documents for use when the documentSource viewing session property is set to "file".

Viewing

Property Default Value Supported Values Description

viewing.allowDocumentDownload false true, false Controls whether or not the REST API will accept requests to download the
source document for a given viewing session.

viewing.sessionLifetime "20m" Formatted Value, see Description The length of time that a viewing session remains usable. This must be an
integer, followed by "s", "m", "h", or "d". The suffixes stand for second,
minute, hour, or day, respectively. There should not be any space
characters between the number and suffix. For example, "20m" indicates
viewing sessions will timeout after 20 minutes.

Please see the topic Implement Caching Strategies for more details.

NOTE: For PrizmDoc Cloud, the default value for
viewing.sessionLifetime is 5h.

viewing.cacheLifetime "1d" Formatted Value, see Description The length of time that a document is cached and can be potentially
reused by other new viewing sessions. This must be an integer, followed by
"s", "m", "h", or "d". Those suffixes stand for second, minute, hour, or day,
respectively. There should not be any space characters between the
number and suffix. For example, "1d" indicates that data will be cached for
up to one day.

Please see the topic Implement Caching Strategies for more details.

NOTE: If the amount of time specified by viewing.cacheLifetime is
shorter than the amount of time specified by
viewing.sessionConstraints.minSecondsAvailable.max, the
viewing.cacheLifetime will be changed at runtime to match the
amount of time specified by
viewing.sessionConstraints.minSecondsAvailable.max. If you
change this value to decrease the cache lifetime, make sure that you also
adjust the
viewing.sessionConstraints.minSecondsAvailable.max value
to represent the same or shorter amount of time.

NOTE: For PrizmDoc Cloud, the default value for
viewing.cacheLifetime is 43h.

viewing.contentEncryption.enabled false true, false Controls whether or not content is encrypted by the back end before
being transmitted to a Viewer. The Viewer will decrypt the content in the
browser. This is useful for DRM, making it more difficult to copy protected
content that has been delivered to the browser.

viewing.sessionConstraints.documentSource.allowedValues ["api","http"] Array which contains one or more of the following strings: "api",
"http", "file"

Creates a value filter that will be applied to the "documentSource" JSON
property when creating a new viewing session to ensure appropriate
values are being set. If the actual property value fails to match the filter, an
error will be returned and the viewing session will not be created.

Allowing a combination of document sources here enables you to create
viewing sessions with different sources on the fly without needed to
modify this config file.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

NOTE: For PrizmDoc Cloud, the default value for
viewing.sessionConstraints.documentSource.allowedValues

is "api".

viewing.sessionConstraints.countOfInitialPages.min 0 Any natural number Minimum allowed value for the "countOfInitialPages" JSON property when
creating a new viewing session.

Together with
viewing.sessionConstraints.countOfInitialPages.max create
a range filter that will be applied to ensure appropriate values are being
set. If the actual property value fails to match the filter, an error will be
returned and the viewing session will not be created.

PrizmDoc Viewer v13.17 352

©2021 My Company. All Rights Reserved.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.countOfInitialPages.max 10 Any natural number not less than
viewing.sessionConstraints.countOfInitialPages.min

Maximum allowed value for the "countOfInitialPages" JSON property when
creating a new viewing session.

Together with
viewing.sessionConstraints.countOfInitialPages.min create
a range filter that will be applied to ensure appropriate values are being
set. If the actual property value fails to match the filter, an error will be
returned and the viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.documentExtension.regex ".*" Valid regular expression using the .NET Regular Expression
Language

Creates a regex filter that will be applied to the "documentExtension"
JSON property when creating a new viewing session to ensure appropriate
values are being set. If the actual property value fails to match the filter, an
error will be returned and the viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.externalId.regex ".*" Valid regular expression using the .NET Regular Expression
Language

Creates a regex filter that will be applied to the "externalId" JSON property
when creating a new viewing session to ensure appropriate values are
being set. If the actual property value fails to match the filter, an error will
be returned and the viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.pageContentEncryption.allowedValues ["default"] An array with either one or all of the following strings: "default",
"enabled", "disabled"

Creates a value filter that will be applied to the "pageContentEncryption"
JSON property when creating a new viewing session to ensure appropriate
values are being set. If the actual property value fails to match the filter, an
error will be returned and the viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.serverCaching.allowedValues ["none","full"] An array with one or more of the following strings: "none", "full" Creates a value filter that will be applied to the "serverCaching" JSON
property when creating a new viewing session to ensure appropriate
values are being set. If the actual property value fails to match the filter, an
error will be returned and the viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

Please see the topic Implement Caching Strategies for more details.

viewing.sessionConstraints.render.alwaysUseRaster.allowedValues [false] An array with one or more of the following values: true, false Creates a value filter that will be applied to the
"render.html5.alwaysUseRaster" JSON property when creating a new
viewing session to ensure appropriate values are being set. If the actual
property value fails to match the filter, an error will be returned and the
viewing session will not be created.

This property is one of several that can be used to limit unwanted values
from being used within the JSON properties of the initial POST request to
create a viewing session. These filter values are useful to prevent mistaken
or malicious values from being sent that could affect server behavior.

viewing.sessionConstraints.minSecondsAvailable.max 86400 Any integer greater than 0 This configuration property provides a maximum value that can be used
for the option 'minSecondsAvailable'. The value is a positive number and
represents seconds. When this value is set to zero, the ViewingSession
timeout will be used for validation of the minSecondsAvailable option in
the POST /ViewingSession. The default will be 86400 seconds (1 day). This
option is available for PrizmDoc version 12.0 or greater.

Work Files

Property Default Value Supported Values Description

workFiles.directory cache.directory/WorkFileCache Any valid path to a directory
with read and write
permissions.

Directory where work files are stored. This should be set to a non-shared location.

workFiles.lifetime "1d" Formatted Value, see
Description

The length of time that a workfile remains usable. This must be an integer, followed by "s", "m", "h", or "d". The suffixes stand for second, minute, hour, or
day, respectively. There should not be any space characters between the number and suffix. For example, "20m" indicates viewing sessions will timeout after
20 minutes.

Please see the topic Implement Caching Strategies for more details.

JVM Options

Property Default Value Supported Values Description

eps.jvm.opts "" One or more options supported by JVM Java Virtual Machine settings to use when starting Email Processing Service.

Examples:

"-Xms2G -Xmx5G" - Set initial JVM heap size to 2G and max heap size to 5G.

"-XX:MaxRAMPercentage=50.0 -XX:+UseG1GC" - Set dynamic JVM heap size and use G1GC garbage collector.

pdfps.jvm.opts "" One or more options supported by JVM Java Virtual Machine settings to use when starting PDF Processing Service.

Examples:

"-Xms2G -Xmx5G" - Set initial JVM heap size to 2G and max heap size to 5G.

"-XX:MaxRAMPercentage=50.0 -XX:+UseG1GC" - Set dynamic JVM heap size and use G1GC garbage collector.

PrizmDoc Cloud Default Values
PrizmDoc Cloud uses specific default values that differ from self-hosted default values as noted below:

fidelity.msOfficeDocumentsRenderer: "msoffice"
processIds.lifetime: 5h

Property Default Value Supported Values Description

PrizmDoc Viewer v13.17 353

©2021 My Company. All Rights Reserved.

processIds.lifetime: 5h
fileTypes.excel.margins.mode: "preserve"
fileTypes.excel.pagination.dimensions.mode: "preserve"
fileTypes.excel.renderOnlyPrintArea: "true"
viewing.cacheLifetime: 43h
viewing.sessionConstraints.documentSource.allowedValues: "api"
viewing.sessionLifetime: 5h

PCCIS Configuration

PCCIS Configuration
This topic covers how to configure the PCCIS service of PrizmDoc Server. Most of the parameters are updated
automatically as discussed in the Central Configuration topic. However, some parameters can be updated manually
to configure viewing of large documents. The default timeout values might not be enough when viewing large
documents, so the parameters described in this topic offer a way to increase those values.

NOTES:

1. Given the default installation directory, the paths for the Central Configuration file are:
Linux: /usr/share/prizm/pccis/ServiceHost/pcc.config
Windows: C:\Prizm\PCCIS\ServiceHost\pcc.config

2. After making any changes to the configuration files, you need to restart the PrizmDoc Server.

The following options are available for configuration within the PCCIS configuration file:

Property Default
Value

Supported
Values Description

PageInteractiveTimeout 25000 An integer
recommended
to be between
5000 (5
seconds) and
120000 (2
minutes)

When PCCIS receives a request for page-level
content or other data, this is the number of
milliseconds that PCCIS will wait for that
information to become available before the
request times out and returns an error. Consider
increasing this value if you are viewing documents
containing a large number of pages.

DocumentInteractiveTimeout 50000 An integer
recommended
to be between
30000 (30
seconds) and
300000 (5
minutes)

When PCCIS receives a request for document-
level data like page count, this is the number of
milliseconds that PCCIS will wait for that
information to become available before the
request times out and returns an error. Consider
increasing this value if you are viewing documents
containing a large number of pages or comparing
documents with a large number of differences.

DocumentAcquisitionTimeout 45000 An integer
recommended
to be between
5000 (5
seconds) and
120000 (2
minutes)

When PCCIS is responsible for downloading the
source document directly from a specified HTTP
location (documentSource viewing session
property equals "http"), this is the number of
milliseconds that request will wait before timing
out. Consider increasing this value if you are
viewing large (in terms of size) documents or
comparing documents with a large number of
differences.

InternalOperationTimeout 100000 An integer When PCCIS begins the conversion for a

PrizmDoc Viewer v13.17 354

©2021 My Company. All Rights Reserved.

InternalOperationTimeout 100000
recommended
to be between
100000 (100
seconds) and
600000 (10
minutes)

document, it has InternalOperationTimeout
milliseconds to complete all of the conversion,
comparison and text extraction operations. If this
timeout is reached, the viewing session will be
stopped because a valid document was not
obtained. Consider increasing this value if you are
comparing documents with a large number of
differences or performing a text search having a
large number of occurrences in the document.

RetainContextOnHealthIssue false true, false A flag indicating whether the context (recently-
processed work) should be saved when the
service becomes unhealthy. Normally, this should
be false, but you can set it to true to preserve
documents that cause problems. When this is
true, and only when the service transitions from
healthy to unhealthy, the source documents and
cached work will not be expired and deleted. This
allows them to be reprocessed to see if they
caused the health problem.

IMPORTANT Note that if you stop and restart
PCCIS, it will no longer preserve the files and may
delete them.

Property Default
Value

Supported
Values Description

Implement Caching Strategies

Introduction
This topic covers common questions and recommendations to consider when implementing your caching strategy:

Why does PrizmDoc Server Cache Files?
What is the Cost of the PrizmDoc Server Cache?
How do I Optimize Cache Performance?
Cache Strategies and Tradeoff Scenarios
Summary

Why does PrizmDoc Server Cache Files?
The power behind PrizmDoc Services’ ability to deliver viewable web content quickly and efficiently lies with its
cache management. Viewing a multipage document requires that each document page be converted into a web
compatible format such as JPEG, PNG or ideally SVG (which gives the highest fidelity upon scaling). Unfortunately,
the conversion process is not instantaneous, which means there is some delay before a page can be made
viewable. Because PrizmDoc Server assumes a document will be viewed by more than one person over multiple
sessions, it converts all the pages into web viewable intermediate objects that are stored in its cache folders.

The conversion process begins when the viewing session is started or with the first request to view a document
page by a given viewing session. Typically, the viewable page data that is generated will then be made available to
any subsequent request for the same pages, reducing the time to view to only the time it takes to download the
page data to the browser. To summarize, the cached files help deliver viewing performance because the viewing

PrizmDoc Viewer v13.17 355

©2021 My Company. All Rights Reserved.

objects are pre-generated and stored in the cache folders.

What is the Cost of the PrizmDoc Server Cache?
The cached files require storage on some media device for some period of time. Cached files created for viewing
may take up a considerable amount of space, so there is a need to have some control on the growth of the cache
files. Fortunately, PrizmDoc Server does provide ways to deal with the storage usage demand of the cache with
options for controlling both where the files are stored, and how long they are stored there. In fact, the cache
contains different purposed folders which can be relocated to different devices which can spread the cache burden
out to different devices if necessary.

How do I Optimize Cache Performance?
The majority of the PrizmDoc Server cache is made up of pre-generated document pages which are readily
available on demand. Caching these files is already a help in performance when the same document is viewed
repeatedly. While there are three configurable cache folders locations, placing certain ones on more responsive
media can result in better viewing experience with less burden on the server hosting the PrizmDoc Server service.
The use of solid state drives (SSD) or Shared Memory (Linux only) minimizes input/output (I/O) latency and access
times for cached files but these storage devices are typically much more confined in storage capacity.

Cache Strategies and Tradeoff Scenarios
Several scenarios are proposed below with purposed cache configuration solutions. The user should be familiar
with the central configuration file settings as outlined in Central Configuration Options. Along with the central
configuration file, there is a property in the JSON object which the application posts when requesting a new
viewing session from PrizmDoc Server (refer to the How To Adjust Caching Parameters for PrizmDoc Server topic).

The default settings in the central configuration file will cause viewing sessions to timeout after 20 minutes, and
cached files to expire after one day. Also by default, the PrizmDoc Server cache folders will all be created within the
same parent directory on the root drive. These default settings give a reader 20 minutes to read a document once
the viewing session is started. After that time period, a new viewing session will need to be created for them to
continue reading the document, either by refreshing their browser, or another mechanism you implement in your
application.

The next time the same document is viewed, PrizmDoc Server will simply deliver the viewing objects that were
created in the first viewing session to the same reader, or to any other reader viewing the same document, for
about 24 hours after the first viewing session was created. When a reader (same or new) requests to read the
document a day later, the cache process starts over because PrizmDoc will have already deleted the cached pages
and will have to re-generate all the viewable content of the document again.

NOTE: If you set the cache to 1 day, the timer will start over if someone accesses a file that is in the
cache.

To manually delete the cache:

1. Stop the Prizm service.
2. Go to the cache folder: (On Windows: C:\Prizm\cache. On Linux: /usr/share/prizm/cache).
3. You can delete all files and folders within the cache folder.
4. Start the Prizm service again. PrizmDoc will generate a new cache.

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

PrizmDoc Viewer v13.17 356

©2021 My Company. All Rights Reserved.

NOTE: The default installation directory is: C:\Prizm.

Scenario 1:

Viewing response appears slow even with caching enabled as lots of readers are interested in viewing the
document.

Solution:

Set the cache.directory setting in the central configuration file to a faster SSD device or with Linux
environments, set the content to a folder of the Shared Memory device (i.e. /dev/shm).

Example for Shared Memory Device

cache.directory: /dev/shm/Accusoft/Prizm/

The above setting in central configuration sets the cache directories to folders in Shared Memory on a Linux OS
environment. Being faster than standard disk drives, PrizmDoc Server response will be typically quicker with less
overall stress on the server to deliver viewing content.

Scenario 2:

Viewing Clients are getting errors and the storage device used for the PrizmDoc Server cache is showing errors
because the devices are full.

Solution:

Depending on available storage capacity of the selected device, the cache expiration period specified by
viewing.cacheLifetime in central configuration may need to be shortened to accommodate cache load.
Please note that the time period for viewing.cacheLifetime should not be any shorter than the
viewing.sessionLifetime time period. Otherwise, the viewing.sessionLifetime will take precedence and the cache
expiration period will be forced to the same value. The viewing.sessionLifetime time period can be shortened but at
the penalty of reducing the amount of time a user has to read a document in a single viewing session.

Rather than changing the viewing session timeout period, try changing the size of the (fast) storage device.

Example for Quicker Cache Cleanup

viewing.sessionLifetime: 15m
viewing.cacheLifetime: 20m

The above settings set the viewing session timeout to 15 minutes and the life expectancy of any cached file to 20
minutes. After approximately 35 to 45 minutes, the cached files for a given document will be deleted. The exact
time of cleanup can vary based on the scheduled nature of the cleanup processes and current load on the server.

Scenario 3:

Your application views a lot of large documents and users are not able to read them in time before they get a
viewing session timeout error.

Solution:

PrizmDoc Viewer v13.17 357

©2021 My Company. All Rights Reserved.

The default setting in the central configuration file for viewing.sessionLifetime is 20 minutes. It can be
increased to a larger value but that means PrizmDoc Server will have more resources to track at any given moment
which could affect performance and host server capacity.

Example of Longer Viewing Session Duration

viewing.sessionLifetime: 1h
viewing.cacheLifetime: 1d

The above settings increase the ability for users to peruse a given document for an hour. Cache resources for the
document will be removed 25+ hours later. As above, there is variability for cache cleanup based on the scheduled
nature of the cleanup processes and current load on the server.

Scenario 4:

The documents served are fairly random and not typically shared with others.

Or:

The image is watermarked uniquely for each Viewer and should not be shared.

Solution:

In this scenario, the cache resources are not likely to be needed except for the initial user. There is a property in the
JSON object which the application posts when requesting a new viewing session from PrizmDoc Server that can be
used to disable caching on a per-viewing-session basis. The property, serverCaching, should be set explicitly to
the string value none when the application requests a POST operation to get a new viewing session ID. Each
document uploaded to PrizmDoc Server will be converted without PrizmDoc Server looking for an existing copy of
the document. After the viewing session times out, the cached items for the document will be removed on a
predetermined schedule which should be fairly quick because no other viewing sessions are using the data. For
example:

Example

POST /ViewingSession
{
...
 "serverCaching": "none",
...
}

After the viewing session timeout, the cache items should be removed fairly soon.

Summary
The PrizmDoc Server cache provides a mechanism to deliver document content in a timely matter. However, each
application is different and may tax server resources differently or have more demanding requirements. Balancing
resource constraints against user experience can be a difficult task that may require compromises. Faster hardware,
more specifically high speed storage devices, coupled with an understanding of the options for adjusting how the
PrizmDoc Server cache behaves should allow you to reach a desired level of performance while maintaining a good
user experience.

PrizmDoc Viewer v13.17 358

©2021 My Company. All Rights Reserved.

Adjust Caching Parameters

Introduction
When PrizmDoc Server receives a request to view a new document, also called a viewing session, it begins creating
various artifacts associated with it and stores these artifacts on disk for a specified amount of time. These artifacts
include such things as the original document, document metadata, and converted content used for viewing the
document in a browser. We collectively refer to these artifacts as the PrizmDoc Server cache. This topic discusses
various cache parameters that control things like cache lifetime, location, and reuse:

Cache Lifetime
Cache Location
Cache Reuse

Cache Lifetime
The cache lifetime, or the amount of time cached files will exist on disk before being deleted for each new
document, is controlled by two parameters, viewing.sessionLifetime and viewing.cacheLifetime.
These parameters are found in the central configuration file.

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

Example

viewing.sessionLifetime: 20m
viewing.cacheLifetime: 1d

The session lifetime is the length of time that a viewing session remains usable. For example, this is the amount of
time that a user can view and interact with a document in their browser before the document becomes unavailable.
This value must be an integer followed by "s", "m", "h", or "d". The suffixes stand for second, minute, hour, or day,
respectively. There should not be any space characters between the number and suffix. The example above
indicates viewing sessions will timeout after 20 minutes.

The cache lifetime is the length of time that a document is cached and can be potentially reused by other new
viewing sessions. This value must be an integer followed by "s", "m", "h", or "d". The suffixes stand for second,
minute, hour, or day, respectively. There should not be any space characters between the number and suffix. The
example above indicates that document data will be cached for one day.

IMPORTANT: If viewing.sessionConstraints.minSecondsAvailable.max is set to a value
greater than viewing.cacheLifetime in the central configuration file the cache lifetime will be
overwritten by the minSecondsAvailable.max value. This configuration property provides a
maximum value that can be used for the option 'minSecondsAvailable' in the POST /ViewingSession.
The value is a positive number and represents seconds. When this value is set to zero, the
ViewingSession timeout will be used. The default is 86400 seconds (1 day).

The total cache lifetime of a document can be calculated by adding the session lifetime value to the maximum of
either the session lifetime or cache lifetime.

PrizmDoc Viewer v13.17 359

©2021 My Company. All Rights Reserved.

This can be expressed as the following formula:

Total Cache Lifetime = Session Lifetime + max(Session Lifetime, Cache Lifetime)

The above formula will provide the approximate lifetime of a cached document because there is scheduling
variability that can increase the actual time. This variability is caused partly by the periodic nature of which the
cache cleanup processes are run. Also, if the server is under high load, the cleanup processes may be delayed so as
not to consume additional resources.

NOTE: If you set the cache to 1 day, the timer will start over if someone accesses a file that is in the
cache.

To manually delete the cache:

1. Stop the Prizm service.
2. Go to the cache folder: (On Windows: C:\Prizm\cache. On Linux: /usr/share/prizm/cache).
3. You can delete all files and folders within the cache folder.
4. Start the Prizm service again. PrizmDoc will generate a new cache.

See the Caching Strategies topic for details and recommendations for the viewing session timeout and cache
expiration period values in your application.

Cache Location
The directories that PrizmDoc Server uses for caching are user-configurable. To change them, you will need to set
the cache.directory parameter in the central configuration file. Cached files will be stored in subdirectories of this
location.

Example

cache.directory: /usr/share/prizm/cache

See the Caching Strategies topic for details and recommendations on cache locations and types of storage media.

Cache Reuse
Consider the case where a viewing session is created in PrizmDoc Server, and PrizmDoc Server performs the work
to convert the original source document to a format that is suitable for viewing in a browser. Now consider the
case where multiple users are viewing the same document one or more times. PrizmDoc Server can leverage the
cache in this case so that the document is converted only once but can be served for future viewing sessions using
identical documents. The result is very fast viewing times for users and decreased processing time for servers.

PrizmDoc Server enables cache reuse by default. This property can be controlled per viewing session and is
adjustable using the JSON properties of the initial POST request sent to PrizmDoc Server to create a viewing
sessions.

Example

POST http://localhost:18681/Prizm Services/V1/ViewingSession {
 "externalId":"MyDocumentName.pdf",
 "serverCaching":"Full",
 "render":
 {
 "html5":

PrizmDoc Viewer v13.17 360

©2021 My Company. All Rights Reserved.

 {
 "alwaysUseRaster":false
 }
 }
}

In the example above, the serverCaching property is set to a value of Full, which enables the reuse of the
cache for multiple viewing sessions. This is the default value, so not including serverCaching at all would yield
the same result. We recommend this feature to obtain the best performance.

To disable reuse of the cache, set serverCaching to a value of None. This means that any new viewing sessions
will need to convert the source document into viewable content even if the same document has been converted
during a previous viewing session. Also, because no other viewing session will be reusing the converted document,
the document data associated with viewing session will typically be deleted immediately after the viewing session
expires.

Change Encryption Keys for Public use Token Generation

Introduction
As part of the normal operation of the PrizmDoc Server API, ID values and tokens are created and provided to the user
for use in the public API. Some of these values contain embedded information used for request routing which can
include host names, IP addresses and ports of the servers hosting the PrizmDoc Server. This network information
should only be relative to internally accessible servers. Nonetheless, the PrizmDoc Server will encrypt the information
whenever it is embedded in public-use tokens using AES symmetric encryption and further encode the ciphertext to
Base64 to create the new ID or token.

The PrizmDoc Server API ships configured with a default AES key and Initialization Vector (IV) so PrizmDoc Server will
work "out-of-the-box". However, it is recommended that you replace the default encryption values with those of
your choosing to maintain the highest level of security. The following steps describe how to fully replace the default
AES keys with your own.

Step 1: Obtain an AES Key and Initialization Vector (IV)
1. First, you will need an AES key and IV that is unique to your organization. Following the AES standard, the key

value can be 128, 192 or 256 bits and the IV value must be 128 bits.
2. Once you have the key and IV, they must both be Base64 encoded so that they are in a format which can be

easily stored in the configuration files of the PrizmDoc Server.
3. With a Base64 encoded AES key and IV value you can now begin updating the configuration files.

Step 2: Update the Central Configuration File
The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

1. Open the central config file.
2. Set the security.aesEncryption.key and security.aesEncryption.iv properties to the Base64 encoded values

you created in Step 1.

PrizmDoc Viewer v13.17 361

©2021 My Company. All Rights Reserved.

3. Save and exit the config file.
4. After making any changes to the configuration files, you need to restart PrizmDoc Viewer.

Configure Microsoft Office Conversion Connectivity

Introduction
PrizmDoc Viewer provides Microsoft Office Conversion connectivity for PrizmDoc Servers running on Linux. While
the Microsoft Office Conversion add-on requires PrizmDoc Server running on Windows, it is possible to configure
PrizmDoc Servers running on Linux to utilize the Microsoft Office Conversion service to have native rendering of
Microsoft documents in PrizmDoc Viewer.

Please see Windows Requirements and Windows Installation sections for information regarding installation of
PrizmDoc Viewer with the Microsoft Office Conversion service.

The following steps describe how to enable Microsoft Office connectivity on the Linux server.

Single Server Mode

Linux Server Configuration

1. An MSO enabled license is required for the Microsoft Office Conversion connectivity for PrizmDoc Servers
running on Linux.

2. Configure the following two parameters in the prizm-services-config.yml:

fidelity.msOfficeCluster.host

Set this value on a PrizmDoc Server running on Linux to the hostname or the IP of a single PrizmDoc Server
running on Windows. By setting this value, you can use the Microsoft Office Conversion service running on
Windows to have native rendering of Microsoft documents in PrizmDoc Viewer.

fidelity.msOfficeCluster.port

Set this value on a PrizmDoc Server running on Linux to the public port of a single PrizmDoc Server running
on Windows specified by the network.publicPort parameter of the remote server. By setting this value,
you can use the Microsoft Office Conversion service running on Windows to have native rendering of
Microsoft documents in PrizmDoc Viewer.

3. Restart PrizmDoc Viewer.

Note that if the /etc/hosts file of the Linux machine is either empty, or contains only localhost entry, such as:

127.0.0.1 localhost

the Linux server might not be able to connect to the Windows server. Make sure that the network of the
Linux machine is configured properly. For instance, the /etc/hosts file should contain at least 2 entries:

127.0.0.1 localhost
127.0.0.1 <hostname-of-your-machine>

Cluster Mode

Linux Server Configuration

PrizmDoc Viewer v13.17 362

©2021 My Company. All Rights Reserved.

1. An MSO enabled license is required for the Microsoft Office Conversion connectivity for PrizmDoc Servers
running on Linux.

2. Please configure following two parameters in the prizm-services-config.yml:

fidelity.msOfficeCluster.host

Set this value on a PrizmDoc Server running on Linux to the hostname or the IP of a load balancer of a
cluster running on Windows to utilize the Microsoft Office Conversion service running on Windows to have
native rendering of Microsoft documents in PrizmDoc Viewer.

fidelity.msOfficeCluster.port

Set this value on a PrizmDoc Server running on Linux to the public port of a load balancer of a cluster
running on Windows specified by 'network.clustering.clusterPort' parameter of the cluster to utilize the
Microsoft Office Conversion service running on Windows to have native rendering of Microsoft documents
in PrizmDoc Viewer.

3. Restart PrizmDoc Viewer.

Note that if the /etc/hosts file of the linux machine is either empty, or contains only localhost entry, such as:

127.0.0.1 localhost

the Linux server might not be able to connect to the Windows cluster. Please make sure, that the network of
the linux machine is configured properly. For instance, the /etc/hosts file should contain at least 2 entries:

127.0.0.1 localhost
127.0.0.1 <hostname-of-your-machine>

File Formats

After performing the configuration steps above, a PrizmDoc Server running on Linux will convert all Microsoft
Office documents through the Microsoft Office Conversion renderer from the PrizmDoc Server running on
Windows.

Please refer to the Supported File Formats section for the information on the exact file formats supported by the
Microsoft Office Conversion renderer.

Substitute Fonts for Office Rendering Fidelity

Introduction
PrizmDoc Server uses a sophisticated logic to select the right font for accurate text rendering within Microsoft Office
documents in the LibreOffice-based rendering mode. The logic to locate and use the appropriate font(s) can be
broken down into the following sequence:

1. PrizmDoc Server looks for pre-configured font substitutions, provided by PrizmDoc Viewer out-of-the-box. The
configuration file defining the substitution in JSON format is located here:

2. Windows: <install directory>/conf/OfficeConversionService.Font.Windows.config

3. Linux: <install directory>/conf/OfficeConversionService.Font.Linux.config

4. PrizmDoc Server looks for the exact font match within the local PrizmDoc Viewer fonts directory containing the
fonts installed by the PrizmDoc Viewer distribution.

PrizmDoc Viewer v13.17 363

©2021 My Company. All Rights Reserved.

5. PrizmDoc Server looks for the exact font match in the system fonts directory.
6. If none of the steps above solved the substitution, the PrizmDoc Server will dynamically look for the most

appropriate font substitution within the PrizmDoc Viewer local and system fonts using the font metrics. This
step might provide less accurate results due to the specifics of certain fonts. Therefore, when dealing with a
wide range of fonts and languages, it is recommended to install additional font packages. Specifically on Linux
systems, such packages as "msttcorefonts" can be helpful to improve substitution of MS core fonts.

For Asian language support on Linux systems, make sure to install corresponding language support in addition to the
installed Asian fonts. Refer to the Install Asian Fonts topic for more information.

Upgrade from Legacy Configuration

Introduction
This information in this topic will help you upgrade to Central Configuration from the deprecated legacy configuration:

To use Central Configuration, watchdog.config must contain the paths.central_config_file property whose value is a path to the central configuration file relative to the PrizmDoc Server install directory. This is the
default setting, but if you are migrating from legacy configuration, you should verify that this property is set correctly.

The following table maps the legacy file and property that corresponds to each central config property:

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

Central Configuration Property Legacy Configuration File Legacy Configuration Property Special Transfer instructions

license.solutionName watchdog.config license.solutionName -

license.key watchdog.config license.key -

network.publicPort watchdog.config cep_port OR sep_port, see instructions If running in cluster mode, the central config
value corresponds to cep_port. If it is running in
single-server mode, it corresponds to sep_port
instead.

network.internalStartingPort watchdog.config internal_starting_port -

network.clustering.enabled watchdog.config server_mode A central config value of true corresponds to a
server mode of "multi", and false corresponds
to "single".

network.clustering.clusterPort watchdog.config sep_port, see instructions The central config value maps to sep_port only
if running in cluster mode.

network.clustering.servers watchdog.config cep_servers Reduce the cep_servers array to an array of only
the addresses of each server. The port of each
will be assumed to be
network.clustering.clusterPort.

security.aesEncryption.key plb/pcc.config, redaction.config,
workfile.config, contentconversion.config

ViewingSessionEncryptionKey OR encryptionKey OR
affinityTokenKey, depending on file

-

security.aesEncryption.iv plb/pcc.config, redaction.config,
workfile.config, contentconversion.config

ViewingSessionEncryptionIv OR encryptionIv OR
affinityTokenIv, depending on file

-

logging.directory watchdog.config paths.app_log_dir Join the elements of paths.app_log_dir into a
path string.

logging.daysToKeep watchdog.config, plb/pcc.config logging.streams.count, workfileService.logging.count,
redactionService.logging.count,
fileViewer.logging.count,
contentConversionService.logging.count,
errorReportingService.logging.count, OR
logging.count, depending on file

-

cache.directory servicehost/pcc.config DocumentPath, GroupStateFolder, TempcachePath -

workFiles.directory watchdog.config workfileService.workfileCache.path -

workFiles.lifetime watchdog.config workfileService.workfileCache.expirationPeriod -

userDocuments.directory servicehost/pcc.config UserDocumentFolder -

processIds.lifetime watchdog.config redactionService.cache.expirationPeriod,
contentConversionService.cache.expirationPeriod

-

viewing.allowDocumentDownload servicehost/pcc.config EnableSourceDocumentDownload -

viewing.sessionLifetime servicehost/pcc.config ViewingSessionTimeout -

viewing.cacheLifetime servicehost/pcc.config CacheExpirationPeriod -

viewing.contentEncryption.enabled servicehost/pcc.config EncryptPageContent -

viewing.sessionConstraints.documentSource.allowedValues servicehost/pcc.config ViewingSessionPropertyDocumentSource Split ViewingSessionPropertyDocumentSource
into an array of allowed sources.

viewing.sessionConstraints.countOfInitialPages.min servicehost/pcc.config ViewingSessionPropertyCountOfInitialPages Set the central config value to the min value
from
ViewingSessionPropertyCountOfInitialPages.

viewing.sessionConstraints.countOfInitialPages.max servicehost/pcc.config ViewingSessionPropertyCountOfInitialPages Set the central config value to the max value
from
ViewingSessionPropertyCountOfInitialPages.

viewing.sessionConstraints.documentExtension.regex servicehost/pcc.config ViewingSessionPropertyDocumentExtension -

PrizmDoc Viewer v13.17 364

©2021 My Company. All Rights Reserved.

viewing.sessionConstraints.externalId.regex servicehost/pcc.config ViewingSessionPropertyExternalId -

viewing.sessionConstraints.pageContentEncryption.allowedValues servicehost/pcc.config ViewingSessionPropertyPageContentEncryption Set the central config value to an array of the
values allowed by
ViewingSessionPropertyPageContentEncryption.

viewing.sessionConstraints.serverCaching.allowedValues servicehost/pcc.config ViewingSessionPropertyServerCaching Set the central config value to an array of the
values allowed by
ViewingSessionPropertyServerCaching.

viewing.sessionConstraints.render.alwaysUseRaster.allowedValues servicehost/pcc.config Html5RenderAcceptableRasterValue Set the central config value to an array of the
values allowed by
Html5RenderAcceptableRasterValue.

fileTypes.pdf.pageBoundaries PDFConversionService.<Platform>.config useCropBox Set the central config value to "cropBox" if
useCropBox is true, or "mediaBox" if it is false.

fileTypes.excel.pagination.enabled watchdog.config officeConversionService.excelPagination -

fileTypes.excel.pagination.dimensions.minWidth watchdog.config officeConversionService.excelPageWidthMin Add 'in' to the end of the value in
watchdog.config.

fileTypes.excel.pagination.dimensions.maxWidth watchdog.config officeConversionService.excelPageWidthMax Add 'in' to the end of the value in
watchdog.config.

fileTypes.excel.pagination.dimensions.minHeight watchdog.config officeConversionService.excelPageHeightMin Add 'in' to the end of the value in
watchdog.config.

fileTypes.excel.pagination.dimensions.maxHeight watchdog.config officeConversionService.excelPageHeightMax Add 'in' to the end of the value in
watchdog.config.

fileTypes.office.disableExternalHyperlinks watchdog.config officeConversionService.disableExternalHyperlinks -

fidelity.msOfficeDocumentsRenderer watchdog.config officeConversionService.msOfficeDocumentsRenderer -

resourceUsage.pccis.instances watchdog.config pccis_instances, see instructions Set the central config value equal to the
number of objects in the pccis_instances array.

resourceUsage.ocs.numInstances watchdog.config officeConversionService.officeInstanceCount -

resourceUsage.ocs.numThreads watchdog.config officeConversionService.threadCount -

resourceUsage.ocs.numPorts watchdog.config officeConversionService.officePortCount -

Central Configuration Property Legacy Configuration File Legacy Configuration Property Special Transfer instructions

Clustering

Introduction
The PrizmDoc Services are designed to run out-of-the-box on a single server. In the single-server mode, the PrizmDoc
Services are listening on port 18681 by default and fulfilling requests entirely on the same server. There is no
additional configuration to run in single-server mode. This mode is recommended if you have only one server hosting
the PrizmDoc Services.

If your application requires more bandwidth or processing power than one server can handle, the PrizmDoc Services
provide a mode that enables request load balancing and routing across multiple servers hosting PrizmDoc Server. This
topic discusses the requirements and considerations for running the PrizmDoc Services in cluster mode.

Additional topics that support cluster mode:

Optimizing Cache Performance for Cluster Mode
Affinity Tokens & Cluster Mode

Cluster Mode
Before getting into the details of cluster mode, it’s important to understand two things about how the PrizmDoc
Server generates and serves content:

The majority of requests the PrizmDoc Server handles are centered on document conversions or manipulations.
These processes can be computationally expensive, so the PrizmDoc Server attempts to conserve as much CPU
resources as possible by caching content as it's created.
Cached content is only stored locally on the server where it was created and it is directly tied to a specific
resource created by the RESTful web service. Requests for existing resources must be handled by the PrizmDoc
Server on the server that originally created it, otherwise errors will occur.

PrizmDoc Viewer v13.17 365

©2021 My Company. All Rights Reserved.

How It Works
The cluster mode of the PrizmDoc Server works by creating a new entry point on each server hosting the PrizmDoc
HTTP Service. This new entry point becomes responsible for routing requests to the correct PrizmDoc Server, as well
as load balancing requests for new RESTful web service resources over all the PrizmDoc Servers in the node.

Consider the diagram below which depicts an architecture that employs 3 servers hosting the PrizmDoc HTTP Service
within a node. Looking deeper, notice that each server is hosting two entry points:

The Server Entry Point (SEP) will be listening on port 18682 by default. This is the main PrizmDoc HTTP Service entry
point for the server. It is responsible for routing requests to the internal services running on the server. It is also the
same entry point that handles requests from your application in single-server mode. However, in cluster mode your
application should not send requests directly to the SEP, but instead the requests should be made to the Cloud Entry
Point.

The Cloud Entry Point (CEP) will be listening on port 18681 by default. In cluster mode, the CEP is responsible for
routing requests to the correct PrizmDoc Server. If you are creating a new RESTful web service resource, the CEP will
direct that request to a PrizmDoc Server it chooses.

If you are working with an existing resource, the CEP will ensure that the request is forwarded on to the server which
originally created the resource. Any CEP can route any request to the correct server. This allows you to use a simple
load balancer in front of your PrizmDoc Servers; simply have the load balancer send incoming requests to any CEP on
any server and the CEP's will ensure that the requests are routed to the appropriate machine.

Step 1 - Configuration

After installation, the PrizmDoc HTTP Service will be running in single-server mode. To enable cluster mode:

1. Stop the PrizmDoc Server.

2. Open the Central Configuration file in a text editor.

PrizmDoc Viewer v13.17 366

©2021 My Company. All Rights Reserved.

The file paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

3. Set the network.clustering.enabled value to true, and make sure the network.publicPort and
network.clustering.clusterPort values exist and are assigned to valid port numbers:

network.clustering.enabled: true

network.clustering.clusterPort: 18682 # Server Entry Point for every server in
the cluster

network.publicPort: 18681 # Cloud Entry Point

4. Optionally, set the network.clustering.servers value to an array of address values corresponding to
each PrizmDoc Server on the network node. For example:

network.clustering.servers: ["192.168.0.1", "192.168.0.2", "192.168.0.3"]

5. Save and close the Central Configuration file.

6. Start the PrizmDoc Server.

NOTE: If your application makes requests to the PrizmDoc service from another server, ports 18681 and
18682 (or other port values you choose) will need to be opened in the firewall for each server hosting the
PrizmDoc service.

Step 2 - Start-Up

Once the PrizmDoc HTTP Service has been configured and is running on each server, there is one more critical step
you must perform before the Cloud Entry Points will be able to handle requests successfully.

In this step you will inform the Cloud Entry Point on each PrizmDoc Server of the other available PrizmDoc Servers in
the same network node. This list allows any CEP to route requests for existing resources to the correct PrizmDoc
Server that originally created it, as well as load balance requests for new resources across all servers.

The list of servers is set by a HTTP PUT request to each Cloud Entry Point. Below is an example of the request that
would be sent to each Cloud Entry Point (given the sample architecture shown in the diagram above):

Example

PUT http://192.168.0.1:18681/PCCIS/V1/Service/Properties/Servers {
 "servers": [
 {
 "address": "192.168.0.1",
 "port": "18682"
 },
 {
 "address": "192.168.0.2",
 "port": "18682"
 },

PrizmDoc Viewer v13.17 367

©2021 My Company. All Rights Reserved.

 {
 "address": "192.168.0.3",
 "port": "18682"
 }
]
}

This request would be repeated for the remaining two PrizmDoc Servers, the only change being the port specified in
the HTTP request.

If the network.clustering.servers value was set in the Central Configuration file during the configuration
step, the list of servers will automatically be initialized to this list on start-up. It may still be overridden by a HTTP PUT
request to the Cloud Entry Point, but will initialize to the configured value again on subsequent start-ups unless the
network.clustering.servers value is changed in the Central Configuration file.

Step 3 - Scaling

When PrizmDoc Servers are added or removed from the node, it is important that the list of servers held by each
Cloud Entry Point is updated to reflect the servers that are actually active. Otherwise, requests will begin failing when
routed to a server that does not exist, and new servers will not receive their fair share of new requests because not
every PrizmDoc Server in the node is aware of them.

Keeping the server lists updated is a matter of repeating the requests described in the Start-up section above, only
with updated JSON data that includes the new list of active servers.

Optimize Cache Performance for Cluster Mode

Introduction
Viewing Session resources require a number of conversions to create content that is suitable for viewing. Caching the
converted content plays a large role in the performance of the PrizmDoc Server when handling requests for a Viewing
Session. In single-server mode, caching is the most optimized because all converted content is available to the
PrizmDoc Services on that server. As requests for new viewing sessions are received, the new documents are examined
to locate existing content that may already be created if the same document was used in a previous viewing session.

In cluster mode, the PrizmDoc Services on each server maintain their own cache data, separate from other PrizmDoc
Servers. Cache data is not shared across servers. Because of this, the effort to convert the same document will likely be
duplicated on multiple PrizmDoc Servers if you have a situation where users are frequently viewing the same
document more than once.

To counteract this side-effect of cluster mode, the PrizmDoc Services provide a way to increase the chances that a
request for a new viewing session will be sent to the same PrizmDoc Server that may have already converted the same
document. This is done by providing a "hint" value in a HTTP header of the request to create new viewing sessions.
Below is an example request that sets this header:

Example

POST http://192.168.0.1:18681/PCCIS/V1/ViewingSession Accusoft-Affinity-Hint: my-
unique-document-name.docx
{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {

PrizmDoc Viewer v13.17 368

©2021 My Company. All Rights Reserved.

 "alwaysUseRaster": false
 }
 }
}

The Accusoft-Affinity-Hint header should only be specified in the HTTP request that creates a new viewing session.

It is important to note that the value used in this header should uniquely identify the document. A document name or
a unique ID from a database are good options. Using the same value for documents that are not identical will
unbalance the requests across the PrizmDoc Servers as it will cause a single server to be favored for all requests that
contain the same hint value.

Note that the Accusoft-Affinity-Hint header is unnecessary when creating a viewing session through the PAS API.
Refer to the PAS Services Cluster Environments topic for more information on cache optimization for PAS.

Affinity Tokens & Cluster Mode

Introduction
This topic covers requests for work files, markup burners, redaction creators, and content converters that require
affinity tokens.

In cluster mode only, requests for WorkFile, MarkupBurner, RedactionCreator, and ContentConverter resources
require an additional bit of data, called an affinity token, to ensure they are routed correctly by the Cloud Entry
Point (CEP). The affinity token is a Base64 encoded string that contains encrypted information necessary to route
related requests to the same PrizmDoc Server. Getting related requests to the same server is critical as the
necessary data is cached locally.

In cluster mode, the PrizmDoc Server API will automatically generate an affinity token when it receives a POST
request for a new ViewingSession, WorkFile, MarkupBurner, RedactionCreator or ContentConverter resource and
return it in the response. Once you have obtained an affinity token, you will need to pass this in with related
requests using the "Accusoft-Affinity-Token" HTTP custom header. In the case of a ViewingSession, the affinity
token is only required when retrieving or setting the source document WorkFile ID for that session.

The following example request and response sequence demonstrates how an affinity token is used to burn markup
into a document. Notice how all requests, (except the first request), use the same affinity token even for
subsequent POST requests.

Example

// 1. Create first work file, the source PDF document to burn-in markup. POST
http://192.168.0.1:18681/PCCIS/V1/WorkFile?FileExtension=pdf Content-Type:
application/octet-stream
[binary data]
200 OK
Content-Type: application/json
{
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 2. Create the second work file, the XML markup to burn-in.
// Pass in the affinity token generated from the previous request so that this
// XML data is stored on the same PCC server. POST
http://192.168.0.1:18681/PCCIS/V1/WorkFile?FileExtension=xml Accusoft-Affinity-
Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
Content-Type: application/xml

PrizmDoc Viewer v13.17 369

©2021 My Company. All Rights Reserved.

[xml data]
200 OK
Content-Type: application/json
{
 "fileId": " o1bLJwFGxf9QGuTkyrOqig",
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 3. Create the markup burner resource, again on the same PCC server where we
created
// the work files in the previous requests. POST
http://192.168.0.1:18681/PCCIS/V1/MarkupBurner Content-Type: application/json
Accusoft-Affinity-Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
{
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": "o1bLJwFGxf9QGuTkyrOqig"
 }
}
200 OK
Content-Type: application/json
{
 "processId": "Rr64ma-U_HseoPrs6y0iiw",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": " o1bLJwFGxf9QGuTkyrOqig"
 },
 "state": "processing",
 "percentComplete": 0,
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 4. Get status of markup burning process until state is "complete". GET
http://192.168.0.1:18681/PCCIS/V1/MarkupBurner/Rr64ma-U_HseoPrs6y0iiw Accusoft-
Affinity-Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
200 OK
Content-Type: application/json
{
 "processId": "Rr64ma-U_HseoPrs6y0iiw",
 "expirationDateTime": "2014-12-03T18:30:49.460Z",
 "input": {
 "documentFileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "markupFileId": " o1bLJwFGxf9QGuTkyrOqig"
 },
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "documentFileId": "5ufb3ytUb1BxxgSUAk_G9Q"
 },
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 5. Get the burned document once the markup burning process is complete GET
http://192.168.0.1:18681/PCCIS/V1/WorkFile/5ufb3ytUb1BxxgSUAk_G9Q Accusoft-
Affinity-Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
200 OK
Content-Type: application/pdf
[binary data]

Likewise, the following request and response sequence demonstrates how an affinity token is used in a content
conversion workflow:

PrizmDoc Viewer v13.17 370

©2021 My Company. All Rights Reserved.

Example

// 1. Create first work file, the source PDF document to be converted. POST
http://192.168.0.1:18681/PCCIS/V1/WorkFile?FileExtension=docx Content-Type:
application/octet-stream
[binary data]
200 OK
Content-Type: application/json
{
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 2. Create the content converter process. Pass in the affinity token generated
// from the previous request so that resource is stored on the same PCC
server. POST http://192.168.0.1:18681/v2/contentConverters Accusoft-Affinity-
Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
{
 "input": {
 "src": {
 "fileId": 5qTYa3gzN9gYUb5SzqUhqg
 },
 "dest": {
 "format": "pdf"
 }
 }
}
200 OK
Content-Type: application/json
{
 "input": {
 "src": {
 "fileId": 5qTYa3gzN9gYUb5SzqUhqg
 },
 "dest": {
 "format": "pdf" ",
 "pdfOptions: {
 "forceOneFilePerPage": false
 }
 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "E1kNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 3. Get status of content conversion process until state is "complete". GET
http://192.168.0.1:18681/v2/contentConverters/E1kNzWtrUJp4rXI5YnLUgw Accusoft-
Affinity-Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
200 OK
Content-Type: application/json
{
 "input": {
 "src": {
 "fileId": 5qTYa3gzN9gYUb5SzqUhqg
 },
 "dest": {
 "format": "pdf",
 "pdfOptions: {
 "forceOneFilePerPage": false
 }

PrizmDoc Viewer v13.17 371

©2021 My Company. All Rights Reserved.

 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "E1kNzWtrUJp4rXI5YnLUgw",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "KOrSwaqsguevJ97BdmUbXi",
 "src": [{ "fileId": 5qTYa3gzN9gYUb5SzqUhqg, "pages": 1-3" }]
 }
]
 }
 "affinityToken": "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="
}
// 4. Get the converted document once the content conversion process is complete
GET http://192.168.0.1:18681/PCCIS/V1/WorkFile/KOrSwaqsguevJ97BdmUbXi Accusoft-
Affinity-Token: rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=
200 OK
Content-Type: application/pdf
[binary data]

Start & Stop PrizmDoc Server
This section contains the following information:

Linux
Windows

Linux

Introduction
The included script ./scripts/pccis.sh can be used to start and stop the Watchdog service, which will bring up the
PrizmDoc Server as defined in the configuration files. The following examples assume the default install location. If
you did not install it to the default location, replace /usr/share/prizm with the location to which you installed it.

Start
Example

/usr/share/prizm/scripts/pccis.sh start

Stop
Example

PrizmDoc Viewer v13.17 372

©2021 My Company. All Rights Reserved.

/usr/share/prizm/scripts/pccis.sh stop

Adding PCCIS to the Boot Sequence
You can also configure PCCIS to be started / stopped together with the system in 2 steps:

1. Create a symbolic link to the ./scripts/pccis.sh in /etc/init.d/ directory:

Example

ln -s /usr/share/prizm/scripts/pccis.sh /etc/init.d/pccis

2. Register PCCIS as an init script, so that it is managed by the system. This step is platform-dependent.

RedHat / CentOS

Example

chkconfig --add pccis

Ubuntu

Example

update-rc.d pccis defaults

Once done, the system should stop PCCIS, when going to reboot (runlevel 6) or shutdown (runlevel 0). It will also
not be started, when booting in single-user mode (runlevel 1 - usually used for system recovery). PCCIS will be
started in all other cases (runlevels 2 - 5).

TIP: Normally, there shouldn’t ever be a need to change these defaults, but in case there is, you can use
the mentioned commands to adjust the order of executing relative to other init scripts as well as
runlevel manually:

Example

update-rc.d pccis start|stop NN runlvl [runlvl] [...]
chkconfig [--level <levels>] <name> <on|off|reset|resetpriorities>

TIP: After the first step, you can use the service command to manage PCCIS instead of invoking the
script directly. That way even if you don’t need PCCIS to be automatically started / stopped, you may
want to complete the first step to be able to more easily manage it. The syntax is a follows:

Example

PrizmDoc Viewer v13.17 373

©2021 My Company. All Rights Reserved.

service pccis start|stop|restart|status

Excluding PCCIS from the Boot Sequence
If you want to prevent PCCIS from starting / stopping together with the system, you need to revert Step 2 from the
section above. It is done as follows:

RedHat / CentOS

Example

chkconfig --del pccis

Ubuntu

Example

update-rc.d -f pccis remove

Windows

Method 1: From the Windows Service
On Windows, the PrizmDoc Server should ideally be started/stopped from the Windows service management console.
As part of the PrizmDoc Server installation, the service should be configured to start automatically. If you need to
start, stop, or restart, use the following instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type services.msc.
4. Press Enter.
5. Find Prizm in the list of services, and right-click on the service to access the context menu.
6. To Start the Service: Click Start and wait for the service to start. The status should update to "started" (this

option will only be available if the service is not running).
7. To Stop the Service: Click Stop in the right-click menu and wait for the service control dialog. The status will be

updated to be blank (this option will only be available if the service is already started).
8. To Restart the Service: Click Restart and wait for the service control dialog (this option will only be available if

the service is already started).
9. Click Start > Run.

10. Type inetmgr.
11. Press Enter.
12. Find PrizmDoc Web Site under Sites in the tree view to the left.
13. Select that node and find options to start/stop/restart in the pane to the right.

PrizmDoc Viewer v13.17 374

©2021 My Company. All Rights Reserved.

Method 2: From the Command Line
If access to the control panel is not available, services can also be started/stopped from the command line using the
following commands:

Example

net start Prizm
net stop Prizm

Service Logs
The Prizm Windows service will log certain status messages to the Windows Event Log. These messages can be helpful
in diagnosing problems while starting and stopping the service. To view the Windows Event Log, use the following
instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type eventvwr.
4. Press Enter.
5. Expand Applications and Services Logs.
6. Click Prizm.

PrizmDoc Application Services
This section contains the following information:

Server Sizing
Installing

Using Docker
Install on Windows

Windows Requirements & Supported Environments
Unattended Install & Uninstall

Installing with Traditional Linux Install Packages (deprecated)
Requirements & Supported Environments for Traditional Linux Install Packages
Uninstall Traditional Linux Install Packages

Check the Connection to PrizmDoc Server
Configuring

PAS Configuration
PAS Database Administration & Maintenance
How & When to use CORS

Clustering
Optimize Cache Performance for Cluster Environments
Run PAS on Clusters

Starting & Stopping
Linux
Windows

Server Sizing

PrizmDoc Viewer v13.17 375

©2021 My Company. All Rights Reserved.

Introduction
The PrizmDoc Application Service (PAS) can run on a wide variety of server configurations. It will automatically scale
to utilize available cores, and payload data is streamed as much as possible to reduce RAM usage. It is typically
external dependencies like the PrizmDoc Server, which PAS uses for process-heavy conversions that can affect its
perceived responsiveness.

PAS may also be configured to run on multiple servers. This, combined with modest hardware requirements, means
that smaller, low-cost servers can be used and scaled horizontally (more servers are added) when additional
capacity is needed.

Network Throughput

Many requests handled by PAS will result in a HTTP request to PrizmDoc Server. If PAS and PrizmDoc Server are
hosted on separate servers, it is important to have good network throughput between nodes for optimal
performance.

Example Server Configurations
The following minimum requirements can reasonably support 500 native PAS requests per second. A native PAS
request is one that PAS handles entirely and does not depend on a supporting resource like PrizmDoc Server to
fulfill the request.

Minimum Requirements

Logical Cores: 1
Memory: 0.5 GB (Linux) / 1 GB (Windows)
Drive Type: SSD
AWS: t2.nano (Linux) / t2.micro (Windows)

Suggested Requirements

Logical Cores: 2
Memory: 4 GB (Linux) / 8 GB (Windows)
Drive Type: SSD
AWS: t2.medium (Linux) / t2.large (Windows)

Additional Considerations for Pre-Conversion Services
When enabling the Viewing Packages feature, there are additional considerations for hardware requirements. This
feature requires a database and will cause PAS to make additional HTTP requests to PrizmDoc Server, increase Disk
IO, and execute queries against the database.

Network Throughput

If the database is hosted on a separate server, it is important to have good network throughput between nodes for
optimal performance.

File Storage

PAS will use the file system to store all artifacts of a viewing package which increases the amount of storage
needed by the service. The amount of storage needed is very closely tied to the number of active viewing packages
and the types of documents being viewed. For example, a viewing package of a 100 page document requires
several times the storage that a 1 page document needs. Likewise, a document page that contains drawings and

PrizmDoc Viewer v13.17 376

©2021 My Company. All Rights Reserved.

images will consume more storage than a page with just text. Testing with a representative set of sample
documents is recommended to understand the file storage requirements of a specific application.

Database

PAS will store various bits of metadata about each viewing package in the configured database. The total amount
of data stored for a viewing package in the database partly depends on the number of pages in the source
document. However, the metadata size is not currently affected by the content of individual pages. Again, testing
with a representative set of sample documents is recommended.

Example Server Configurations
The following minimum requirements can reasonably support 5 simultaneous viewing package creation processes
per logical core. However, viewing package creation is heavily dependent on PrizmDoc Server for generating
content. As PAS instances are scaled up, the supporting PrizmDoc Server instances must be scaled up appropriately
to avoid overloading them. Additionally, the overall number of simultaneous viewing package creation processes
should be throttled to avoid overburdening the system.

Minimum Requirements

Logical Cores: 2
Memory: 4 GB (Linux) / 8 GB (Windows)
Drive Type: SSD
AWS: t2.medium (Linux) / t2.large (Windows)

Suggested Requirements

Logical Cores: 2
Memory: 8 GB
Drive Type: SSD
AWS: m4.large

Installing
This section covers how to deploy an instance of PAS:

Using Docker
Installing on Windows

Windows Requirements & Supported Environments
Unattended Install & Uninstall

Installing with Traditional Linux Install Packages (deprecated)
Requirements & Supported Environments for Traditional Linux Install Packages
Uninstall Traditional Linux Install Packages

Checking the Connection to PrizmDoc Server

Using Docker

Using Docker
This section explains how to deploy a PAS instance using the official PAS docker image, available on Docker Hub as
accusoft/prizmdoc-application-services.

PrizmDoc Viewer v13.17 377

©2021 My Company. All Rights Reserved.

https://hub.docker.com/r/accusoft/prizmdoc-application-services

Note that PAS requires a connection to PrizmDoc Server. For the rest of this section, we assume that you already
have a PrizmDoc Server instance or tier deployed. If that's not the case, you might be interested in our Minimal
Backend Quick Start which explains how you can quickly deploy a single instance of PAS and PrizmDoc Server
together.

Requirements
To run PAS as a Docker container, you simply need a Docker host (a machine with Docker installed). See the Docker
documentation for more information.

1. Create a PAS config file
Before you can run PAS, you'll need a config file. We've included a special init-config command in our Docker
image which you can use to create an initial config file.

Windows (PowerShell)

First, make sure you've created a config directory on your host file system. This will be the directory where your
new config file will be created:

mkdir config

Then, use the Docker image's init-config command to create a new PAS config file:

docker run --rm -e ACCEPT_EULA=YES --volume $pwd/config:/config
accusoft/prizmdoc-application-services init-config

This will create a new PAS config file on your Windows host filesystem at .\config\pcc.nix.yml.

Linux (bash)

Use the Docker image's init-config command to create a new PAS config file:

docker run --rm -e ACCEPT_EULA=YES --volume $(pwd)/config:/config
accusoft/prizmdoc-application-services init-config

This will create a new PAS config file on your host filesystem at ./config/pcc.nix.yml.

2. Customize your PAS config file
You will need to customize the contents of the pcc.nix.yml file for your PAS deployment.

NOTE: On a Linux system, because the config file was created by a Docker container, you will need to
either edit the config file as root or change the owner of the file before editing it.

Typically, you need to:

Change the secretKey to your own value (see PAS Configuration for more information).

PrizmDoc Viewer v13.17 378

©2021 My Company. All Rights Reserved.

https://docs.docker.com/
https://docs.docker.com/

Configure your connection to PrizmDoc Server by updating the pccServer properties:

 pccServer.hostName: your-prizmdoc-server-host
 pccServer.port: 18681
 pccServer.scheme: http

Configure your storage options.

For more information, see PAS Configuration.

3. Start PAS
Assuming you have configured PAS to run on port 3000 and use ./config, ./logs, and ./data directories, you
can start PAS like so:

Windows (PowerShell)

First, create directories for logs and data:

mkdir logs
mkdir data

Then, start a pas container:

docker run --rm --env ACCEPT_EULA=YES --publish 3000:3000 --volume
$pwd/config:/config --volume $pwd/logs:/logs --volume $pwd/data:/data --name pas
accusoft/prizmdoc-application-services

Linux (bash)

Start a pas container like so:

docker run --rm --env ACCEPT_EULA=YES --publish 3000:3000 --volume
$(pwd)/config:/config --volume $(pwd)/logs:/logs --volume $(pwd)/data:/data --
name pas accusoft/prizmdoc-application-services

In the examples above:

--rm ensures the container is automatically deleted when it stops.
--env ACCEPT_EULA=YES indicates you have accepted the PrizmDoc Viewer license agreement.
--publish 3000:3000 publishes the container's port to the host. This assumes PAS was configured to
use port 3000. If you have configured PAS to use a different port, adjust accordingly.
--volume $(pwd)/config:/config maps a host config directory into the container. Your local config
directory must contain the pcc.nix.yml config file created earlier.
--volume $(pwd)/logs:/logs maps a local logs directory into the container. After the container stops,
the logs will remain in this directory.
--volume $(pwd)/data:/data maps a local data directory into the container. After the container stops,

PrizmDoc Viewer v13.17 379

©2021 My Company. All Rights Reserved.

--volume $(pwd)/data:/data maps a local data directory into the container. After the container stops,
the data will remain in this directory and can be used again when restarting the container.
--name pas sets the name of the running container.
accusoft/prizmdoc-application-services is the image that should be run.

If you want to start the Docker container in the background, add the -d option to docker run to run the
container in disconnected mode.

4. Check PAS health
After starting PAS, GET http://localhost:3000/health should return HTTP 200, indicating PAS is healthy. If
you visit this URL in a browser, you should see "OK" in the body of the page.

Windows (PowerShell)

Invoke-WebRequest -Uri http://localhost:3000/health

Should output something like:

StatusCode : 200
StatusDescription : OK
Content : {79, 75}
RawContent : HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Length: 2
 Date: Thu, 21 Nov 2019 17:49:35 GMT

 OK
Headers : {[Connection, keep-alive], [Content-Length, 2], [Date, Thu,
21 Nov 2019 17:49:35
 GMT]}
RawContentLength : 2

Linux (bash)

curl -i http://localhost:3000/health

Should output something like:

HTTP/1.1 200 OK
Date: Wed, 20 Nov 2019 20:00:39 GMT
Connection: keep-alive
Content-Length: 2

OK

5. Check PAS's connection to PrizmDoc Server

PrizmDoc Viewer v13.17 380

©2021 My Company. All Rights Reserved.

After starting PAS, GET http://localhost:3000/servicesConnection should return HTTP 200, indicating
PAS is configured correctly to make requests to PrizmDoc Server. If you visit this URL in a browser, you should see
"OK" in the body of the page.

Windows (PowerShell)

Invoke-WebRequest -Uri http://localhost:3000/servicesConnection

Should output something like:

StatusCode : 200
StatusDescription : OK
Content : {79, 75}
RawContent : HTTP/1.1 200 OK
 Connection: keep-alive
 Content-Length: 2
 Date: Thu, 21 Nov 2019 17:50:11 GMT

 OK
Headers : {[Connection, keep-alive], [Content-Length, 2], [Date, Thu,
21 Nov 2019 17:50:11
 GMT]}
RawContentLength : 2

Linux (bash)

curl -i http://localhost:3000/servicesConnection

Should output something like:

HTTP/1.1 200 OK
Date: Wed, 20 Nov 2019 20:00:39 GMT
Connection: keep-alive
Content-Length: 2

OK

5. Stopping the container
You can stop your named container with:

docker stop pas

Install on Windows

PrizmDoc Viewer v13.17 381

©2021 My Company. All Rights Reserved.

Installing PAS on Windows
PAS is delivered as part of the "PrizmDoc Client" installer. If you have questions about requirements before
installing, refer to the System Requirements & Supported Environments topic.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the
new license.

To install PAS, follow these steps:

1. Download the "PrizmDoc Client" installer from the website.

2. Double-click on the PrizmDocClient-xx application file to launch the installer (where xx represents the
version). Click Install PrizmDoc Client.

3. Carefully read the information contained in the License Agreement form before making a decision to accept
the terms of the agreement. Choose I accept the terms in the License Agreement to accept the conditions
outlined in the License Agreement and then click Next to continue the installation (or click Cancel to exit
the installation process).

4. The Select Features dialog is displayed. The Select Features dialog allows you to define what components of
PrizmDoc Viewer you want to install:

Legacy Samples – Installs various legacy samples.
PAS (PrizmDoc Application Services) - Installs PAS.
Configure ASP.NET Samples with IIS - This option is only available if both IIS and ASP.NET 4.0+ are
present.

Re-register ASP.net 4.0 with IIS - This option is only available if both IIS and ASP.NET 4.0+ are
present.

Once you have made your selections, click Next to continue.

5. If you are installing the PAS (PrizmDoc Application Services), you have the option to enter the PrizmDoc
Viewer server address to test the connection. The default PrizmDoc Server address is shown in the text
field. You may also skip this step, and configure the server address manually later on.

Enter the server address for your PrizmDoc Server into the text field provided. Click Test to verify access to
your PrizmDoc Server.

A valid URL for the PrizmDoc Server will include http or https, a domain name, and a port number.

Click Next to continue the installation.

6. The Installation Path dialog is displayed. Specify the destination directory where the Viewer should be
installed, or choose the default installation destination directory, then click Next.

7. The Account Information dialog is displayed. Here you define the Windows user account that will be used to
run PAS.

During installation, when specifying a Windows user account for PAS, you MUST choose a user which has
Administrator privileges. Otherwise, the installation will fail.

8. Once you have entered in all of the appropriate information, click Install to continue.

9. Once installation is done, click Finish to exit the Installer.

10. Go to Check the Connection to PrizmDoc Server to make sure PAS is correctly connected to PrizmDoc
Server.

PrizmDoc Viewer v13.17 382

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/

Windows Requirements & Supported Environments

PAS Windows Requirements & Supported Environments
PAS is only supported on 64-bit operating systems. PAS requires significant network throughput and disk I/O, but very
little processing power.

Supported Operating Systems
NOTE: When using Windows Server 2016 or Windows Server 2019, you must use the Desktop Experience
version. The core version doesn't contain the components needed for PrizmDoc.

Windows Server 2012, 2012 R2
Windows Server 2016, 2019 with Desktop Experience

Hardware Requirements
Requirements vary greatly based on usage and it is generally a good idea to find what best fits your expected usage.
The Sizing Guide is a good place to start understanding what resources PAS uses and how to optimize them for your
needs.

Unattended Install & Uninstall

Unattended Installation of PAS on Windows
PAS is delivered as part of the "PrizmDoc Client" installer. This installer can be run unattended.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the new
license.

There are two required properties:

ServiceUser - Required. Windows account which the PAS service should be run with. Must be in the format
DOMAIN\USER.
ServicePassword - Required. Password for ServiceUser.

There are several optional properties:

InstallFolder - Base installation directory for the product. Default is "C:\Prizm".
SelectedClientFeatures - Features to install. Can be either empty or a comma-separated list of values
containing any of the following:

"HTML5Viewer"
"LocalFileViewerFeature"

IISConfigureSamples - Whether to configure the samples with IIS or not. Set to "1" for yes and set to an
empty string for no. Default is "1".
IISReregister - Whether to re-register ASP.NET v4 with IIS or not. Set to "1" for yes and set to an empty
string for no. Default is "1".
SelectedPASFeatures - Can be set to "ALL" to include PAS features or set to an empty string to not
include them. Default is "ALL".

PrizmDoc Viewer v13.17 383

©2021 My Company. All Rights Reserved.

Finally, you can also specify how PAS should connect to PrizmDoc Server. If you do, you must provide all three of the
following properties:

PrizmScheme - PrizmDoc Server protocol. Value may be either "HTTP" or "HTTPS".
PrizmHost - PrizmDoc Server hostname or IP address.
PrizmPort - PrizmDoc Server port.

Installing with Traditional Linux Install Packages (deprecated)
DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages for direct
installation on a Linux host, these have largely become obsolete now that Docker deployment is an option. We
have announced deprecation of our traditional Linux install packages and, in a future product release, we
intend to only offer our Docker-based deployment option. The rest of this topic applies to traditional Linux install
packages only.

PAS is delivered as part of the "PrizmDoc Client" installation package (available as deb, rpm, and generic Linux).

Some steps are specific to a particular Linux distribution; these steps will be labeled as being specific to one of the following:

Red Hat / CentOS Linux Distributions
Ubuntu Linux Distributions

If you have questions about requirements before installing, refer to the System Requirements & Supported Environments
topic.

NOTE: Make sure you log in as root to the machine.

NOTE: If you have an updated license, you must re-start PAS and PrizmDoc Server in order to use the new license.

Step 1 - Download the "PrizmDoc Client" Installation Package Appropriate for Your Linux Distribution

NOTE: Packages are only available for 64-bit systems.

1. Download PrizmDoc Client from the website by selecting the desired Linux Distribution.

OR

2. Download directly to the Linux server using the 'wget' command for the specific distribution as shown below:

NOTES:

1. You must substitute the version of the package you are using in the code examples below. For example, if you are
using v13.8, then specify "13.8" instead of "<version>". If the version is a hot fix, you will also need to specify the hot fix
number, for example, "13.8.1".

2. Instructions assume that one already has 'wget' installed on the server OS.

Red Hat Enterprise Linux / CentOS v7 and Later

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_client_<version>.x86_64.rpm.tar.gz

Ubuntu

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_client_<version>.amd64.deb.tar.gz

PrizmDoc Viewer v13.17 384

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/products/prizmdoc-suite/

Generic .tar.gz

wget
http://products.accusoft.com/PrizmDoc/<version>/prizmdoc_client_<version>.x86_64.tar.gz

Step 2 - Unpack & Install the Downloaded Archive

Open a command line and change to the location where you downloaded the tarball. Use the following command line
examples appropriate for your distribution to:

1. Decompress and unpack the downloaded file. After you have unpacked the archive, the contents will have been
decompressed into a directory named prizmdoc_client_<version>.<arch>[.rpm|.deb].

2. Change to the unpacked directory and install the packages.

Red Hat, CentOS, and Older Linux Distributions

 tar -xzvf prizmdoc_client_*.rpm.tar.gz
 cd prizmdoc_client_*.rpm
 yum install --nogpgcheck *.rpm

Ubuntu

 tar -xzvf prizmdoc_client_*.deb.tar.gz
 cd prizmdoc_client_*.deb
 sudo dpkg -i *.deb
 # 'dpkg' does not resolve dependencies automatically, so please ignore possible
errors, if you did not install required dependencies yet, and invoke next commands
 sudo apt-get update
 sudo apt-get -f install

Generic .tar.gz Distribution

We also provide a generic .tar.gz package. Please review the System Requirements and Supported Environments topic
to ensure compatibility. You will also need to install the dependencies described in the Requirements section. Once
the dependencies are installed, you can install the .tar.gz with the following commands as root:

 tar -xzvf prizmdoc_client_*.tar.gz
 cd prizmdoc_client_*
 ls prizm-*.tar.gz | xargs -n1 tar zxf
 cp -R prizm /usr/share/

3. Go to the Samples topic for instructions on how to configure the connection between:

Your Viewer web tier and PAS and,
between PAS and PrizmDoc Server.

Step 3 (Optional) - Add PAS to the Boot Sequence

You can configure PAS to start/stop together with the system in two steps:

PrizmDoc Viewer v13.17 385

©2021 My Company. All Rights Reserved.

1. Create a symbolic link to ./pas/pm2/pas.sh in the /etc/init.d/ directory:

ln -s /usr/share/prizm/pas/pm2/pas.sh /etc/init.d/pas

2. Register PAS as an init script, so that it is managed by the system. This step is platform-dependent.

Red Hat, Fedora, CentOS, and Older Linux Distributions

chkconfig --add pas

Ubuntu

update-rc.d pas defaults

Once this is done, the system should stop PAS when going to reboot or shutdown, and will be started again when booting the
server.

Excluding PAS from the Boot Sequence

If you want to prevent PAS from starting/stopping together with the system, you need to revert Step 2 from the section
above. This can be performed as follows:

Red Hat, Fedora, CentOS, and Older Linux Distributions

chkconfig --del pas

Ubuntu

update-rc.d -f pas remove

Requirements & Supported Environments for Traditional
Linux Install Packages

DEPRECATION NOTICE: While we currently continue to offer and support traditional Linux packages for
direct installation on a Linux host, these have largely become obsolete now that Docker deployment is an
option. We have announced deprecation of our traditional Linux install packages and, in a future
product release, we intend to only offer our Docker-based deployment option. The rest of this topic applies
to traditional Linux install packages only.

PAS requires significant network throughput and disk I/O, but very little processing power.

Hardware Requirements
Requirements vary greatly based on usage and it is generally a good idea to find what best fits your expected usage.

PrizmDoc Viewer v13.17 386

©2021 My Company. All Rights Reserved.

The Sizing Guide is a good place to start understanding what resources PAS uses and how to optimize them for your
needs.

Supported Linux Distributions
64-bit editions of:

CentOS 7
Red Hat Enterprise Linux 7
Ubuntu 18.04 LTS

Uninstall Traditional Linux Install Packages
NOTE: This topic applies to traditional Linux install packages only.

To uninstall PAS from your Linux system, perform the following steps:

Make sure you log in as root to the machine.

1. Stop the service, depending upon where you installed. This will usually be:

/usr/share/prizm/pas/pm2/pas.sh stop

2. Next remove the installed files:

Ubuntu:

apt-get remove prizm-contentconnect prizm-pas

Red Hat/CentOS:

yum remove prizm-contentconnect prizm-pas

Generic Package:

rm -rf /usr/share/prizm/LocalFileViewer
rm -rf /usr/share/prizm/Samples/Documents
rm -rf /usr/share/prizm/Samples/FormDefinitions
rm -rf /usr/share/prizm/Samples/imageStamp
rm -rf /usr/share/prizm/Samples/jsp
rm -rf /usr/share/prizm/Samples/markup
rm -rf /usr/share/prizm/Samples/markupLayerRecords
rm -rf /usr/share/prizm/Samples/viewingPackages
rm -rf /usr/share/prizm/viewer
rm -rf /usr/share/prizm/pas

NOTE: There may be temporary files left behind, like log and cache files, because they are not part of the
installation packages. You may leave the temporary files or review them before deleting them.

PrizmDoc Viewer v13.17 387

©2021 My Company. All Rights Reserved.

Check the Connection to PrizmDoc Server
PAS has a simple URL that you can use to verify the connection to PrizmDoc Server:

1. On the machine where you installed PAS, open your web browser and navigate to
http://localhost:3000/servicesConnection. If you have changed the default port from 3000, use
the correct port for your instance of PAS.

2. If the connection is active, you will see OK on the page:

If the connection is not available, you will see a blank screen:

To troubleshoot connection issues between the Viewer and the backend, look at one of the following sections,
depending on whether you have a self-hosted backend or PrizmDoc Cloud backend.

Troubleshoot Connection Issues to Self-Hosted Backend
If there is an issue with your connection, there are a few steps you can take to troubleshoot:

1. Locate your PrizmDoc Application Services (PAS) config file. Assuming the standard install location would
be C:\Prizm\pas\pcc.win.yml on Windows and /usr/share/prizm/pas/pcc.nix.yml on Linux.

2. Look at the values set for the pccServer.hostName, pccServer.port, and pccServer.scheme to confirm they
are correct:

pccServer.hostName should specify the machine where you installed PrizmDoc Server.
pccServer.port should specify the port that PrizmDoc Server is using, which is 18681 by default for
both single-server mode and cluster mode. If the settings are not correct, update them and try again.

3. If the values for these parameters are correct, try restarting PAS. Refer to Starting & Stopping PAS for
instructions, and try again.

If you are still unable to verify your connection to PrizmDoc Server, please contact Accusoft Support.

Troubleshoot Connection Issues to PrizmDoc Cloud Backend
If there is an issue with your connection, there are a few steps you can take to troubleshoot:

1. Locate your PrizmDoc Application Services (PAS) config file. Assuming the standard install location, this
would be C:\Prizm\pas\pcc.win.yml on Windows and /usr/share/prizm/pas/pcc.nix.yml on Linux.

2. Look at the values set for the pccServer.hostName, pccServer.port, and pccServer.scheme to ensure the

PrizmDoc Viewer v13.17 388

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/support/

following (the pccServer.apiKey should be set to your API key):

pccServer.hostName: "api.accusoft.com"
pccServer.port: 443
pccServer.scheme: "https"

3. If the values for these parameters are correct, try restarting PAS. Refer to Starting & Stopping PAS for
instructions, and try again.

If you are still unable to verify your connection to the PrizmDoc Cloud, please contact Accusoft Support.

Configuring
This section covers common configuration options that you, as a PrizmDoc Viewer admin, will want to consider for
PAS:

PAS Configuration - Configuration options for finding documents, storing logs, and connecting to a database.
PAS Database Administration & Maintenance - Information on configuring PAS to communicate with your
database.
How & When to use CORS - Steps for configuring PAS to enable CORS.

PAS Configuration

PrizmDoc Application Services Configuration
The PrizmDoc Application Services (PAS) use a central configuration file to determine, among other things, where
to find documents, where to store logs and how to connect to a database.

Note that PrizmDoc Cloud uses a specific default value that differs from the self-hosted default value:
defaults.viewingSessionTimeout is 5h. This is the only value that differs between PrizmDoc Cloud and self-
hosted for PAS configuration.

Configuration File Location
On Windows, assuming a default installation, the configuration file is located at C:\Prizm\pas\pcc.win.yml.

On Linux, assuming a default installation, the configuration file is located at
/usr/share/prizm/pas/pcc.nix.yml.

Default Configuration
Among other things, the config file includes the port, secretKey, logs.path,
defaults.viewingSessionTimeout, and defaults.viewingPackageLifetime properties.

port defines the port that PAS will use to listen to its HTTP connection.

secretKey defines a shared secret value which must be provided in requests to critical PAS REST API routes
(typically non-GET routes that modify data). If you host your PAS server on the public internet, callers must provide
this value via an Accusoft-Secret request header in order for many of the REST API routes to function. To keep
your application as secure as possible, we strongly recommend you change the default value of this
property to a unique string that only your application uses.

logs.path determines the location on the local filesystem where the logs for PAS will be stored.

PrizmDoc Viewer v13.17 389

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/support/

defaults.viewingSessionTimeout is the length of time that a viewing session remains usable. For example,
"20m" indicates viewing sessions will timeout after 20 minutes.

defaults.viewingPackageLifetime is the minimum time for the created viewing package content to remain
available. If missing, the value is considered to be 24 hours. If set to 0, viewing package content will remain
available perpetually. This value could be overridden by the input.viewingPackageLifetime property in
individual viewingPackageCreators requests when starting a new viewing package creator process. This is a beta
feature that is not officially supported by Accusoft and its behavior can be changed at any time in a future version
of the product.

The value of the above two properties must be an integer, followed by "s", "m", "h", or "d". The suffixes stand for
second, minute, hour, or day, respectively. There should not be any space characters between the number and
suffix.

NOTE: For PrizmDoc Cloud, the default value for defaults.viewingSessionTimeout is 5h.

Configuring the PrizmDoc Server Connection
The connection to your desired PrizmDoc Server, whether Self-Hosted or Cloud, can be configured through the
pccServer object, which has the following properties:

pccServer.hostName - the hostname to use to connect to PrizmDoc Server.
pccServer.port - the port on the above hostname to connect to.
pccServer.scheme - the scheme to use to communicate with PrizmDoc Server. This can be set to http
or https.
pccServer.apiKey - the API Key that PAS should use if you are using the PrizmDoc Cloud Server. This
value will be ignored for a PrizmDoc Self-Hosted Server.

Configuring Storage
There are various data entities stored or accessed by PAS, as noted by comments in the config file. All of these can
be configured separately.

Each storage entity will have a name, such as documents or markupLayerRecords, and each named entity will
have a .storage property, such as documents.storage. This property defines the kind of storage that will be
used. The supported values are as follows:

"filesystem" - Store on the local filesystem or network attached storage that has been mapped to a
local drive or folder. For any data entity configured to be stored on the filesystem, the following additional
properties are required:

.path - Folder location where the data should be stored. On Windows, this can also include
environment variables. If these paths are changed from the default values, PrizmDoc must be granted
write permissions for them to function.

"database" - Store inside the configured database. See Configuring the database below for more details.
"s3" - Store files in S3 Buckets. For any data entity configured to be stored in S3 Buckets, the following
additional properties are required:

.s3BucketName - Name of the bucket that you would like to store the specified data entity type.
This bucket must be unique across all of Amazon S3 services and must be created in your S3
dashboard.
.path - Base “key” the data should be organized into. S3 uses keys as its directory structure. This
must have no starting / and no trailing /.

"azureBlobStorage" - This is a beta feature that stores files in Microsoft Azure Blob Storage. For any
data entity configured to be stored in Azure blob storage, the following additional properties are required:

.azureBlobStorageConnectionString - Connection string to the Microsoft Azure Blob

PrizmDoc Viewer v13.17 390

©2021 My Company. All Rights Reserved.

.azureBlobStorageConnectionString - Connection string to the Microsoft Azure Blob
Storage.
.azureBlobStorageContainerName - Name of the container in the Microsoft Azure Blob
Storage that you would like to store the specified data entity type.
.path - Sub-key of the .azureBlobStorageContainerName where the data should be stored.

The following table shows the storage entities and supported storage providers:

Storage Entity Storage Type

documents filesystem, s3, azureBlobStorage

markupXml filesystem, s3, azureBlobStorage

markupLayerRecords filesystem, s3, azureBlobStorage

formDefinitions filesystem, s3, azureBlobStorage

imageStamps filesystem, s3, azureBlobStorage

viewingPackagesData database

viewingPackagesProcesses database

viewingPackagesArtifacts filesystem, s3, azureBlobStorage

viewingPackagesArtifactsMetadata database

viewingSessionsData database

viewingSessionsProcessesMetadata database

NOTE: Not all storage entities are compatible with all storage providers. Checking for these values is
done on start up and an informative error will be logged to the PAS log, {installDir}/logs/pas, in the
case of a mismatch.

Additional S3 Notes:

You must handle Amazon Web Services credentials in one of the available ways that are provided on the following
pages:

Loading credentials in Node.js from IAM Roles for EC2:

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-iam.html

Loading credentials from a shared credentials file:

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-shared.html

Loading credentials from environment variables:

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-environment.html

Examples

documents.storage: "filesystem"
documents.path: "/usr/share/prizm/Samples/Documents"

PrizmDoc Viewer v13.17 391

©2021 My Company. All Rights Reserved.

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-iam.html
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-shared.html
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/loading-node-credentials-environment.html

documents.storage: "filesystem"
documents.path: "C:\\Docs\\Docs"

documents.storage: "filesystem"
documents.path: "\\\\servername\\sharename\\docs\\docs"

markupLayerRecords.storage: "filesystem"
markupLayerRecords.path: "%ALLUSERSPROFILE%\\Accusoft\\Prizm\\MarkupLayerRecords"

viewingPackagesData.storage: "database"

documents.storage: "s3"
documents.s3BucketName: "myS3Bucket"
documents.path: "Samples/Documents"

documents.storage: "azureBlobStorage"
documents.azureBlobStorageConnectionString: "AccountName=..."
documents.azureBlobStorageContainerName: "pas"
documents.path: "Documents"

NOTE: some data entities have limitations on the kind of storage that they can be stored in. If PAS is
misconfigured, it will not start correctly. It's best to keep a copy of the defaults so that you can revert
them if you need to.

Legacy Mode

Legacy Mode refers to being able to open markup files that were created using one of the Web Tier Samples
available before the release of PAS. To work correctly, it needs to be enabled on documents, markupXml, and
markupLayerRecords, as such:

documents.legacyMode: true
markupXml.legacyMode: true
markupLayerRecords.legacyMode: true

If you do not need this feature -- for example, if PAS is the first time you are using markup files -- you can turn this
off by setting all values to false, which will provide a small performance gain when working with the markup APIs.
Note that all markup files created by PAS itself, regardless of whether legacyMode was on or off, will be
compatible with PAS when legacyMode is off.

Feature Toggles
Some features in PAS are behind feature flags, and they can be turned on or off. This is done through the
feature.* options in the config file. The values can be set to:

PrizmDoc Viewer v13.17 392

©2021 My Company. All Rights Reserved.

enabled - turns the feature on
disabled - turns the feature off

You can also remove the specific feature configuration value altogether in order to observe the default behavior for
that feature. The list of features is:

viewingPackages - default: disabled - Enables Pre-Conversion Services and APIs, which allow you to
pre-convert documents and cache on-demand document views in PAS, improving the speed at which
documents can be viewed, as well as reducing the processing time in PrizmDoc Server for repeat document
views.

Example

feature.viewingPackages: enabled

Configuring the Database
IMPORTANT: A database is required in order to use Viewing Packages. This feature is disabled by
default and will need to be turned on. Without turning Viewing Packages on, PAS will not use a
database, or even check for its existence in the configuration.

PAS requires configuration to a database, allowing it to store some of its data there. It will not start correctly
without having a correctly configured and accessible database. The following config properties are available in PAS
to support that:

database.adapter - the type of database being used. The following values are supported:
sqlserver - Microsoft SQL Server
mysql - MySQL

database.connectionString - the connection string to the database.
For Microsoft SQL Server, you can use either a classic connection string or a URI-based connection
string.
For MySQL, you must use a URI-based connection string.

Microsoft SQL Server Examples

database.adapter: sqlserver
database.connectionString: "Server=tcp:prizm-
server.database.host,1433;Database=prizmdb;User ID=prizm-
user;Password=password;Encrypt=True"

database.adapter: sqlserver
database.connectionString: "mssql://prizm-user:password@prizm-
server.database.host:1433/prizmdb?encrypt=true"

MySQL Example

database.adapter: mysql
database.connectionString: "mysql://prizm-user:password@prizm-
server.database.host:3306/prizmdb"

PrizmDoc Viewer v13.17 393

©2021 My Company. All Rights Reserved.

Alternately, instead of specifying a database.connectionString, you can use the following older options to
connect to the database:

database.host - the hostname to use to communicate with the database.
database.port - the port to use to communicate with the database.
database.user - the user to use when connecting to the database.
database.password - the password for the specified user.
database.database - the database name to use on the database server.

But we strongly recommend you use database.connectionString instead as it is more flexible.

Configuring Cross-Origin Resource Sharing
While you can set up CORS quite easily through your web server, PAS also supports settings CORS headers directly.
It is exposed through the cors config object, as such:

cors.enabled - whether to set CORS headers. Supported values are true or false.
cors.allowedOrigins - an array of the exact origin values to support. Not including this value will cause
all CORS requests to be denied. This array will be used to determine the Access-Control-Allow-
Origin header.
cors.exposedHeaders (optional) - an array of headers keys to allow the browser to read. This value is
configured to include headers returned by PAS by default.

Example

cors.enabled: true
cors.allowedOrigins: ["http://example.com", "https://example.com"]

PAS Database Administration & Maintenance

Introduction
A database must be provided to PAS in order to use the Pre-Conversion Services feature. You can see a list of
supported databases in the PAS Configuration topic. After configuring PAS with the correct information, some
databases, like Microsoft SQL Server, will require that a script is run in order to set up the correct tables for that
database. You can find out more information about this in the topic for setting up your database. Please note that PAS
itself will only require read/write access to the database; running the mentioned scripts will require access to create
and migrate tables.

Maintaining the Database
While directly reading, linking, or otherwise using the data stored in the database by PAS is discouraged, you will still
need to do regular administrative tasks, such as taking proper snapshots and backups of the data in order to prevent
and mitigate data loss.

In the event of data loss that requires recovery from a backup (both for the database or the local file storage) PAS has
an API to validate viewing packages and their state. For more information, refer to the Viewing Packages API.

PrizmDoc Viewer v13.17 394

©2021 My Company. All Rights Reserved.

Product and Database Updates
As the Pre-Conversion (Viewing Packages) feature is updated in future releases, the product will contain the necessary
logic or scripts to transition existing tables and data to the new format, if a schema change is necessary. You can find
out more information on updating PAS in the topic for setting up your database.

How & When to use CORS

Do you need to use CORS?
We actually recommend an application design that does not require CORS.

While it is true that the Viewer, running in the browser, needs a way to send requests to PAS, we recommend you
set up a dedicated reverse proxy route as part of your web application (or web server) which allows the Viewer to
make requests to the same origin (domain) from which the web page itself was loaded. Our Getting Started section
explains this sort of deployment in a lot more detail. We recommend you read through that first if you have not
already.

That said, if you want your viewer instances in the browser to send requests directly to your PAS deployment
running on a different domain (origin), it is possible. To do this, you'll need to explicitly configure PAS to enable
CORS:

1. Modify the CORS settings within your PAS configuration file. Refer to the topic, PAS Configuration, for more
information.

2. Restart PAS for the changes to take effect. Refer to the topic, Starting & Stopping PAS, for more
information.

3. Update the imageHandlerUrl in the viewer initialization options to point directly to the publicly accessible
PAS entry point. For more information on viewer configuration options, refer to the topic, Initialization
Parameters.

NOTE: There is no native support for CORS in Internet Explorer 8 and 9.

Clustering
This section contains the following information:

Optimize Cache Performance for Cluster Environments
Run PAS on Clusters

Optimize Cache Performance for Cluster Environments

Introduction
PrizmDoc Application Services (PAS) utilizes cache locations that don't need to be on the same server. If multiple PAS
servers are in use, they can be configured to use the same central filesystem and database so that cached data is
shared between servers.

A given Viewing Session is cached by either PrizmDoc Server or by PAS depending on how it was created. Sessions
created using a documentId are stored in PAS' central cache as a pre-converted viewing package. As these sessions
are not cached in PrizmDoc Server, they will not be directly accessible through the PrizmDoc Server API.

PrizmDoc Viewer v13.17 395

©2021 My Company. All Rights Reserved.

Example

POST http://localhost:3000/ViewingSession Content-Type: application/json
{
 "source": {
 "type": "document",
 "fileName": "sample.doc"
 "documentId": "doc_9495837910qc"
 }
}

Viewing packages can be created either explicitly via the Pre-Conversion API or, as in the above example, implicitly by
providing a documentId in the Viewing Session API.

Sessions created without a documentId are not stored as viewing packages and are cached by PrizmDoc Server as
normal according to the server configuration and request parameters.

Example

POST http://localhost:3000/ViewingSession Content-Type: application/json
{
 "source": {
 "type": "document",
 "fileName": "sample.doc"
 }
}

NOTE: If PrizmDoc Server is running in Cluster Mode, PAS handles the use of affinity hints internally and
does not require the user to perform anything additional for optimized PrizmDoc Server cache
performance.

Run PAS on Clusters

Introduction
PrizmDoc Application Services (PAS) is designed to scale out well. By default, it will run multiple threads on a single
machine whenever it is capable, and it can be installed to run on multiple machines easily. You will need to do the
following in order to run PAS on multiple servers:

Install the PAS component on all machines that you would like to use.
On each machine, configure all filesystem-based storage in the PAS configuration file to point to a shared
location. It is recommended that you use a shared Network Attached Storage (NAS) device that is accessible to
all PAS instances.
On each machine, find the correct PAS configuration file, and adjust the settings so that each instance of PAS is
pointing to the same PrizmDoc Server or PrizmDoc Cloud entry point.

You can find out more about configuring PrizmDoc Server with a cloud entry point for a cluster environment in the
PrizmDoc Viewer Cluster Mode topic.

Make sure to re-start PAS after every configuration change, in order for the changes to take effect.

PrizmDoc Viewer v13.17 396

©2021 My Company. All Rights Reserved.

Load Balancing
There is no special consideration for load balancing several PAS servers. Any request can be routed to any instance of
PAS, and you can use any off-the-shelf load balancer to handle the routing.

Starting & Stopping
This section contains the following information:

Linux
Windows

Linux

Introduction
The included script ./pas/pm2/pas.sh can be used to start and stop the PrizmDoc Application Services (PAS). The
following examples assume the default install location. If you did not install it to the default location, replace
/usr/share/prizm with the location to which you installed it.

Start
Example

/usr/share/prizm/pas/pm2/pas.sh start

Stop
Example

/usr/share/prizm/pas/pm2/pas.sh stop

TIP: If you created a symbolic link to ./pas/pm2/pas.sh in the /etc/init.d/ directory, you can use the
service command to manage PAS instead of invoking the script directly. That way if you don’t need PAS to
automatically start/stop, you can complete the first step to more easily manage it.

The syntax is as follows:

Example

service pas start|stop|restart|status

PrizmDoc Viewer v13.17 397

©2021 My Company. All Rights Reserved.

Windows

Method 1: From the Windows Service
On Windows, the PrizmDoc Application Services (PAS) should ideally be started/stopped from the Windows service
management console. As part of the PrizmDoc Viewer installation, the service should be configured to start
automatically. If you need to start, stop, or restart, use the following instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type services.msc.
4. Press Enter.
5. Find PAS in the list of services, and right-click on the service to access the context menu.
6. To Start the Service: Click Start and wait for the service to start. The status should update to "started" (this

option will only be available if the service is not running).
7. To Stop the Service: Click Stop in the right-click menu and wait for the service control dialog. The status will be

updated to be blank (this option will only be available if the service is already started).
8. To Restart the Service: Click Restart and wait for the service control dialog (this option will only be available if

the service is already started).

Method 2: From the Command Line
If access to the control panel is not available, services can also be started/stopped from the command line using the
following commands:

Example

net start "Prizm Application Services"
net stop "Prizm Application Services"

Service Logs

The PAS Windows service will log certain status messages to the Windows Event Log. These messages can be helpful
in diagnosing problems while starting and stopping the service. To view the Windows Event Log, use the following
instructions:

1. Log onto the system using an account with administrator privileges.
2. Click Start > Run.
3. Type eventvwr.
4. Press Enter.
5. Expand Applications and Services Logs.
6. Click PAS.

Error Reporting

Introduction
This section contains the following information:

PrizmDoc Viewer v13.17 398

©2021 My Company. All Rights Reserved.

Accusoft Policy on Log Changes
Search Tips
Packaging Log Files for Product Support

PrizmDoc Server is composed of a number of micro-services each responsible for some small processing task
related to document conversion and viewing. Consequently, an error may occur while processing a small piece of a
document and may not be readily apparent to the user.

While it is a simple task for one service to report an error to a calling service, it is not always appropriate to present
that error information to the end user. The Error Reporting Service provides a centralized log into which all services
report errors with the overall goal of simplifying system troubleshooting:

Error Reporting Configuration
Errors are reported to a log file located in the directory containing the other service log files by default:

Linux: /usr/share/prizm/logs/PccErrors.log
Windows: C:/Prizm/logs/PccErrors.log

These locations, as well as the number of daily logs to retain, can be found in the central configuration file. The file
paths for the Central Configuration file are:

Linux: /usr/share/prizm/prizm-services-config.yml
Windows: C:\Prizm\prizm-services-config.yml

NOTE: The default installation directory is: C:\Prizm.

Error Report Entries
The error log file may contain two type of entries: Errors and Relations. Errors entries describe a specific error event
reported by a service and can be used to diagnose issues with a document or service. Relations describe the
relationship between two resources and are used to help diagnose an error in which the cause was the result of a
failure from another related resource. These are described in further detail below.

Error Entries
An example Error entry is shown below:

Example

{

PrizmDoc Viewer v13.17 399

©2021 My Company. All Rights Reserved.

 "gid": "duw97iCztVvreTmqRZdgOw",
 "service": "ImagingServices",
 "resourceType": "ViewingSession",
 "resourceId": "
3eHY2FqlgNyHo3i2kx2zJQ38YvNPcQMG4CowwC_71cZ1jRN1l6k48PxBkPkAkGd0xWHXjWmkhdQoRw ",
 "relevance": 100,
 "errorCode": "DocumentRequiresAPassword",
 "time": "2015-04-28 20:27:25.0473",
 "errorId": "f00hLsu_V8TimZm88w1b6w"
}

Error Entry Description

gid This is the Global ID assigned to each new request. It uniquely identifies operations resulting from
the original request.

service This is the name of the service which reported the error.

resourceType This describes the resource related to the error. Examples include ContentConverter, WorkFile,
MarkupBurner, RedactionCreator.

resourceId This is the unique resource identifier (i.e. ViewingSessionId).

relevance This indicates the importance of the error:

errorCode This is the error code reported by the service. This will be a PascalCased string briefly describing
the error.

time This is the time at which the error was reported.

errorId This is a unique errorId assigned to the error by the Error Reporting Service.

Relation Entries
An example relation entry is shown below:

Example

{

PrizmDoc Viewer v13.17 400

©2021 My Company. All Rights Reserved.

 "gid": "duw97iCztVvreTmqRZdgOw",
 "service": "ImagingServices",
 "resourceType": "ViewingSession",
 "resourceId": " 3eHY2FqlgNyHo3i2kx2zJQ38YvNPcQMG4CowwC_71cZ1jRN1DEF0UbuRl6k48P ,
 "relation": "RedirectedViewingSession",
 "relationResourceId":
"gRrJ8ay0jV6wBXiqMjxmB4epUrsd7KqVdtsD_BtwAZbhYBVpb4P2ksm0_kcByugmA",
 "relationId": "EjA6CpDhFuTMP3sTAvMhyA"
}

Relation Entry Description

gid This is the Global ID assigned to each new request. It uniquely identifies operations resulting
from the original request.

service This is the name of the service which reported the relation.

resourceType This describes the resource associated with the relation. Examples include ContentConverter,
WorkFile, MarkupBurner, RedactionCreator.

resourceId This is the unique resource identifier (i.e. ViewingSessionId).

relation This describes the related resource. (i.e. RedirectedViewingSession).

relationResourceId This is the unique related resource identifier (i.e. ViewingSessionId).

relationId This is a unique relationId assigned to the error by the Error Reporting Service.

Accusoft Policy on Log Changes

Introduction
Accusoft is moving towards using JSON as the format for each log line. This makes it easier for us to programmatically
analyze log data to improve the product. While it is possible to write your own programs that analyze our log data,
please be aware that raw log data may change from release to release, and that logged events may be added,
removed, or changed in a variety of ways. Specifically:

New log events may be added.
New properties may be added to existing log events.
Existing log events may no longer be logged.
Existing properties may be removed from existing log events.
The minimum level of an existing log event (10 for TRACE, 20 for DEBUG, 30 for INFO, etc.) may change.

Additionally, log files that do not currently use JSON as their logging format will be replaced at some point by JSON
logging.

Search Tips

Introduction
The examples below show methods for locating errors in the Error Reporting Service logs. While the examples here use command-line based
searches, the same results can be achieved with your favorite text editor or other search tool.

Searching for a Specific Relevance

PrizmDoc Viewer v13.17 401

©2021 My Company. All Rights Reserved.

Errors that can be resolved directly by a user will have a high relevance (typically 90 or 100). It is useful to filter the PccErrors.log for entries with a
specific relevance. The examples below show command line operations to list errors with relevance 100 on both Windows and the Linux Bash shell.

On Windows

C:> findstr /L "relevance\":100" C:\ProgramData\Accusoft\Prizm\Logs\PccErrors.log

On Linux Bash

$> grep 'relevance":100' /usr/share/prizm/logs/PccErrors.log

An example of an entry with relevance 100 is shown below:

Example

{"gid":"13CbzVdHZ/wqVKLCZmfq9A","time":"2015-05-14
19:26:25.9842","resourceType":"ViewingSession","resourceId":"190054e9-574f-4b83-ae86-
d30c0c7e2c1c","relevance":100,"errorCode":"DocumentRequiresAPassword","service":
"ImagingServices","errorId":"3SgxE5MseBEolbECEMSETA"}

In this case, the user has attempted to view a document requiring a password without providing the password.

Searching for a Viewing Session
If an error occurs during a particular viewing session, the cause of the problem may be reported in the Error log. The errors for a particular viewing
session can be found first by searching for the viewing session ID.

On Windows

C:> findstr /L "sugq5PRxDV4ERAbaQLgpRzKjbKrHp868m6zN2QG-wBFHO3ZX-SIhJ3GIJA8FK4WZzB2DjiJ_gZWTAUdyKeqBcw"
C:\ProgramData\Accusoft\Prizm\Logs\PccErrors.log

On Linux Bash

$> grep sugq5PRxDV4ERAbaQLgpRzKjbKrHp868m6zN2QG-wBFHO3ZX-SIhJ3GIJA8FK4WZzB2DjiJ_gZWTAUdyKeqBcw
/usr/share/prizm/logs/PccErrors.log

Example results from the query are shown below:

Example

{"gid":"13CbzVdHZ/wqVKLCZmfq9A","time":"2015-05-14
19:26:25.9834","resourceType":"ViewingSession","resourceId":
"sugq5PRxDV4ERAbaQLgpRzKjbKrHp868m6zN2QG-wBFHO3ZX-SIhJ3GIJA8FK4WZzB2DjiJ_gZWTAUdyKeqBcw","relation":
"ViewingSessionId","relationResourceId":"190054e9-574f-4b83-ae86-
d30c0c7e2c1c","service":"ImagingServices","relationId":"HsayMuoWcABqBDsN6yR9Vg"}

Notice the second ID: "190054e9-574f-4b83-ae86-d30c0c7e2c1c". This is the internal ID for a viewing session. A search for this ID will locate any
errors associated with the viewing session.

Searching for Related Resources
After a record has been identified, it is useful to determine if any related error records were reported. This can be achieved by searching the log for
the resource ID.

On Windows

C:> findstr /L "190054e9-574f-4b83-ae86-d30c0c7e2c1c" C:\ProgramData\Accusoft\Prizm\Logs\PccErrors.log

On Linux Bash

$> grep 190054e9-574f-4b83-ae86-d30c0c7e2c1c /usr/share/prizm/logs/PccErrors.log

Example results from the query are shown below:

Example

PrizmDoc Viewer v13.17 402

©2021 My Company. All Rights Reserved.

{"gid":"13CbzVdHZ/wqVKLCZmfq9A","time":"2015-05-14
19:26:25.9842","resourceType":"ViewingSession","resourceId":"190054e9-574f-4b83-ae86-
d30c0c7e2c1c","relevance":100,"errorCode":"DocumentRequiresAPassword","service":"ImagingServices","errorId":

"3SgxE5MseBEolbECEMSETA"}

{"gid":"13CbzVdHZ/wqVKLCZmfq9A","time":"2015-05-14
19:26:25.9834","resourceType":"ViewingSession","resourceId":"sugq5PRxDV4ERAbaQLgpRzKjbKrHp868m6zN2QG-
wBFHO3ZX-
SIhJ3GIJA8FK4WZzB2DjiJ_gZWTAUdyKeqBcw","relation":"ViewingSessionId","relationResourceId":"190054e9-574f-
4b83-ae86-
d30c0c7e2c1c","service":"ImagingServices","relationId":"HsayMuoWcABqBDsN6yR9Vg"}

{"gid":"13CbzVdHZ/wqVKLCZmfq9A","time":"2015-05-14 19:26:25.9843","resourceType":
"ViewingSession","resourceId":"190054e9-574f-4b83-ae86-
d30c0c7e2c1c","relation":"SourceDocumentWorkFile","relationResourceId":"JAQ6o9ck1VM2ohFf5xiI6g","service":
"ImagingServices","relationId":"nXI4pNPhXmS2Idb8vui1LQ"}

Notice the third record: "JAQ6o9ck1VM2ohFf5xiI6g". This reported relation record indicates the workfile requiring the password. Now that the
workfile ID has been identified, it is possible to determine the actual file from the WorkfileService.log.

Searching Other Logs
Once the workfile ID is known, it possible to search WorkfileService.log for location of the actual file which caused the error.

On Windows

C:> findstr /L JAQ6o9ck1VM2ohFf5xiI6g C:\ProgramData\Accusoft\Prizm\Logs\WorkfileService.log

On Linux Bash

$> grep JAQ6o9ck1VM2ohFf5xiI6g /usr/share/prizm/logs/WorkfileService.log

Example results from the query are shown below:

Example

{"name":"WorkfileService","hostname":"ip-10-182-110-214","pid":7345,"taskid":24003,
"gid":"Fa7Uay+IjZqa53pgSF9ueA","level":30,"type":"WorkfileRepository","contentsName":
"/usr/share/prizm/cache/WorkfileCache/JAQ6o9ck1VM2ohFf5xiI6g/WorkfileContents.pdf","msg":
"Creating content write stream","time":"2015-05-14T19:26:25.872Z","v":0}

{"name":"WorkfileService","hostname":"ip-10-182-110-214","pid":7345,"taskid":24003,
"gid":"Fa7Uay+IjZqa53pgSF9ueA","level":30,"type":"WorkfileRepository","workfile":
"/usr/share/prizm/cache/WorkfileCache/JAQ6o9ck1VM2ohFf5xiI6g/WorkfileContents.pdf","msg":
"Workfile content created","time":"2015-05-14T19:26:25.872Z","v":0}

{"name":"WorkfileService","hostname":"ip-10-182-110-214","pid":7345,"taskid":24003,
"gid":"Fa7Uay+IjZqa53pgSF9ueA","level":30,"reqBegin":true,"req":{"method":"POST","path":"/FDS/detect",
"port":38503,"data":
{"src":"/usr/share/prizm/cache/WorkfileCache/JAQ6o9ck1VM2ohFf5xiI6g/WorkfileContents.pdf"}},
"msg":"","time":"2015-05-14T19:26:25.872Z","v":0}

{"name":"WorkfileService","hostname":"ip-10-182-110-214","pid":7345,"taskid":24004,
"gid":"13CbzVdHZ/wqVKLCZmfq9A","level":30,"taskBegin":true,"parent":{"name":"PCCIS","pid":8130,
"taskid":2519},"reqAccepted":true,"req":
{"method":"GET","path":"/PCCIS/V1/WorkFile/JAQ6o9ck1VM2ohFf5xiI6g",
"port":19020},"msg":"","time":"2015-05-14T19:26:25.908Z","v":0}

{"name":"WorkfileService","hostname":"ip-10-182-110-
214","pid":7345,"taskid":24004,"gid":"13CbzVdHZ/wqVKLCZmfq9A","level":30,"type":"WorkfileService",
"workfileId":"JAQ6o9ck1VM2ohFf5xiI6g","msg":"Begin: getWorkfile","time":"2015-05-14T19:26:25.908Z","v":0}

{"name":"WorkfileService","hostname":"ip-10-182-110-
214","pid":7345,"taskid":24004,"gid":"13CbzVdHZ/wqVKLCZmfq9A","level":30,"type":
"WorkfileService","workfile":{"id":"JAQ6o9ck1VM2ohFf5xiI6g","expirationDateTime":"2015-05-
15T19:26:25.871Z","fileExtension":"pdf","_version":1,"cacheEnabled":false,"fileFormat":"pdf"},
"msg":"Workfile retrieved","time":"2015-05-14T19:26:25.908Z","v":0}

The following section in the record shows the location of the file:
/usr/share/prizm/cache/WorkfileCache/JAQ6o9ck1VM2ohFf5xiI6g/WorkfileContents.pdf".

PrizmDoc Viewer v13.17 403

©2021 My Company. All Rights Reserved.

Packaging Log Files for Support

Introduction
This section describes where to find the PrizmDoc Viewer log files and where to send them for support.

Linux
With a default installation of PrizmDoc Viewer, and with the logging settings left to their out-of-box defaults, you can
find all of the log files in this directory:

/usr/share/prizm/logs/

If you need to send PrizmDoc Viewer log files to Accusoft Support, simply create a gzipped tarball containing
everything in that directory.

NOTE: We encourage you to use Google Drive or Dropbox links. For additional options, please see the
Support Tickets section of the Accusoft Customer Portal.

Windows
With a default installation of PrizmDoc Viewer, and with the logging settings left to their out-of-box defaults, you can
find all of the log files in these two directories:

C:\Prizm\logs

%ALLUSERSPROFILE%\Accusoft\Prizm\Logs

If you need to send PrizmDoc Viewer log files to Accusoft Support, simply create one or more zip files containing
everything in these two directories.

NOTE: We encourage you to use Google Drive or Dropbox links. For additional options, please see the
Support Tickets section of the Accusoft Customer Portal.

PrizmDoc Viewer v13.17 404

©2021 My Company. All Rights Reserved.

https://my.accusoft.com/SupportTickets
https://my.accusoft.com/SupportTickets

API Reference

Introduction
PrizmDoc Viewer has powerful APIs that help you achieve the results you want for viewing, converting, OCR,
annotating, redacting, e-signing, detecting forms, comparing documents, watermarking, and creating template-based
forms.

Viewing

Client-Side APIs

Viewer Control - The Viewer Control has a robust, client-side JavaScript API giving your application lots of
ways to interact with the Viewer running in the browser. Use it to customize Viewer menus and features,
programmatically control the Viewer, and respond to Viewer events.

E-Signature Controls - The E-Signature Client API includes two kinds of UI controls: a form designer control
(TemplateDesigner), and a form entry control (ESigner). You can use these controls and their APIs for
implementing form entry in your application.

Server-Side APIs

PAS REST API - The PAS REST API is what your web server should use to create a viewing session whenever
you need to render a web page with a Viewer for an end user. It is also the API you should use if you want to
pre-generate a viewing package. There are many additional viewing-related endpoints in this REST API which
are used by the Viewer itself and which your server-side application is welcome to use as well. However, if you
need to do server-side document processing without a Viewer, PrizmDoc Server is a better fit. See "Backend
Document Processing" below.

Backend Document Processing

PrizmDoc Server

REST API - The PrizmDoc Server REST API contains powerful functionality for server-side document processing,
including conversion, redaction, annotation, watermarking, search, and OCR.

.NET SDK - A wrapper around most of the PrizmDoc Server REST API, making it easy to use PrizmDoc Server
functionality in .NET.

Cloud Authentication
Cloud Authentication - All REST APIs to PrizmDoc Cloud (PAS and PrizmDoc Server) must be authenticated
with an API key or OAuth token. This section explains how to do this.

Viewer Control
The Viewer API permits programmatic control over the Viewer.

Most API functionality is exposed by the ViewerControl - the core component of the Viewer. The Viewer UI/chrome
builds off of the API members of the ViewerControl.

PrizmDoc Viewer v13.17 405

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/

The Viewer API is required to:

Modify the behavior of the Viewer
Augment the behavior of the Viewer
Build custom Viewer menus

The Viewer API is not required to:

Customize the Viewer’s layout or style
Add or remove tabs
Move or remove buttons and other inputs

You may want to review Configuring the Viewer for additional information. In addition, see the API Examples, which
demonstrate using the API to implement common scenarios.

This topic provides information about the following:

API Functionality
Getting Started

API Functionality
The Viewer API exposes the following functionality:

Creating and destroying the Viewer
Events
Page navigation
Zooming and fitting content
Mark (annotation and redaction) CRUD
Markup saving and loading
Customizing mouse tools
Searching document text
Printing
Getting page and document attributes

Getting Started
This section provides basic information for getting started using the API.

Access to the API
The API classes are exposed through the global PCCViewer object.

Example

window.PCCViewer;

A ViewerControl is created when instantiating the Viewer with the jQuery plugin, and it is accessible through the
viewerControl property of the returned object.

Example

PrizmDoc Viewer v13.17 406

©2021 My Company. All Rights Reserved.

var viewer = $("#mydiv").pccViewer(options);
var viewerControl = viewer.viewerControl;

Viewer Ready
While initialization of the Viewer is being performed, it is unsafe to call some of the ViewerControl methods (these
methods will throw an error during initialization). The ViewerReady event signals that initialization has
completed, and it is safe to call all ViewerControl methods with valid data.

Example

var viewerControl = $("#mydiv").pccViewer(options).viewerControl;

// Subscribe to the "ViewerReady" event
viewerControl.on(PCCViewer.EventType.ViewerReady, function(ev) {
 // It is now safe to call all ViewerControl methods
 viewerControl.setCurrentMouseTool("AccusoftLineAnnotation");

 // It’s also safe to use ECMA5 properties
 // (in supporting browsers).
 var currentPageNumber = viewerControl.pageNumber;

 // This is also a good time to subscribe to other events,
 // if you want to keep all API code in one place.
 viewerControl.on(PCCViewer.EventType.PageDisplayed, ...);
});

Page Count Ready
The ViewerControl will not get the page count of a document from PrizmDoc Server until after the ViewerReady
event. Before the page count is returned, the ViewerControl assumes every document has one page.

The PageCountReady event signals when the ViewerControl has the actual page count from the server. Subscribe
to this event to know when you can navigate to and interact with other pages in the document.

Example

var viewerControl = $("#mydiv").pccViewer(options).viewerControl;

// Subscribe to the "PageCountReady" event
viewerControl.on(PCCViewer.EventType.PageCountReady, function(ev) {
 var pageCount = ev.pageCount;

 // We can now navigate to other pages in the document.
 if (pageCount > 1) {
 // Go to the second page of the document.
 viewerControl.setPageNumber(2);
 }
});

It is safe to call Viewer navigation API members before the page count is available to the ViewerControl, but

PrizmDoc Viewer v13.17 407

©2021 My Company. All Rights Reserved.

navigation outside of the known page count (of one) is not possible.

EstimatedPageCountReady Event

Calculating the actual page count of some document formats can take a significant amount of time, and therefore
waiting on an actual page count could make the Viewer appear unresponsive to the end user. To address this
problem, the PrizmDoc Server may quickly generate an estimated page count.

The EstimatedPageCountEvent signals that the Viewer has an estimated page count and that navigation to
other pages is possible.

Example

var viewerControl = $("#mydiv").pccViewer(options).viewerControl;

// Subscribe to the "PageCountReady" event
viewerControl.on(PCCViewer.EventType.EstimatedPageCountReady, ...);

The estimated page count will not always be triggered.
The estimated and actual page count can be different. If the estimated page count is greater than the actual
page count, then for a short time it will be possible to navigate past the actual last page of the document.
The Viewer will display a placeholder for these pages until the actual page count is available, when these
placeholders will be removed.

Page Numbering
Page numbering in the API starts with 1. This is true for events and methods. The API does not support 0-based
page indexes, so be careful when iterating over pages.

Example

// Navigate to the first page of the document
viewerControl.changeToFirstPage();

// An equivalent call would be
viewerControl.setPageNumber(1);

Pixels
In the API, the unit of measure for height, width, location, and other sizes is a pixel. To determine the height and
width of a page in pixels, use the ViewerControl’s requestPageAttributes method.

Example

// Get attributes of page 1.
viewerControl.requestPageAttributes(1).then(function(attributes) {
 var pageWidth = attributes.width;
 var pageHeight = attributes.height;

 // Add a rectangle that is the full width and height of page 1

PrizmDoc Viewer v13.17 408

©2021 My Company. All Rights Reserved.

 viewerControl.addMark(1, "RectangleAnnotation")
 .setRectangle({x:0,
 y:0,
 height: pageHeight,
 width: pageWidth});
});

It is advised to check page attributes before getting or setting the location of a Mark object.

For vector data provided by the server, a resolution of 72dpi is chosen, from which dimensions in pixels are
calculated.
It is not safe to assume that vector data will be provided by the server for a given document type.

Getters, Setters, and ECMA5 Properties
The API commonly uses getter and setter methods for accessing and modifying data associated with objects.
Typically these methods are in pairs, unless the data is read-only.

Example

// read-write
viewerControl.getPageNumber(); // get the current page number
viewerControl.setPageNumber(1); // set the current page to 1

// read-only
viewerControl.getPageCount(); // get the page count

The API also offers ECMA5 Accessor properties that correspond to the getter and setters. These accessor properties
offer a different style of coding, and they are only available in modern browsers that implement
Object.defineProperties.

Example

if (Object.defineProperties) {
 viewerControl.pageNumber; // get the current page number
 viewerControl.pageNumber = 1; // set the current page to 1
 viewerControl.pageCount; // get the page count
}

Fluent Style: Method Chaining
The API is designed to support method chaining. Most methods will return the current context (object on which the
method was called) in order to promote method chaining. Exceptions to this rule are getter methods and methods
that complete asynchronously.

Example

// Method chaining when creating a rectangle annotation
viewerControl.addMark(1, "RectangleAnnotation")

PrizmDoc Viewer v13.17 409

©2021 My Company. All Rights Reserved.

 .setRectangle({x: 0, y:0, width: 100, height: 100})
 .setFillColor("#FFFFFF")
 .setOpacity(127)
 .setBorderThickness(6);

// Method chaining when manipulating the page
viewerControl
 .rotatePage(90)
 .zoomIn(1.2);

Note that using the ECMA5 accessor properties often discourages method chaining.

Promises

The API implements the Promises/A+ spec in the class PCCViewer.Promise.

Many methods that complete asynchronously return a PCCViewer.Promise object. Use the returned promise
object to subscribe callbacks for the completion of the asynchronous event.

Example

// Use the promise to subscribe a callback to requestPageText
viewerControl.requestPageText(1).then(function(pageText) {
 alert("Text of page 1 is: " \+ pageText);
});

Two exceptions are ViewerControl#print and ViewerControl#search, which complete asynchronously but
do not return a PCCViewer.Promise object. These methods both return objects that represent the requested
print and search. Searching and printing have status events and are cancellable, for which they cannot be suitably
represented with a promise object.

See:

jQuery
The jQuery Plugin namespace.

jQuery Plugins

Namespaces
fn

External: jQuery

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:09 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 410

©2021 My Company. All Rights Reserved.

http://learn.jquery.com/plugins/
https://github.com/jsdoc3/jsdoc

jQuery. fn
The jQuery Plugin namespace.

Methods
pccViewer(optionsopt) → {PCCViewer.Viewer}

Creates and embeds a new viewer in the first element of the set of matched elements.

Each call to this method will create and return a unique ViewerControl object. This will call
PCCViewer.Viewer#destroy on any existing viewer embedded in the selected element.

If plugin options are provided, then a new viewer is created in the selected element and a
PCCViewer.Viewer object is returned. This will call PCCViewer.Viewer#destroy on any viewer that already
existed in the selected element.

If plugin options are not provided, then a viewer is not created. Instead, the PCCViewer.Viewer object
associated with an existing viewer is returned.

Parameters:

Name Type Attributes Description

options external:jQuery.fn~Options <optional> Plugin options.

Returns:

Type
PCCViewer.Viewer

Example

//Note: these are already included in the PrizmDoc Samples
var pluginOptions = {
 documentID: viewingSessionId, // documentID is a
required property
 language: languageItems // language is a
required property
};

$(document).ready(function () {
 // Creates a new viewer in the div with id="viewer1"
 var viewer = $("#viewer1").pccViewer(pluginOptions);

Namespace: fn

PrizmDoc Viewer v13.17 411

©2021 My Company. All Rights Reserved.

 // Can also access the returned object through the
plugin.
 var viewerA = $("#viewer1").pccViewer(); // Does not
create a new viewer.
 viewerA === viewer; // true
});

Type Definitions
DateFormat

The format to use when displaying a date. The table below outlines the supported date format tokens and
provides example output.

Token Output

Month M 1 2 ... 11 12

MM 01 02 ... 11 12

Day D 1 2 ... 30 31

DD 01 02 ... 30 31

Year YY 70 71 ... 29 30

YYYY 1970 1971 ... 2029 2030

Hour H 0 1 ... 22 23

HH 00 01 ... 22 23

h 1 2 ... 11 12

hh 01 02 ... 11 12

Minute m 0 1 ... 58 59

mm 00 01 ... 58 59

AM/PM A AM PM

a am pm

Type:

String

LanguageOptions

This object is the contents of the language.json file present in all of the HTML5 viewer samples. This file
is generally read server-side and passed into the jQuery plugin. It is strongly encouraged to keep a copy of
the original file before doing any edits or translations. This object is required by the viewer UI.

For more information on this language file or localization, please consult the help section titled "Localizing
the Viewer".

PrizmDoc Viewer v13.17 412

©2021 My Company. All Rights Reserved.

Type:

Object

Options

The options object used for the HTML5 viewer jQuery Plugin, external:jQuery.fn#pccViewer. This object is a
superset of the main ViewerControl options, PCCViewer.ViewerControl~ViewerControlOptions. All
available options for the ViewerControl are also valid here, and will be passed as-is to the ViewerControl
during initialization. The following will only include options specific to the jQuery plugin and the Viewer UI
functionality inside the viewer.js file.

Type:

Object

Properties:

Name Attributes Description

documentID : string The ID of the document to load. This option is a part of
the PCCViewer.ViewerControl~ViewerControlOptions
options object.

documentDisplayName : string <optional>
Default: "file"

A meaningful name for the document. This name will be
used when downloading a signed or redacted
document. See PCCViewer.ViewerControl#burnMarkup
for more information.

Example: "sample.doc"

imageHandlerUrl : string <optional>
Default:
"../pcc.ashx"

The end point of the web tier services that support the
viewer. Unless specified, viewer.js will assume it is
running in the default .NET sample. This option is a part
of the PCCViewer.ViewerControl~ViewerControlOptions
options object.

language :
external:jQuery.fn~LanguageOptions

Specifies the language to use for the text in the
ViewerControl. Use this option to localize the viewer.

icons : string Specifies the SVG for the icons in the viewer. If an SVG
symbol element in this SVG has an id that matches a
class name in the viewer HTML templates, then the SVG
for that symbol will be added to the viewer element with
the matching class name. Note that the id must begin
with "pcc-icon-".

redactionReasons :
external:jQuery.fn~redactionReasons

<optional> A list of reasons to be used for the redaction reasons
controls.

annotationsMode : string <optional>
Default:
"LegacyAnnotations"

The annotationsMode specifies the mode in which the
annotations will be handled in the viewer. When the
annotationsMode is set to "LegacyAnnotations"
(default), all annotations will be handled as in the
releases prior to 10.3. The second option is

PrizmDoc Viewer v13.17 413

©2021 My Company. All Rights Reserved.

"LayeredAnnotations". This option supports the new
layered annotations feature available in the releases 10.3
and higher. A convenience enumeration for these two
annotation mode types annotationsModeEnum
available in the viewer.js file and as a property of the
Viewer object. This enumeration is not available in the
API.

Deprecation Notice: In the future, the
"LegacyAnnotations" option will be deprecated.

annotationID : string <optional> Specifies the annotation file to be used within the
viewer.

This property is only observed when annotationsMode
is set to "LegacyAnnotations".

attachmentViewingMode : string <optional>
Default: "NewWindow"

The "attachmentViewingMode" specifies the mode in
which the attachments will be opened in the viewer. The
following options are available:

"NewWindow": (default) The attachment will be
opened in the new browser window or tab with
query parameter "?viewingSessionId=
{{ATTACHMENT_VIEWINGSESSIONID}}".
"ThisViewer": The document being viewed will
change (along with its associated annotations). If
your client-side code needs to account for this
change, you can subscribe to the
PCCViewer.EventType.ViewingSessionChanged
event to know when this happens.

autoLoadAnnotation : boolean <optional>
Default: false

If set to true, the specified annotation file will be loaded
when the viewer launches.

This property is only observed when annotationsMode
is set to "LegacyAnnotations".

autoLoadAllLayers : boolean <optional>
Default: false

When set to true, all available layers will be loaded into
the document. This includes all layers returned by
requestMarkupLayerNames and
getSavedMarkupNames.

This property is only observed when annotationsMode
is set to "LayeredAnnotations".

editableMarkupLayerSource : string <optional> When set to "LayerRecordId", the layer with the
record ID specified by the editableMarkupLayerValue
will be loaded from JSON into the document. When set
to "XmlName", the layer with the name specified by the
editableMarkupLayerValue viewer parameter will be
loaded from XML into the document, unless the XML
layer with that name has been saved to JSON, in which

Name Attributes Description

PrizmDoc Viewer v13.17 414

©2021 My Company. All Rights Reserved.

case the layer will be loaded from JSON. When set to
"DefaultName", a new empty layer is loaded into the
document but given the name specified by the
editableMarkupLayerValue viewer parameter.

This property is only observed when annotationsMode
is set to "LayeredAnnotations" and
editableMarkupLayerValue is set to a valid value.

editableMarkupLayerValue : string <optional> When the editableMarkupLayerSource viewer parameter
is set to "LayerRecordId", this specifies the record ID
of the layer that will be loaded from JSON into the
document. When the editableMarkupLayerSource viewe
parameter is set to "XmlName", this specifies the name
of the XML layer that will be loaded from XML into the
document, unless the XML layer with that name has
been saved to JSON, in which case the layer will be
loaded from JSON. When the
editableMarkupLayerSource viewer parameter is set to
"DefaultName", this specifies name to give the new
empty layer.

This property is only observed when annotationsMode
is set to "LayeredAnnotations" and
editableMarkupLayerSource is set to a valid value.

lockEditableMarkupLayer : boolean <optional>
Default: false

When set to true, the buttons that open the load
annotations (for edit) dialog will be removed so that it is
not possible to change the editable markup layer. The
menu item that opens the edit layer name dialog will
also be removed so it is not possible to rename the
editable markup layer.

template : Object This objects holds the various templates that the viewer
UI needs. The templates correspond to HTML files
available in all samples -- the filenames use the same
name as the template names here, appending
"Template.html" to the end -- for example, the template
fileName would correspond to a
fileNameTemplate.html file.

Properties

viewer : string

This is the main viewer template. It contains
partial HTML and is parsed using Underscore to
complete template variables.

contextMenu : string

This is the template for the floating menu used to

Name Attributes Description

PrizmDoc Viewer v13.17 415

©2021 My Company. All Rights Reserved.

edit annotations. It contains partial HTML and is
parsed using Underscore to complete template
variables.

overwriteOverlay : string

This is the template used for the overlay menu
when the Viewer detects that the user is saving
markup using a name that already exists. It
contains partial HTML and is parsed using
Underscore to complete template variables.

unsavedChangesOverlay : string

This is the template used for the overlay menu
when the Viewer detects that the user is opening
a markup file while having unsaved markup
already loaded in the viewer. It contains partial
HTML and is parsed using Underscore to
complete template variables.

printOverlay : string

This is the template used for the overlay menu
displayed when the user selects to print the
document. It contains partial HTML and is parsed
using Underscore to complete template variables

print : string

This is the template used to enable the viewer to
print. This template contains a full HTML page.
Variables are parsed using curly brackets. This
template is part of the main ViewerControl
options,
PCCViewer.ViewerControl~ViewerControlOptions

downloadOverlay : string

This is the template used for the overlay menu
displayed when the user selects to download the
document. It contains partial HTML and is parsed
using Underscore to complete template variables

esignOverlay : string

This is the template used for the overlay menu
displayed when the user selects to manage e-
signatures. It contains partial HTML and is parsed
using Underscore to complete template variables

comment : string

Name Attributes Description

PrizmDoc Viewer v13.17 416

©2021 My Company. All Rights Reserved.

This is the template for comments displayed in
the ViewerControl comments panel. It contains
partial HTML and is parsed using Underscore to
complete template variables.

copyOverlay : string

This is the template used for the clipboard
overlay when a user attempts to copy document
text using a touch device. It contains partial HTML
and is parsed using Underscore to complete
template variables.

hyperlinkMenu : string

This is the template used to render the menu that
appears when a user creates or views a hyperlink
annotation. It contains partial HTML and is parsed
using Underscore to complete template variables

imageStampOverlay : string

This is the template used for the image stamp
picker for the image stamp annotations and
redactions. It contains partial HTML and is parsed
using Underscore to complete template variables

pageRedactionOverlay : string

This is the template used for the full page
redaction selection dialog. It contains partial
HTML and is parsed using Underscore to
complete template variables.

redactionReason : string

This is the template used to render the menu that
appears when a user enters a redaction reason
from the immediate menu. It contains partial
HTML and is parsed using Underscore to
complete template variables.

uiElements : Object <optional> This object contains directives to easily hide or disable
default UI elements in the viewer. This option is an
alternative to removing the elements entirely from the
viewerTemplate.html file, and enables having
features that are conditionally available.

When the viewer removes various elements, it looks for
a data-pcc-removable-id to be defined on the
HTML element. This id will match to the key defined in
the uiElements object. Setting the value of that key to

Name Attributes Description

PrizmDoc Viewer v13.17 417

©2021 My Company. All Rights Reserved.

true, or not including the key at all, results in the
respective elements being visible and active in the
viewer. Setting the key to false will cause the viewer to
remove that element at runtime.

This feature is enabled for viewerTemplate.html
contextMenuTemplate.html. The following
pcc-removable-id keys are already defined by
default:

Properties

annotateTab : boolean <optional>
Default: true

Show or hide the Annotate Tab.

redactTab : boolean <optional>
Default: true

Show or hide the Redact Tab.

searchTab : boolean <optional>
Default: true

Show or hide the Search Tab.

viewTab : boolean <optional>
Default: true

Show or hide the View Tab.

esignTab : boolean <optional>
Default: true

Show or hide the E-Sign Tab.

copyPaste : boolean <optional>
Default: true

Show or hide the Text Select Tool.

download : boolean <optional>
Default: true

Show or hide the Download Button.

printing : boolean <optional>
Default: true

Show or hide the Print Button.

advancedSearch : boolean <optional>

Name Attributes Description

PrizmDoc Viewer v13.17 418

©2021 My Company. All Rights Reserved.

Default: false

Enables the advanced search features, including
searching through marks and comments.

attachments : boolean <optional>
Default: true

If true, the viewer will automatically load
attachments of the currently loaded document.

fullScreenOnInit : boolean
Default: false

Specifies whether the viewer will fill the browser
window when initialized. If this is not defined or
set to false the viewer will use the width and
height set in viewer.css.

comparisonTools : string <optional>
Default: "availableIfRevisions"

Sets the mode of the comparison tools. The
following options are available:

"notAvailable": No toggle button shown,
panel is not able to be opened.
"available": Toggle button shown, panel
must be opened by clicking the button.
"active": Toggle button shown, panel is
displayed on initialization.
"availableIfRevisions": Toggle button
shown if revisions exist, panel must be
opened by clicking the button.
"activeIfRevisions": Toggle button shown i
revisions exist, panel is displayed as soon
as revisions are returned.

immediateActionMenuMode : string <optional>
Default: "off"

Sets the mode of the immediate action menu. The
following options are available:

"on": The menu will appear after creating a mark
or selecting text, close to the mouse cursor,
allowing the user to take quick actions.
"hover": In supported browsers, an icon will
appear after creating a mark or selecting test.
When hovering over this icon, the full menu will
appear. On mobile viewports and in IE8, this will
be the same as "on".
"off": The menu will not appear.

Name Attributes Description

PrizmDoc Viewer v13.17 419

©2021 My Company. All Rights Reserved.

immediateActionMenuActionsFilter :
object

<optional> When immediateActionMenuMode
"hover", this list will be used to define which actions are
available in the menu.

Properties

comment : boolean <optional>
Default: true

Show or hide the Add Comment Button.

select : boolean <optional>
Default: false

Show or hide the Select Button.

copy : boolean <optional>
Default: true

Show or hide the Copy Button.

highlight : boolean <optional>
Default: true

Show or hide the Highlight Button.

redact : boolean <optional>
Default: true

Show or hide the Redact Button.

hyperlink : boolean <optional>
Default: true

Show or hide the Hyperlink Button.

cancel : boolean <optional>
Default: false

Show or hide the Cancel Button.

commentsPanelMode : string <optional>
Default: "auto"

Sets the mode of the comments panel. The following
options are available:

"full": The entire content of the comments are
displayed in the sidebar of the document.
"skinny": An icon is placed in the sidebar of the
document, representing each comment thread.
WHen the icon is clicked, the comment thread is
expanded to show the full content.
"auto": This mode will intelligently switch
between the full and skinny mode, in order to

Name Attributes Description

PrizmDoc Viewer v13.17 420

©2021 My Company. All Rights Reserved.

optimize the space available for viewing the
document.

stickyTools : Object <optional>
Default: "default"

Set the mode for the sticky tools behavior.

The following options are available:

"on": Sticky tools will always be on. The tool will
remain active until the user switches it.
"off": Sticky tools will always be off. The tool will
remain active for one use, where relevant.
"default": Clicking on a mouse tool button will
toggle between sticky and non-sticky mode. The
first click will trigger the tool in non-sticky mode,
and every following click will toggle sticky mode
on and off.

See the stickyToolsFilter option for more
information.

stickyToolsFilter : Object <optional> When stickyTools is set to "on" or "default", this list
will be used to define which tools will have the sticky
behavior. By default, all drawing tools (such as
EllipseAnnotation, RectangleRedaction
will have this enhanced behavior enabled. Tools that do
not appear on this list (and are not part of the defaults),
or tools set to false, will never exhibit the sticky
behavior.

This object can have any of the values listed in
PCCViewer.MouseTool.Type, using the same keys as that
enumerable. The values for these keys are
enabled, and false for disabled.

See the stickyTools option for more information.

Note that for some tools, like Magnifier
PanAndEdit, this mode is not relevant, as these tools
always remain active until the user chooses a new tool.
Keeping them on or off the list will not change that tool's
behavior.

Example: { RectangleAnnotation: true,
PlaceSignature: false }

signatureCategories : string <optional> Specifies the categories of eSignature to add to the UI.
This is a comma separated string containing the types of
signatures that the application expects. When no value i
passed in, the UI to select categories will be disabled.

Example: "Full
Signature,Initials,Name,Title"

commentDateFormat : <optional> Specifies the date format to use to display comment

Name Attributes Description

PrizmDoc Viewer v13.17 421

©2021 My Company. All Rights Reserved.

external:jQuery.fn~DateFormat Default: "MM/DD/YYYY
h:mma"

dates.

signatureDateFormat :
external:jQuery.fn~DateFormat

<optional>
Default: "MM/DD/YYYY"

Specifies the date format to use to display date
signatures.

predefinedSearch : Object <optional> Specifies options so that the viewer can prepopulate the
document with search terms. An example of this is
defined in the predefinedSearch.json
in all HTML5 viewer samples.

Properties

highlightColor : string <optional>

The default highlight color of the search terms.
This is overridden by the term-level parameter.
This must be in 6 digit hexadecimal format
preceded by a #.

Example: "#ee3a8c"

searchOnInit : boolean <optional>

Whether to run the search when the viewer is
initialized. Only search terms that use
selected: true will be searched for when this
property is enabled.

fixed : boolean <optional>
Default: false

The default fixed value of the search terms. This is
overridden by the term-level parameter. If set to
true, the search terms are always included when
performing a search.

globalOptions : Object <optional>

terms : Array.
<external:jQuery.fn~predefinedSearchTerm
<optional>

An array of search terms to populate predefined
search.

searchResultsPageLength : number <optional>
Default: 250

The number of search results to show at a time in the
search results panel. The user can use the search results
navigation buttons to page through the search results. If
a positive number is not specified, the default of 250 is
used.

revisionsPageLength : number <optional> The number of revisions to show at a time in the

Name Attributes Description

PrizmDoc Viewer v13.17 422

©2021 My Company. All Rights Reserved.

3 4

Default: 250 revisions panel. The user can use the revisions
navigation buttons to page through the revisions. If a
positive number is not specified, the default of 250 is
used.

predefinedSearchTerm

The following are options available for the Objects used in the predefinedSearch.terms Array. Any
options not specified on the individual search term Object will use the defined property on the
predefinedSearch Object, or a viewer default if one does not exist.

Type:

Object

Properties:

Name Attributes Description

searchTerm :
string

The term to use for search. If used along with userDefinedRegex,
this becomes the name of the Regular Expression, while the Regular
Expression is used to perform the search.

highlightColor :
string

<optional> The color to use when highlighting results from this particular search.

fixed : boolean <optional>
Default:
false

Whether or not the search term is always included when performing a
search. If set to true, the value of
predefinedSearchTerm.selected is disregarded since the
search term is always included.

options : Object <optional> This is the same options object, overriding the settings in
globalOptions for this specific term.

userDefinedRegex
: string

<optional> A regular expression that will be searched in place of searchTerm. The
first and last forward slashes, as well as the flags, are stripped from the
string. For example, "/Pa(\w+)/ig" will become "Pa(\w+)".

When special characters (ex: backslash) are used in the
"userDefinedRegex" field, they need to be properly escaped. For
example, for searching words that begins with "Pa", the regular
expression will be "Pa(\w+)", this regular expression should be
properly escaped like this "Pa(\w+)".

All patterns use the Global (g) flag.

Lines of text in the Viewer typically end with a space followed by a \n
character, so to include phrases that span multiple lines in your
regular expression search results, you will need to provide a regular
expression that accounts for words separated by either a space or a
space followed by a \n character.

Name Attributes Description

PrizmDoc Viewer v13.17 423

©2021 My Company. All Rights Reserved.

selected :
boolean

<optional>
Default:
false

Whether or not this term is selected in the Patterns menu by default.
This property must be set to true if you expect to use this search
terms along with searchOnInit: true.

redactionReasons

An object defining the redaction reasons to use in the viewer. See the "Using Redaction Reasons" section
of this help file for more information.

Type:

Object

Properties:

Name Attributes Description

enableRedactionReasonSelection :
boolean

<optional>
Default:
true

Determines whether the UI for selecting
redaction reasons is enabled. When false, the
UI for selecting redaction reasons will not be
available.

reasons : Array.<Object> Array of objects defining the redaction reasons
which the user may select from. Each item may
contain:

Properties

reason : string

Reason text to apply to the redaction.

description : string

Reason description to show in the reason
selection UI.

defaultReason : boolean <optional>
Default: false

Determines whether this redaction should
be selected by default. When
enableMultipleRedactionReasons

is true, can be set to true for multiple
items in the reasons array. When
enableMultipleRedactionReasons

is false, can only be set to true for one
item in the reasons array.

autoApplyDefaultReason : boolean <optional> When true, default reason(s) will automatically

Name Attributes Description

PrizmDoc Viewer v13.17 424

©2021 My Company. All Rights Reserved.

Default:
false

be applied to new redactions.

enableFreeformRedactionReasons :
boolean

<optional>
Default:
false

When true, users are given the option to type a
freeform redaction reason.

maxLengthFreeformRedactionReasons
: number

<optional>
Default:
false

Maximum length of a typed redaction reason.

enableMultipleRedactionReasons :
boolean

<optional>
Default:
false

Determines whether multiple redaction reasons
can be applied to redactions. When false, only
a single redaction reason can be applied to a
redaction. When true, multiple redaction
reasons can be applied to a redaction (requires
annotationsMode be set to
"LayeredAnnotations").

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:09 GMT-0400 (Eastern Daylight Time)

Name Attributes Description

PCCViewer
PCCViewer is the global namespace used for members of this API.

Classes
AjaxResponse
BurnRequest
Comment
Conversation
ConversionRequest
DocumentHyperlink
Error
Event
ImageStamps
LoadMarkupLayersRequest
Mark
MarkupLayer
MarkupLayerCollection
MouseTool
ObservableCollection

Namespace: PCCViewer

PrizmDoc Viewer v13.17 425

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

PrintRequest
Promise
Revision
RevisionsRequest
SearchRequest
SearchResult
SearchTask
SearchTaskResult
SignatureControl
SignatureDisplay
ThumbnailControl
Viewer
ViewerControl

Mixins
Data
SessionData

Namespaces
Ajax
Language
MouseTools
Signatures
Util

Members
(static, readonly) EventType :string

The EventType enumeration defines event types known to PCCViewer.ViewerControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

PrizmDoc Viewer v13.17 426

©2021 My Company. All Rights Reserved.

Name Description

ViewerReady : string Triggered when the Viewer is ready.

Augmented properties of the PCCViewer.Event object for this
event:

None

PageCountReady : string Event is triggered when the viewer has an actual page count from
the server and the consumer can begin to interact with the viewer
interfaces.

Augmented properties of the PCCViewer.Event object for this
event:

pageCount {number} The actual page count of the
document.

EstimatedPageCountReady :
string

Event is triggered when the viewer has an estimated page count
from the server.

Augmented properties of the PCCViewer.Event object for this
event:

pageCount {number} The estimated page count of the
document.

PageChanged : string Event is triggered when the viewer changed the current page.

Augmented properties of the PCCViewer.Event object for this
event:

none

PageLoadFailed : string Event is triggered when the viewer changed the current page.

Augmented properties of the PCCViewer.Event object for this
event:

pageNumber {number} Indicates the page number of the
page that failed to load.
statusCode {number} Indicates the HTTP page load failure
error code returned by the image service
accusoftErrorNumber {number} The error codes in this
category currently are:

4001 Document requires a password (HTTP
statusCode will be 480)
5001 Unable to generate Page (HTTP statusCode will
be 580)
5002 Download of the file to the Image service
failed (HTTP statusCode will be 580)

accusoftErrorMessage {string} Description of the error
provided by the Image service.

PrizmDoc Viewer v13.17 427

©2021 My Company. All Rights Reserved.

PageDisplayed : string Event is triggered when the viewer has displayed a page. If the
content of a page is large, for example an engineering drawing
with several hundred nodes, then the browser may be busy still
rendering/preparing the content when this event gets fired. Note
that if the maxOutOfViewDisplay viewer parameter is greater than
0, then out-of-view pages will be displayed (the page content will
be loaded in the DOM, though the page will not be visible since it
is out of view). In this scenario, the PageDisplayed event will fire for
out-of-view pages.

Augmented Properties of the PCCViewer.Event object for this
event:

pageNumber {number} The page number of the displayed
page.

PageRotated : string Event is triggered when the viewer has displayed a page, not
necessarily the content of a page.

Augmented properties of the PCCViewer.ViewerControl.Event
object for this event:

pageNumber {number} The page number of the page that
was rotated.

DocumentRotated : string Event is triggered when the rotation of all pages in the document
changes.

Augmented properties of the PCCViewer.Event object for this
event:

degreesClockwise {number} The amount in degrees
clockwise the pages were rotated.

ScaleChanged : string Event is triggered when the scaling of page(s) in the viewer
changed. After the user actions, zoom buttons pressed, zoom api
called, fit type changed, viewer mode changed and that resulted in
a scale change.

Augmented properties of the PCCViewer.Event object for this
event:

scaleType {string} Gives an indication of whether the
content was scaledUp (got bigger) or scaledDown (got
smaller).
scaleFactor {number} Indicates the new scale factor of
the viewer. A value of 1 indicates 100% zoom. See also
PCCViewer.ViewerControl#getScaleFactor.
trigger {string} Indicates how the scale change was
triggered. Possible values are:

"Zoom" - Indicates a direct zoom, such as using the

Name Description

PrizmDoc Viewer v13.17 428

©2021 My Company. All Rights Reserved.

PCCViewer.ViewerControl#zoomIn,
PCCViewer.ViewerControl#zoomOut, or
PCCViewer.ViewerControl#setScaleFactor methods.
"Fit" - Indicates a change due to a fit type being
applied through the
PCCViewer.ViewerControl#fitContent method.

fitType {string} Indicates the fit type that was applied, if
applicable. This property will only be defined if the
trigger was Fit, and will be undefined otherwise.

DocumentPrinted : string Event is triggered when the print button was clicked in the viewer's
print dialog. We have no way to know if the page printed in the
system print dialog.

Augmented properties of the PCCViewer.Event object for this
event:

pageNumbers {Array.<number>} An array containing the
page number of each page that was printed. NOTE: In the
PageView viewer, the array contains the current page only.
orientation {string} "portrait" or "landscape"
includeMarks {boolean} Indicates whether the marks
were included in the printed pages.

TextSelected : string Event is triggered when text is selected.

Augmented properties of the PCCViewer.Event object for this
event:

selectedText {string} Deprecated since v9.2 (use the
textSelection.text argument instead).
pageNumbers {Array.<number>} Deprecated since v9.2
(use the textSelection.pageNumber argument
instead).
textSelection {PCCViewer.ViewerControl.TextSelection}
An object that provides information regarding the text
selection.
clientX {number} An optional value indicating the
absolute window position in the x-axis of the cursor at the
end of the selection. A value for this property is available
only when using the SelectText mouse tool.
clientY {number} An optional value indicating the
absolute window position in the y-axis of the cursor at the
end of the selection. A value for this property is available
only when using the SelectText mouse tool.
handleClientX {number} An optional value indicating the
absolute window position in the x-axis of the handle at the
sliding end of the selection. A value for this property is
available when the text is initially selected or when the
selection is edited. (In either case, one end of the selection

Name Description

PrizmDoc Viewer v13.17 429

©2021 My Company. All Rights Reserved.

is stationary throughout the drag, and the other end is
sliding.)
handleClientY {number} An optional value indicating the
absolute window position in the y-axis of the handle at the
sliding end of the selection. A value for this property is
available when the text is initially selected or when the
selection is edited. (In either case, one end of the selection
is stationary throughout the drag, and the other end is
sliding.)

MouseToolChanged : string Event is triggered when the mouse tool changed. This change
could be initiated through the viewer's toolbar, viewer's context
menu, or viewer's API.

Augmented properties of the PCCViewer.Event object for this
event:

mouseToolName {string} Indicates the name of the new
mouse tool.

SearchPerformed : string Triggered when a search is performed with a call to
PCCViewer.ViewerControl#search.

Augmented properties of the PCCViewer.Event object for this
event:

searchRequest {PCCViewer.SearchRequest} The search
request returned from the call to
PCCViewer.ViewerControl#search.

PartialSearchResultsAvailable
: string

Event is triggered when partial search results are available

Augmented properties of the PCCViewer.Event object for this
event:

partialSearchResults {Array.
<PCCViewer.SearchResult>} The new search results found
since the last "PartialSearchResultsAvailable" event.
pagesWithoutText {Array.<number>} The set of pages
that could not be searched because searchable text was not
available for the page. This includes only the pages on
which searching was attempted since the last
"PartialSearchResultsAvailable" event.

SearchCompleted : string Event is triggered when search is completed successfully, user
cancelled, or an exception. This event will also return the
searchResult object to the consumer

Augmented properties of the PCCViewer.Event object for this
event:

completedSearchResults {Array.

Name Description

PrizmDoc Viewer v13.17 430

©2021 My Company. All Rights Reserved.

<PCCViewer.SearchResult>} The set of search results.

SearchFailed : string Event is triggered when search failed to due to an exception.

Augmented properties of the PCCViewer.Event object for this
event:

errorMessage {string} A human readable error message
indicating why the search failed.

SearchCancelled : string Event is triggered when search is cancelled by the user.

Augmented properties of the PCCViewer.Event object for this
event:

none

SearchResultsAvailable :
string

Event is triggered when search is completed and the results are
available. This event will return the full results object to the
consumer if available.

Augmented properties of the PCCViewer.Event object for this
event:

completedSearchResults {Array.
<PCCViewer.SearchResult>} The set of search results.

SearchCleared : string Event is triggered when the current search is cleared. After this
event, calls to PCCViewer#setSelectedSearchResult,
PCCViewer#getSelectedSearchResult, and
PCCViewer#getSearchRequest will no longer be valid.

Augmented properties of the PCCViewer.Event object for this
event:

none

SearchResultSelectionChanged
: string

Event is triggered when the selected search result changes,
including when the first result is selected, the selection is cleared,
or the selection changes from one result to another.

Augmented properties of the PCCViewer.Event object for this
event:

none

RevisionsRetrievalCompleted :
string

Event is triggered when the revisions retrieval has completed due
to a failure or when the full set of revisions is available.

Augmented properties of the PCCViewer.Event object for this
event:

completedRevisions {Array.<PCCViewer.Revision>} The set
of all revisions.

Name Description

PrizmDoc Viewer v13.17 431

©2021 My Company. All Rights Reserved.

RevisionsRetrievalFailed :
string

Event is triggered when the revisions retrieval has completed due
to a failure.

Augmented properties of the PCCViewer.Event object for this
event:

errorMessage {string} A human readable error message
indicating why the revisions request failed.

RevisionsAvailable : string Event is triggered when the revisions retrieval has completed
because the full set of revisions is available.

Augmented properties of the PCCViewer.Event object for this
event:

completedRevisions {Array.<PCCViewer.Revision>} The set
of all revisions.

PartialRevisionsAvailable :
string

Event is triggered when a partial set of revisions is available.

Augmented properties of the PCCViewer.Event object for this
event:

partialRevisions {Array.<PCCViewer.Revision>} The new
revisions found since the last "PartialRevisionsAvailable"
event

PrintRequested : string Event is triggered when a document print is requested through
PCCViewer.ViewerControl#print.

Augmented properties of the PCCViewer.Event object for this
event:

printRequest {PCCViewer.PrintRequest}

MarkupLoaded : string Event is triggered when markup is loaded from a file through
PCCViewer.ViewerControl#loadMarkup. Triggered when
annotations are loaded from a file.

Augmented properties of the PCCViewer.Event object for this
event:

name {string} The name of the markup data that was
loaded.
loadedMarks {Array.<PCCViewer.Mark>} The marks that
were loaded.

MarkupSaved : string Event is triggered when annotations save to the server.

Augmented properties of the PCCViewer.Event object for this
event:

name {string} The name of the markup data that was saved.

Name Description

PrizmDoc Viewer v13.17 432

©2021 My Company. All Rights Reserved.

MarkChanged : string Event is triggered when one or more attributes changes on an
annotation.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The changed annotation object
pageNumber {number} The page number of the annotation.
propertyNames {Array.<string>} The names of properties
that have changed.

MarkCreated : string Event is triggered when a new annotation is created.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
pageNumber {number} The page number of the annotation.
clientX {number} An optional value indicating the
absolute window position in the x-axis of the cursor at the
end of the selection. A value for this property is available
only when using a mouse tool to create the mark. Values
will be undefined for marks added using the API.
clientY {number} An optional value indicating the
absolute window position in the y-axis of the cursor at the
end of the selection. A value for this property is available
only when using a mouse tool to create the mark. Values
will be undefined for marks added using the API.

MarkRemoved : string Event is triggered when a annotation is removed from a page.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
pageNumber {number} The page number of the annotation.

MarkReordered : string Event is triggered when the annotation's stacking order has
changed.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
pageNumber {number} The page number of the annotation.
index {number} The new stacking order index of the
annotation.
oldIndex {number} The old stacking order index of the
annotation.

Name Description

PrizmDoc Viewer v13.17 433

©2021 My Company. All Rights Reserved.

MarkSelectionChanged : string Triggered when the set of selected annotations has changed.

Augmented properties of the PCCViewer.Event object for this
event:

pageNumber {number} The page number containing the
mark that was selected or deselected.

MarkMouseEnter : string Event is triggered when the mouse enters the annotation bounding
box.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
clientX {number} A value indicating the absolute window
position in the x-axis of the cursor.
clientY {number} A value indicating the absolute window
position in the y-axis of the cursor.

MarkMouseOver : string Event is triggered when the mouse moves over the annotation
bounding box.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
clientX {number} A value indicating the absolute window
position in the x-axis of the cursor.
clientY {number} A value indicating the absolute window
position in the y-axis of the cursor.

MarkMouseLeave : string Event is triggered when the mouse leaves the annotation bounding
box.

Augmented properties of the PCCViewer.Event object for this
event:

mark {PCCViewer.Mark} The annotation object.
clientX {number} A value indicating the absolute window
position in the x-axis of the cursor.
clientY {number} A value indicating the absolute window
position in the y-axis of the cursor.

CommentsPanelToggled : string Triggered when the comments panel opens or closes.

Augmented properties of the PCCViewer.Event object for this
event:

isOpen {boolean} Whether the comments panel is open or
closed.

Name Description

PrizmDoc Viewer v13.17 434

©2021 My Company. All Rights Reserved.

CommentCreated : string Triggered when a comment is added to a Conversation in the
viewer.

Augmented properties of the PCCViewer.Event object for this
event:

conversation {PCCViewer.Conversation} The
Conversation containing the changed comment.
comment {PCCViewer.Comment} The comment that was
added.

CommentRemoved : string Triggered when a comment is removed from a Conversation in the
viewer.

Augmented properties of the PCCViewer.Event object for this
event:

conversation {PCCViewer.Conversation} The
Conversation containing the changed comment.
comment {PCCViewer.Comment} The comment that was
removed.

CommentChanged : string Triggered when the text of a comment in the viewer has changed.

Augmented properties of the PCCViewer.Event object for this
event:

conversation {PCCViewer.Conversation} The
Conversation containing the changed comment.
comment {PCCViewer.Comment} The comment that was
modified.

PageTextReady : string Triggered when the text of a page has been loaded in the viewer.

Augmented properties of the PCCViewer.Event object for this
event:

pageNumber {number} The page number of the page that
text is ready for.

Click : string Triggered when a user clicks a page or comment pane in the
viewer.

Augmented properties of the PCCViewer.Event object for this
event:

pageNumber {number} The page number of the page that
was clicked, or null if none.
targetType {string} A description of the clicked object:
"mark", "searchResult", "textSelection", "page", "comments",
"documentHyperlink" or null (if the user clicked in an area
outside of a page and outside of the comments panel).

Name Description

PrizmDoc Viewer v13.17 435

©2021 My Company. All Rights Reserved.

textSelection {object} The text selection that was
clicked, or null if none.
mark {object} - The mark object that was clicked, or null if
none.
searchResult {object} - The search result that was
clicked, or null if none.
documentHyperlink {PCCViewer.DocumentHyperlink} -
The document hyperlinks that was clicked, or null if none.
originalEvent {object} - A copy of the browser event.
clientX {number} - The x window coordinate of the
position where the user clicked.
clientY {number} - The y window coordinate of the
position where the user clicked.

PageOpening : string Triggered when the width and height page attributes are retrieved.
Note that this event will fire whenever a page opens, so if a page
opens, it will fire, and if the page is scrolled out of view, disposed,
and then scrolled back into view, the event will fire again.

Augmented properties of the PCCViewer.Event object for this
event:

width {number} The width in pixels of the page that is
opening
height {number} The height in pixels of the page that is
opening
pageNumber {number} The 1-based number of the page
that is opening

ViewingSessionChanging :
string

Fires when the ViewerControl begins to change to a new viewing
session but before the new viewing session is ready. During this
time, most ViewerControl API calls will fail with an error.

A subsequent ViewingSessionChanged event will fire indicating
that the change to the new viewing session has completed and the
ViewerControl API is ready to be used again.

Note: The viewing session is typically changed to present a
different document to the end user (for example, when the
navigating into an email attachment). The ViewerControl can be
instructed to change to a new viewing session by a call to
PCCViewer.ViewerControl#changeViewingSession. Calling this
method will immediately fire this event, indicating that the current
viewing session is about to change.

Augmented properties of the PCCViewer.Event object for this
event:

viewingSessionId {string} Id of the viewing session
being switched to.

Name Description

PrizmDoc Viewer v13.17 436

©2021 My Company. All Rights Reserved.

See:

See:

ViewingSessionChanged :
string

Fires when the ViewerControl has finished changing to a new
viewing session and the ViewerControl API is ready to be used
again (see the related ViewingSessionChanging event).

A subsequent PageCountReady event will fire when the new
page count is ready.

Augmented properties of the PCCViewer.Event object for this
event:

viewingSessionId {string} Id of the new viewing session
in use.

PCCViewer.ViewerControl#on

PCCViewer.ViewerControl#off

(static, readonly) FitType :string

The FitType enumeration defines fit types known by PCCViewer.ViewerControl. The ViewerControl uses
a specified fit type to set or update the scaling of the pages displayed in the viewer.

Note: This enumeration is a convenience for API developers. Instead of using it, you can pass in the string
values of the fit type (enumeration values) directly to the API.

Type:

string

Properties:

Name Description

FullWidth :
string

The viewer scales the content to fill the width of the viewer.

ShrinkToWidth
: string

The viewer will scale down the content until it fits fully width-wise into view. The
page will not be scaled up if it already fits.

ActualSize :
string

The viewer shows the content actual size. The content is not scaled.

FullHeight :
string

The viewer scales the content to fill the height of the viewer, based on the largest
known page height.

FullPage :
string

The viewer scales the content to best fit the largest known page in the viewer.

PCCViewer.ViewerControl#fitContent

Example

Name Description

PrizmDoc Viewer v13.17 437

©2021 My Company. All Rights Reserved.

3 4

See:

// use the enumeration
myViewerControl.fitContent(PCCViewer.FitType.FullWidth);

// or just use the string value
myViewerControl.fitContent("FullWidth");

(static, readonly) MarkHandleMode :string

The MarkHandleMode enumeration defines mark handle modes known by PCCViewer.ViewerControl. The
ViewerControl uses a specified mark handle mode to determine how the mark handles are shown.

Note: This enumeration is a convenience for API developers. Instead of using it, you can pass in the string
values of the mode (enumeration values) directly to the API.

Type:

string

Properties:

Name Description

HideSideHandlesWhenClose :
string

All 8 handles (top left, top, top right, left, right, bottom left, bottom,
bottom right) are shown for rectangular marks, except when the
handles are moved close to each other. If the left handles are close to
the right handles, the top and bottom handles are not shown. If the
top handles are close to the bottom handles, the left and right handles
are not shown.

HideCornerHandlesWhenClose
: string

All 8 handles (top left, top, top right, left, right, bottom left, bottom,
bottom right) are shown for rectangular marks, except when the
handles are moved close to each other. In that case, the corner
handles (top left, top right, bottom left, bottom right) are not shown.

PCCViewer.ViewerControl#getMarkHandleMode

PCCViewer.ViewerControl#setMarkHandleMode

Example

// use the enumeration
myViewerControl.setMarkHandleMode(PCCViewer.MarkHandleMode.HideCornerHandlesWh

// or just use the string value
myViewerControl.setMarkHandleMode("HideCornerHandlesWhenClose");

(static, readonly) PageLayout :string

The PageLayout enumeration defines page layouts known by PCCViewer.ViewerControl. The

PrizmDoc Viewer v13.17 438

©2021 My Company. All Rights Reserved.

3 4

See:

ViewerControl uses a specified page layout to set or update the placement or arrangement of the
pages in the viewer.

Note: This enumeration is a convenience for API developers. Instead of using it, you can pass in the string
values of the page layout (enumeration values) directly to the API.

Type:

string

Properties:

Name Description

Horizontal :
string

Pages are displayed as a single horizontal row and a horizontal scroll bar is displayed to
bring into view the pages that are not in view.

Vertical :
string

Pages are displayed as a single vertical column and a vertical scroll bar is displayed to
bring into view the pages that are not in view.

PCCViewer.ViewerControl#pageLayout

Example

// use the enumeration
myViewerControl.setPageLayout(PCCViewer.PageLayout.Horizontal);

// or just use the string value
myViewerControl.setPageLayout("Horizontal");

(static, readonly) RedactionViewMode :string

The RedactionViewMode enumeration defines redaction view modes known by PCCViewer.ViewerControl.
The ViewerControl uses a specified redaction view mode to set visibility of the text underneath the
redaction rectangle marks that are opaque.

Note: This enumeration is a convenience for API developers. Instead of using it, you can pass in the string
values of the view mode (enumeration values) directly to the API.

Type:

string

Properties:

Name Description

Draft :
string

The viewer displays the document content underneath the redaction rectangles in the
document.

Normal : The viewer hides the document content underneath the redaction rectangles.

PrizmDoc Viewer v13.17 439

©2021 My Company. All Rights Reserved.

3 4

See:

string

PCCViewer.ViewerControl#getRedactionViewMode

PCCViewer.ViewerControl#setRedactionViewMode

Example

// use the enumeration
myViewerControl.setRedactionViewMode(PCCViewer.ViewMode.Draft);

// or just use the string value
myViewerControl.setRedactionViewMode("Draft");

(static, readonly) ScaleTrigger :string

The ScaleTrigger enumeration defines actions known to PCCViewer.ViewerControl that alter page
scaling.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

Pinch : string

Zoom : string

Fit : string

ViewMode : string

Example

// use the enumeration
ev.trigger === PCCViewer.ScaleTrigger.Pinch

// or just use the string value
ev.trigger === "Pinch"

(static, readonly) ViewMode :string

Name Description

PrizmDoc Viewer v13.17 440

©2021 My Company. All Rights Reserved.

3 4

See:

The ViewMode enumeration defines view modes known by PCCViewer.ViewerControl. The
ViewerControl uses a specified view mode to set or update how documents that contain different sized
pages are displayed in the viewer.

Note: This enumeration is a convenience for API developers. Instead of using it, you can pass in the string
values of the view mode (enumeration values) directly to the API.

Type:

string

Properties:

Name Description

Document :
string

The viewer maintains the relative size of each page when displaying a document. For
example, if page 2 is smaller than page 1, it will appear smaller.

EqualWidthPages
: string

Deprecated since v10.0 (use the "EqualFitPages" enumeration value instead).

SinglePage :
string

The viewer displays a single page at a time. Each page is scaled to fit within a view
box, which is the initial size of the viewer and increases in size when zooming in (and
decreases in size when zooming out). After the viewer initializes, the view mode may
not be changed to or from SinglePage view mode (an Error will be thrown in this
case).

EqualFitPages :
string

The viewer scales each page so that their width is the same, when using vertical
page layout. For example, if page 2 is smaller than page 1, it will be scaled larger so
that its width is equal to the width of page 1. If using horizontal page layout, the
viewer scales each page so that their height is the same.

PCCViewer.ViewerControl#getViewMode

PCCViewer.ViewerControl#setViewMode

Example

// use the enumeration
myViewerControl.setViewMode(PCCViewer.ViewMode.EqualFitPages);

// or just use the string value
myViewerControl.setViewMode("EqualFitPages");

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Class: AjaxResponse

PrizmDoc Viewer v13.17 441

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

PCCViewer. AjaxResponse
new AjaxResponse(response)

This object provides a public API for AJAX Responses. It should be instantiated with every new AJAX
response inside of Viewer Control.

Parameters:

Name Type Description

response Object
Properties

Name Type Description

headers Object

status Number

statusText String

responseText String

Properties:
Name Description

status : Number

statusText : String

responseText : String

Methods
getResponseHeader(header) → {String}

Gets the value of a header

Parameters:

Name Type Description

header String

Returns:

Type
String

PrizmDoc Viewer v13.17 442

©2021 My Company. All Rights Reserved.

Example

// Get the header with a case-insensitive argument
var response = new PCCViewer.AjaxResponse({
 headers: { 'Content-Type': 'application/json', 'X-
Powered-By': 'Express' },
 status: 200,
 statusText: 'OK',
 responseText: 'Success!'
});

response.getResponseHeader('Content-Type'); // returns
'application/json'
response.getResponseHeader('content-type'); // returns
'application/json'
response.getResponseHeader('CONTENT-TYPE'); // returns
'application/json'

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. BurnRequest
(protected) new BurnRequest()

The BurnRequest object is created when burning redactions/signatures in a document.

The BurnRequest is a thenable object, which allows Promise-like interactions. Calling the
PCCViewer.BurnRequest#then method will return a PCCViewer.Promise object. On successful burn, the
Promise success method, if added, is called with url to download the burned document. On a burn
failure, the Promise is rejected.

The BurnRequest object also provides an event subscription method, to get notified of other types of
information. See PCCViewer.BurnRequest.EventType.

Note: This constructor should not be used directly. Instead, a burn request is created by a call to
PCCViewer.ViewerControl#burnMarkup.

Example

function onSuccessfulBurn(burnturl) {
 alert("burntURL = " + burnturl);
 console.log(burnturl);
}

function onFailedBurn(error) {

Class: BurnRequest

PrizmDoc Viewer v13.17 443

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

 alert("burn Process failed, reason:" + (error.message ?
error.message : error));
}

// A BurnRequest object is created by and returned from the
call to the burnMarkup method
var burnRequest = viewerControl.burnMarkup();
burnRequest.then(onSuccessfulBurn, onFailedBurn);

//register some events
burnRequest
 .on(PCCViewer.BurnRequest.EventType.BurnCompleted,
 function(ev) {
 alert("Document burn completed.");
 })
 .on(PCCViewer.BurnRequest.EventType.BurnProgress,
 function(event) {
 alert("Burn progress: " + event.percent + "%");
 })
 .on(PCCViewer.BurnRequest.EventType.BurnFailed,
 function(event) {
 alert("Document burn failed.");
 });

Members
(static) EventType :string

A list of events that can be triggered by the PCCViewer.BurnRequest object.

Type:

string

Properties:

Name Description

BurnProgress : string Triggered when the burn process receives an update.

Augmented properties of the PCCViewer.Event object for this event:

percent {number} - Indicates the estimated percentage complete.

BurnCompleted :
string

Triggered when the burn process completes successfully, fails to complete,
or is cancelled.

Augmented properties of the PCCViewer.Event object for this event: None

BurnFailed : string Triggered when the burn process fails.

Augmented properties of the PCCViewer.Event object for this event: None

BurnCancelled : Triggered when user cancels burn process.

PrizmDoc Viewer v13.17 444

©2021 My Company. All Rights Reserved.

See:

See:

string Augmented properties of the PCCViewer.Event object for this event: None

BurnWorkerCreated :
string

Triggered when the burn process is created by the backend burn service.

Augmented properties of the PCCViewer.Event object for this event: None

(readonly) burnedDocumentDownloadURL :string|null

Gets the URL for downloading the burned document after successful burn.

This property is defined on all BurnRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

string | null

PCCViewer.BurnRequest#getBurnedDocumentDownloadURL

Example

var downloadUrl = burnRequest.burnedDocumentDownloadURL;

(readonly) errorCode :number

Gets the errorCode if there is a failure during burn process.

This property is defined on all BurnRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.BurnRequest#getErrorCode

Example

var errorCode = burnRequest.errorCode;

(readonly) options :Object

Gets the options that were provided/used to burn the document.

Name Description

PrizmDoc Viewer v13.17 445

©2021 My Company. All Rights Reserved.

See:

See:

See:

This property is defined on all BurnRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.BurnRequest#getOptions

Example

var options = burnRequest.options;

(readonly) progress :number

Gets the current estimate of the burn process progress.

This property is defined on all BurnRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.BurnRequest#getProgress

Example

var percentProgress = burnRequest.progress;

(readonly) workerID :number

Gets the worker ID.

This property is defined on all BurnRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.BurnRequest#getWorkerID

PrizmDoc Viewer v13.17 446

©2021 My Company. All Rights Reserved.

Example

var percentProgress = burnRequest.workerID;

Methods
cancel() → {PCCViewer.BurnRequest}

Cancels the burn request. The PCCViewer.Promise object that is returned will be rejected. If the user
cancels the operation, then a PCCViewer.Error object will be returned as the rejection reason and its
code property will be set to UserCancelled.

Returns:

The cancelled request.

Type
PCCViewer.BurnRequest

Example

var burnRequest = viewerControl.burnMarkup();
burnRequest.cancel();

getBurnedDocumentDownloadURL() → {string|null}

Gets a URL for a web tier service to download the burned document.

Returns:

Returns a URL to download the burned document. If called before the process completes, or after the
process fails, it will return null.

Type
string | null

Example

var burnRequest = viewerControl.burnMarkup();
var returnedUrl =
burnRequest.getBurnedDocumentDownloadURL();

getErrorCode() → {string}

PrizmDoc Viewer v13.17 447

©2021 My Company. All Rights Reserved.

Gets the error code for the burn request, in cases where the request has failed.

Returns:

A value for programmatic identification of an error condition, or null if an error has not occurred. If the
error was in the underlying PCCIS MarkupBurner, the error code is the PCCIS error code:

DocumentFileIdError
DocumentFileIdDoesNotExist
MarkupFileIdError
MarkupFileIdDoesNotExist
User Cancelled
Failure to generate Markup XML

Type
string

Example

var burnRequest = viewerControl.burnMarkup();
var errorCode = burnRequest.getErrorCode();

getOptions() → {Object}

Gets a copy of the options object used by the burn request.

The original options object has been provided to the method PCCViewer.ViewerControl#burnMarkup. If no
options object was provided to burnMarkup, or the options object did not define all properties, then the
returned object will represent the actual options used.

Returns:

A copy of the burn options object which is used by this burn request.

burnSignatures {boolean} - Whether to burn the signatures.
burnRedactions {boolean} - Whether to burn the redactions.
filename {string} - (optional) Filename for the burned document.
removeFormFields {Array.} - (optional) List of types of form fields to remove.

Type
Object

Example

var burnRequest = viewerControl.burnMarkup();
var options = burnRequest.getOptions();

PrizmDoc Viewer v13.17 448

©2021 My Company. All Rights Reserved.

See:

getProgress() → {number}

Gets the currently known burn progress value.

Returns:

A number between 0 and 100 (inclusive). A value of 100 means the burn process completed.

Note: In the 9.1 release, the values provided are 0 or 100. The value 0 indicates that the burn process is
incomplete.

Type
number

Example

var burnRequest = viewerControl.burnMarkup();
var percent = burnRequest.getProgress();

getWorkerID() → {string|null}

Gets the ID of the PCCIS MarkupBurner performing burning.

Returns:

The ID of the PCCIS MarkupBurner performing burning. Returns null before the worker is created.

Type
string | null

Example

var burnRequest = viewerControl.burnMarkup();
var workerId = burnRequest.getWorkerID();

off() → {PCCViewer.BurnRequest}

Remove event listeners from the BurnRequest object.

PCCViewer.ViewerControl#off for more on how it is used.

PCCViewer.BurnRequest.EventType for a list of events.

Returns:

The object on which this method was called.

PrizmDoc Viewer v13.17 449

©2021 My Company. All Rights Reserved.

See:

Type
PCCViewer.BurnRequest

on() → {PCCViewer.BurnRequest}

Add event listeners to the BurnRequest object.

PCCViewer.BurnRequest.EventType for a list of events.

PCCViewer.ViewerControl#on for more detailed examples.

Returns:

The object on which this method was called.

Type
PCCViewer.BurnRequest

Example

var burnRequest = viewerControl.burnMarkup();
burnRequest
 .on(PCCViewer.BurnRequest.EventType.BurnCompleted,
 function(ev) {
 alert("Document burn completed.");
 })
 .on(PCCViewer.BurnRequest.EventType.BurnProgress,
 function(event) {
 alert("Burn progress: event.percent + "%");
 });

then(onFulfilledopt, onRejectedopt) → {PCCViewer.Promise}

Register callbacks to access the current or eventual result of the BurnRequest.

On successful burn, the onFulfilled callback(s) are called with the URL to download the burned document.

On a burn failure, the onRejected callback(s) are called with a PCCViewer.Error.

Multiple onFulfilled or onRejected callbacks can be registered for the same BurnRequest by calling this
method multiple times.

Parameters:

Name Type Attributes Description

onFulfilled PCCViewer.Promise~onFulfilled <optional> Called if or when the promise is resolved.
Optionally pass a value of null or
undefined if you do not use this
callback, but you want to provide an
onRejected callback.

PrizmDoc Viewer v13.17 450

©2021 My Company. All Rights Reserved.

onRejected PCCViewer.Promise~onRejected <optional> Called if or when the promise is rejected.

Returns:

A promise object that is resolved according to the Promises/A+ standard.

Type
PCCViewer.Promise

Example

var viewerControl =
$("#myElement").pccViewer(...).viewerControl;

// a basic example
viewerControl.burnMarkup().then(
 function onFulfilled(url) {
 // download document using `url`
 },
 function onRejected(error) {
 // Handle failure
 }
);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Name Type Attributes Description

PCCViewer. Comment
new Comment(comment, conversation)

The constructor for a Comment Object. This describes the comments that belong to a mark
PCCViewer.Conversation.

It will not be necessary to create comments directly with this constructor. Rather, simply use
PCCViewer.Conversation#addComment.

Note: Comment text is not sanitized in any way by the API, and will exist as the same string value assigned to
it. To ensure security of the web application, text data may need to be sanitized and safely inserted into the
DOM when it is used.

Parameters:

Class: Comment

PrizmDoc Viewer v13.17 451

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Name Type Description

comment string The text content of the comment.

conversation PCCViewer.Conversation The PCCViewer.Conversation Object that this comment
belongs to.

Throws:

If commentText is not a string.

Type
Error

If conversation is not a PCCViewer.Conversation Object.

Type
Error

Example

// assume we already have a PCCViewer.Mark object created
var conversation = mark.getConversation();

var comment = conversation.addComment('This is the best
comment ever.');

Members
creationTime :string

Gets and sets the date and time when the comment was created.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

string

PCCViewer.Comment#getCreationTime

PCCViewer.Comment#setCreationTime

text :string

Gets and sets the text content of the Comment.

PrizmDoc Viewer v13.17 452

©2021 My Company. All Rights Reserved.

See:

See:

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

string

PCCViewer.Comment#getText

PCCViewer.Comment#setText

Methods
getConversation() → {PCCViewer.Conversation}

Gets the conversation that this comment is (or was) a part of.

Returns:

The Comment's Conversation.

If a comment is deleted from a conversation, this still returns the Conversation object.

Type
PCCViewer.Conversation

getCreationTime() → {Date}

Gets the date and time when the comment was created.

PCCViewer.Comment#setCreationTime

Returns:

A JavaScript Date Object representing the creation time of the comment.

Type
Date

getData(key) → {string|object}

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

Note: If a hash is returned, this will be a new object each time it is called. Adding new properties to the
returned hash will not add data to the Comment.

Note: The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

PrizmDoc Viewer v13.17 453

©2021 My Company. All Rights Reserved.

See:

See:

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getData

PCCViewer.Comment#setData

PCCViewer.Comment#getDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var comment = myConversation.addComment("Hello world.");

// The key "Author" is set the value "Mark".
comment.setData("Author", "Mark");

// The key "Severity" is set the value "Critical".
comment.setData("Severity", "Critical");

comment.getData("Author"); // returns "Mark"
comment.getData(); // returns {"Author":"Mark",
"Severity":"Critical"}
comment.getData("FooBar"); // returns undefined

getDataKeys() → {Array.<string>}

Gets an array of data keys known to this Comment.

PCCViewer.Data#getDataKeys

PrizmDoc Viewer v13.17 454

©2021 My Company. All Rights Reserved.

PCCViewer.Comment#getData

PCCViewer.Comment#setData

Returns:

Returns an array of data keys known to this Comment. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

var comment = myConversation.addComment("Hello world.");

// Returns an empty array before key-value pairs are
stored.
comment.getDataKeys(); // returns []

// Returns a list of all keys.
comment.setData("Author", "Mark");
comment.setData("Severity", "Critical");
comment.getDataKeys(); // returns ["Author", "Severity"]

getMarkupLayer() → {PCCViewer.MarkupLayer}

Gets the markup layer that this comment is (or was) a part of.

Returns:

The comment's markup layer.

If a comment is removed from a markup layer, this still returns the markup layer object.

Type
PCCViewer.MarkupLayer

getSessionData(key) → {string|object}

Gets the session data value for the given key, or gets a hash containing all key values, if a key was not
provided. Unlike PCCViewer.Comment#getData, this data is not saved with the annotation, it only lasts for
the session.

This method is defined on all Comment objects.

Parameters:

PrizmDoc Viewer v13.17 455

©2021 My Company. All Rights Reserved.

See:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getSessionData

PCCViewer.Comment#setSessionData

PCCViewer.Comment#getSessionDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var comment = myConversation.addComment("Hello world.");

// The key "Author" is set the value "Mark".
comment.setSessionData("Author", "Mark");

// The key "Note" is set the value "This is not going to be
saved!".
comment.setSessionData("Note", "This is not going to be
saved!");

comment.getSessionData("Author"); // returns "Mark"
comment.getSessionData(); // returns
{"Author":"Mark", "Note":"This is not going to be saved!"}
comment.getSessionData("FooBar"); // returns undefined

getSessionDataKeys() → {Array.<string>}

Gets an array of data keys known to this Comment. Unlike PCCViewer.Comment#getDataKeys, this data is
not saved with the annotation, it only lasts for the session.

This method is defined on all Comment objects.

PrizmDoc Viewer v13.17 456

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.Data#getSessionDataKeys

PCCViewer.Comment#getSessionData

PCCViewer.Comment#setSessionData

Returns:

Returns an array of data keys known to this Comment. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

var comment = myConversation.addComment("Hello world.");

// Returns an empty array before key-value pairs are
stored.
comment.getSessionDataKeys(); // returns []

// Returns a list of all keys.
comment.setSessionData("Author", "Mark");
comment.setSessionData("Note", "This is not going to be
saved!");
comment.getSessionDataKeys(); // returns ["Author", "Note"]

getText() → {string}

Gets the text content of the Comment.

Note: This content will be a plain text string which is not sanitized in any way. It may be necessary to sanitize
and safely use the string when inserting it into the DOM.

PCCViewer.Comment#setText

Returns:

The Comment content.

Type
string

setCreationTime(time) → {PCCViewer.Comment}

Sets the date and time when the comment was created.

Parameters:

PrizmDoc Viewer v13.17 457

©2021 My Company. All Rights Reserved.

See:

Name Type Description

time Date | string A JavaScript Date Object or a string in the ISO 8601 format.

PCCViewer.Comment#getCreationTime

Throws:

If the value is not a string or a Date object.

Type
Error

If a string value is used that is not an ISO 8601 date format.

Type
Error

Returns:

The comment Object.

Type
PCCViewer.Comment

Example

// assume we already have a Comment
var now = Date.now();
comment.setCreationTime(now);

var janFirst1970 = "1970-01-01T00:00:00.000Z";
comment.setCreationTime(janFirst1970);

setData(key, value) → {PCCViewer.Comment}

Sets the data value for the given key.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

PrizmDoc Viewer v13.17 458

©2021 My Company. All Rights Reserved.

See:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#setData

PCCViewer.Comment#getData

PCCViewer.Comment#getDataKeys

Returns:

Returns the Comment object on which the method was called.

Type
PCCViewer.Comment

Example

var comment = myConversation.addComment("Hello world.");

// Get data returns undefined before the key is set.
comment.getData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
comment.setData("Author", "Mark");
comment.getData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value "Clark".
comment.setData("Author", "Clark");
comment.getData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
comment.setData("Author", undefined);
comment.getData("Author"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
comment.setData("FooBar", null); // throws
comment.setData("FooBar", 1); // throws
comment.setData("FooBar", true); // throws
comment.setData("FooBar", {}); // throws
comment.setData("FooBar", []); // throws

PrizmDoc Viewer v13.17 459

©2021 My Company. All Rights Reserved.

See:

setSessionData(key, value) → {PCCViewer.Comment}

Sets the session data value for the given key. Unlike PCCViewer.Comment#setData, this data is not saved
with the annotation, it only lasts for the session.

This method is defined on all Comment objects.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#setSessionData

PCCViewer.Comment#getSessionData

PCCViewer.Comment#getSessionDataKeys

Returns:

The Comment object on which the method was called.

Type
PCCViewer.Comment

Example

var comment = myConversation.addComment("Hello world.");

// Get data returns undefined before the key is set.
comment.getSessionData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
comment.setSessionData("Author", "Mark");
comment.getSessionData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value "Clark".
comment.setSessionData("Author", "Clark");
comment.getSessionData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
comment.setSessionData("Author", undefined);
comment.getSessionData("Author"); // returns undefined

// The value can only be set to a string or undefined.

PrizmDoc Viewer v13.17 460

©2021 My Company. All Rights Reserved.

See:

// All other data types throw.
comment.setSessionData("FooBar", null); // throws
comment.setSessionData("FooBar", 1); // throws
comment.setSessionData("FooBar", true); // throws
comment.setSessionData("FooBar", {}); // throws
comment.setSessionData("FooBar", []); // throws

setText(text) → {PCCViewer.Comment}

Sets the text content of the Comment.

Parameters:

Name Type Description

text string The text content being set.

PCCViewer.Comment#getText

Returns:

The comment Object.

Type
PCCViewer.Comment

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. Conversation
new Conversation(mark)

A collection of comments associated with a specific PCCViewer.Mark Object.

A Conversation Object is already available on each PCCViewer.Mark, and should not be created directly
through this constructor.

Parameters:

Name Type Description

mark PCCViewer.Mark The Mark to which the conversation is attached.

Class: Conversation

PrizmDoc Viewer v13.17 461

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Throws:

If mark is not a PCCViewer.Mark Object.

Type
Error

Example

// assume we already have some marks on the document
var firstMark = viewerControl.getAllMarks()[0];

var conversation = firstMark.getConversation();

Methods
addComment(commentText) → {PCCViewer.Comment}

Adds a comment to the Conversation.

Parameters:

Name Type Description

commentText string The text content of the comment being added.

PCCViewer.Comment

Throws:

If commentText is not a string.

Type
Error

Returns:

The newly created comment.

Type
PCCViewer.Comment

deleteComments(comments) → {PCCViewer.Conversation}

Deletes the specified comment or comments from the Conversation.

Parameters:

PrizmDoc Viewer v13.17 462

©2021 My Company. All Rights Reserved.

See:

Name Type Description

comments PCCViewer.Comment | Array.
<PCCViewer.Comment>

A comment or array of comments to be
deleted.

Returns:

The conversation Object.

Type
PCCViewer.Conversation

getComments() → {Array.<PCCViewer.Comment>}

Gets an array of all comments in the Conversation. The comments are ordered by the creation date and
time.

Returns:

An array of Comments.

Type
Array.<PCCViewer.Comment>

getData(key) → {string|object}

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

Note: If a hash is returned, this will be a new object each time it is called. Adding new properties to the
returned hash will not add data to the Conversation.

Note: The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getData

PCCViewer.Conversation#setData

PCCViewer.Conversation#getDataKeys

Throws:

If the key argument is null or otherwise not a string.

PrizmDoc Viewer v13.17 463

©2021 My Company. All Rights Reserved.

See:

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var conversation = myMark.getConversation();

// The key "Resolved" is set the value "false".
conversation.setData("Resolved", "false");

// The key "Severity" is set the value "Critical".
conversation.setData("Severity", "Critical");

conversation.getData("Resolved"); // returns "false"
conversation.getData(); // returns
{"Resolved":"false", "Severity":"Critical"}
conversation.getData("FooBar"); // returns undefined

getDataKeys() → {Array.<string>}

Gets an array of data keys known to this Conversation.

PCCViewer.Data#getDataKeys

PCCViewer.Conversation#getData

PCCViewer.Conversation#setData

Returns:

Returns an array of data keys known to this Conversation. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

PrizmDoc Viewer v13.17 464

©2021 My Company. All Rights Reserved.

See:

var conversation = myMark.getConversation();

// Returns an empty array before key-value pairs are
stored.
conversation.getDataKeys(); // returns []

// Returns a list of all keys.
conversation.setData("Resolved", "false");
conversation.setData("Severity", "Critical");
conversation.getDataKeys(); // returns ["Resolved",
"Severity"]

getMark() → {PCCViewer.Mark}

Gets the PCCViewer.Mark to which the conversation is attached.

Returns:

The Mark to which the conversation is attached.

Type
PCCViewer.Mark

getSessionData(key) → {string|object}

Gets the session data value for the given key, or gets a hash containing all key values, if a key was not
provided. Unlike PCCViewer.Conversation#getData, this data is not saved with the annotation, it only lasts
for the session.

This method is defined on all Conversation objects.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getSessionData

PCCViewer.Conversation#setSessionData

PCCViewer.Conversation#getSessionDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

PrizmDoc Viewer v13.17 465

©2021 My Company. All Rights Reserved.

See:

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var conversation = myMark.getConversation();

// The key "Author" is set the value "Mark".
conversation.setSessionData("Author", "Mark");

// The key "Note" is set the value "This is not going to be
saved!".
conversation.setSessionData("Note", "This is not going to
be saved!");

conversation.getSessionData("Author"); // returns "Mark"
conversation.getSessionData(); // returns
{"Author":"Mark", "Note":"This is not going to be saved!"}
conversation.getSessionData("FooBar"); // returns undefined

getSessionDataKeys() → {Array.<string>}

Gets an array of data keys known to this Conversation. Unlike PCCViewer.Conversation#getDataKeys, this
data is not saved with the annotation, it only lasts for the session.

This method is defined on all Conversation objects.

PCCViewer.Data#getSessionDataKeys

PCCViewer.Conversation#getSessionData

PCCViewer.Conversation#setSessionData

Returns:

Returns an array of data keys known to this Conversation. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

PrizmDoc Viewer v13.17 466

©2021 My Company. All Rights Reserved.

See:

var conversation = myMark.getConversation();

// Returns an empty array before key-value pairs are
stored.
conversation.getSessionDataKeys(); // returns []

// Returns a list of all keys.
conversation.setSessionData("Author", "Mark");
conversation.setSessionData("Note", "This is not going to
be saved!");
conversation.getSessionDataKeys(); // returns ["Author",
"Note"]

setData(key, value) → {PCCViewer.Conversation}

Sets the data value for the given key.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#setData

PCCViewer.Conversation#getData

PCCViewer.Conversation#getDataKeys

Returns:

Returns the Conversation object on which the method was called.

Type
PCCViewer.Conversation

Example

PrizmDoc Viewer v13.17 467

©2021 My Company. All Rights Reserved.

See:

var conversation = myMark.getConversation();

// Get data returns undefined before the key is set.
conversation.getData("Resolved"); // returns undefined

// The key "Resolved" is set the value "false".
conversation.setData("Resolved", "false");
conversation.getData("Resolved"); // returns "false"

// The key "Resolved" is overwritten with the value "true".
conversation.setData("Resolved", "true");
conversation.getData("Resolved"); // returns "true"

// The key "Resolved" is unset, by setting the value to
undefined.
conversation.setData("Resolved", undefined);
conversation.getData("Resolved"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
conversation.setData("FooBar", null); // throws
conversation.setData("FooBar", 1); // throws
conversation.setData("FooBar", true); // throws
conversation.setData("FooBar", {}); // throws
conversation.setData("FooBar", []); // throws

setSessionData(key, value) → {PCCViewer.Conversation}

Sets the session data value for the given key. Unlike PCCViewer.Conversation#setData, this data is not
saved with the annotation, it only lasts for the session.

This method is defined on all Conversation objects.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#setSessionData

PCCViewer.Conversation#getSessionData

PCCViewer.Conversation#getSessionDataKeys

Returns:

PrizmDoc Viewer v13.17 468

©2021 My Company. All Rights Reserved.

The Conversation object on which the method was called.

Type
PCCViewer.Conversation

Example

var conversation = myMark.getConversation();

// Get data returns undefined before the key is set.
conversation.getSessionData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
conversation.setSessionData("Author", "Mark");
conversation.getSessionData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value "Clark".
conversation.setSessionData("Author", "Clark");
conversation.getSessionData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
conversation.setSessionData("Author", undefined);
conversation.getSessionData("Author"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
conversation.setSessionData("FooBar", null); // throws
conversation.setSessionData("FooBar", 1); // throws
conversation.setSessionData("FooBar", true); // throws
conversation.setSessionData("FooBar", {}); // throws
conversation.setSessionData("FooBar", []); // throws

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. ConversionRequest
(protected) new ConversionRequest()

The ConversionRequest object is created when converting a document using
PCCViewer.ViewerControl#requestDocumentConversion.

The ConversionRequest is a thenable object, which allows Promise-like interactions. Calling the
PCCViewer.ConversionRequest#then method will return a PCCViewer.Promise object. On successful
conversion, the Promise success method, if added, is called with an array of the urls to download the

Class: ConversionRequest

PrizmDoc Viewer v13.17 469

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

converted documents. Note that it currently only supports converting to a single PDF file, so the output
array will only contain a single URL. On a conversion failure, the Promise is rejected.

Note that if you create a ConversionRequest object using the
PCCViewer.ViewerControl#convertDocument method, which has been marked as deprecated, the
Promise success method is called with a single URL string (not an array of URL strings).

The ConversionRequest object also provides an event subscription method, to get notified of other
types of information. See PCCViewer.ConversionRequest.EventType.

Note: This constructor should not be used directly. Instead, a ConversionRequest is created by a call to
PCCViewer.ViewerControl#requestDocumentConversion.

Example

function onSuccessfulConvert(convertedDocumentUrls) {
 alert("The first converted document url: " +
convertedDocumentUrls[0]);
}

function onFailedConvert(error) {
 alert("conversion process failed, reason: " +
(error.message ? error.message : error));
}

// A ConversionRequest object is created by and returned
from the call to the
ViewerControl#requestDocumentConversion method
var conversionRequest =
viewerControl.requestDocumentConversion();
conversionRequest.then(onSuccessfulConvert,
onFailedConvert);

//register some events
conversionRequest

.on(PCCViewer.ConversionRequest.EventType.ConversionCompleted,

 function(ev) {
 alert("Document conversion completed.");
 })

.on(PCCViewer.ConversionRequest.EventType.ConversionProgress,

 function(event) {
 alert("Conversion progress: " + event.percent +
"%");
 })

.on(PCCViewer.ConversionRequest.EventType.ConversionFailed,
 function(event) {
 alert("Document conversion failed.");

PrizmDoc Viewer v13.17 470

©2021 My Company. All Rights Reserved.

3 4

See:

 });

Members
(static, readonly) EventType :string

A list of events that can be triggered by the PCCViewer.ConversionRequest object.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

ConversionProgress :
string

Triggered when the conversion process receives an update.

Augmented properties of the PCCViewer.Event object for this event:

progress {number} - Indicates the estimated percentage
complete.

ConversionCompleted :
string

Triggered when the conversion process completes successfully, fails to
complete, or is cancelled.

Augmented properties of the PCCViewer.Event object for this event:
None

ConversionFailed :
string

Triggered when the conversion process fails.

Augmented properties of the PCCViewer.Event object for this event:
None

ConversionCancelled :
string

Triggered when user cancels the conversion process.

Augmented properties of the PCCViewer.Event object for this event:
None

ConversionWorkerCreated
: string

Triggered when the conversion process is created by the backend
conversion service.

Augmented properties of the PCCViewer.Event object for this event:
None

PCCViewer.Event

PCCViewer.ConversionRequest#on

PCCViewer.ConversionRequest#off

(readonly) convertedDocumentDownloadURLs :string|null

PrizmDoc Viewer v13.17 471

©2021 My Company. All Rights Reserved.

See:

See:

Gets the URLs for downloading each converted document after successful conversion.

This property is defined on all ConversionRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

string | null

PCCViewer.ConversionRequest#getConvertedDocumentDownloadURLs

Example

var downloadUrls =
conversionRequest.convertedDocumentDownloadURLs;

(readonly) errorCode :number

Gets the errorCode if there is a failure during conversion process.

This property is defined on all ConversionRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.ConversionRequest#getErrorCode

Example

var errorCode = conversionRequest.errorCode;

(readonly) options :Object

Gets the options that were provided/used to convert the document.

This property is defined on all ConversionRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PrizmDoc Viewer v13.17 472

©2021 My Company. All Rights Reserved.

See:

See:

See:

PCCViewer.ConversionRequest#getOptions

Example

var options = conversionRequest.options;

(readonly) progress :number

Gets the current estimate of the conversion process progress.

This property is defined on all ConversionRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.ConversionRequest#getProgress

Example

var percentProgress = conversionRequest.progress;

(readonly) workerID :number

Gets the worker ID.

This property is defined on all ConversionRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.ConversionRequest#getWorkerID

Example

var percentProgress = conversionRequest.workerID;

Methods

PrizmDoc Viewer v13.17 473

©2021 My Company. All Rights Reserved.

cancel() → {PCCViewer.ConversionRequest}

Cancels the conversion request. The PCCViewer.Promise object that is returned will be rejected. If the
user cancels the operation, then a PCCViewer.Error object will be returned as the rejection reason and
its code property will be set to UserCancelled.

Returns:

The cancelled request.

Type
PCCViewer.ConversionRequest

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
conversionRequest.cancel();

getConvertedDocumentDownloadURL()

Deprecated since v11.0 (use the PCCViewer.ConversionRequest#getConvertedDocumentDownloadURLs
method instead).

getConvertedDocumentDownloadURLs() → {string|null}

Gets the URLs for a web tier service to download each converted document.

Returns:

Returns an array of URLs to download the converted documents. If called before the process completes, or
after the process fails, it will return null.

Type
string | null

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
var convertedUrls =
conversionRequest.getConvertedDocumentDownloadURLs();

getErrorCode() → {string}

PrizmDoc Viewer v13.17 474

©2021 My Company. All Rights Reserved.

Gets the error code for the conversion request, in cases where the request has failed.

Returns:

A value for programmatic identification of an error condition, or null if an error has not occurred.

Type
string

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
var errorCode = conversionRequest.getErrorCode();

getOptions() → {Object}

Gets a copy of the options object used by the conversion request.

The original options object has been provided to the method
PCCViewer.ViewerControl#requestDocumentConversion. If no options object was provided to
requestDocumentConversion, or the options object did not define all properties, then the returned
object will represent the actual options used.

Returns:

A copy of the conversion options object which is used by this conversion request.

targetExtension {string} - (optional) Whether to convert the signatures.
filename {string} - (optional) The format to which the document will be converted.

Type
Object

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
var options = conversionRequest.getOptions();

getProgress() → {number}

Gets the currently known conversion progress value.

Returns:

PrizmDoc Viewer v13.17 475

©2021 My Company. All Rights Reserved.

A number between 0 and 100 (inclusive). A value of 100 means the conversion process completed.

Type
number

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
var percent = conversionRequest.getProgress();

getWorkerID() → {string|null}

Gets the ID of the PCCIS ContentConverter performing conversion.

Returns:

The ID of the PCCIS ContentConverter performing conversion. Returns null before the worker is created.

Type
string | null

Example

var conversionRequest =
viewerControl.requestDocumentConversion();
var workerId = conversionRequest.getWorkerID();

off(eventType, handler) → {PCCViewer.ConversionRequest}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.ConversionRequest.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the
ViewerControl.

Note: This must be the same function object previously
passed to PCCViewer.ConversionRequest#on. It cannot be
a different object that is functionally equivalent.

PrizmDoc Viewer v13.17 476

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.ConversionRequest#on

PCCViewer.ViewerControl#off for more details on unsubscribing event
handlers.

Returns:

The ConversionRequest object on which this method was called.

Type
PCCViewer.ConversionRequest

on(eventType, handler) → {PCCViewer.ConversionRequest}

Subscribe an event handler to an event of a specified type.

Parameters:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See PCCViewer.ConversionRequest.EventType
for a list and description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

PCCViewer.ConversionRequest#off

PCCViewer.ViewerControl#on for more details on event subscription.

Returns:

The ConversionRequest object on which this method was called.

Type
PCCViewer.ConversionRequest

then(onFulfilledopt, onRejectedopt) → {PCCViewer.Promise}

Register callbacks to access the current or eventual result of the ConversionRequest.

On successful conversion, the onFulfilled callback(s) are called with the URL to download the converted
document.

On a conversion failure, the onRejected callback(s) are called with a PCCViewer.Error.

Multiple onFulfilled or onRejected callbacks can be registered for the same ConversionRequest by calling
this method multiple times.

Parameters:

PrizmDoc Viewer v13.17 477

©2021 My Company. All Rights Reserved.

Name Type Attributes Description

onFulfilled PCCViewer.Promise~onFulfilled <optional> Called if or when the promise is resolved.
Optionally pass a value of null or
undefined if you do not use this
callback, but you want to provide an
onRejected callback.

onRejected PCCViewer.Promise~onRejected <optional> Called if or when the promise is rejected.

Returns:

A promise object that is resolved according to the Promises/A+ standard.

Type
PCCViewer.Promise

Example

var viewerControl =
$("#myElement").pccViewer(...).viewerControl;

// a basic example
viewerControl.requestDocumentConversion().then(
 function onFulfilled(url) {
 // download document using `url`
 },
 function onRejected(error) {
 // Handle failure
 }
);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. DocumentHyperlink
The PCCViewer.DocumentHyperlink object represents hyperlinks in the original document.

There are two types of hyperlinks that can appear in a document, a DocumentHyperlink and a hyperlink
drawn by an end user with the viewer's markup system, a "Markup hyperlink".

At a high level, these two different types of hyperlinks behave the same:

1. They can be clicked and the hyperlink followed.

Class: DocumentHyperlink

PrizmDoc Viewer v13.17 478

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

There are several differences between the DocumentHyperlink and a Markup hyperlinks:

1. DocumentHyperlinks are written into the original document by the author of the original document.
They are parsed out by the PrizmDoc Server and sent to the client viewer.

2. Markup hyperlinks are created by an end user of the viewer and saved and loaded with the rest of
the markup in the viewer.

3. DocumentHyperlinks are immutable.
Their attributes href, position, and styling cannot be modified.
They cannot be deleted.
They cannot be added.

4. Markup hyperlinks have full CRUD operation support via the API and mouse tools.
5. DocumentHyperlinks are loaded with the document.
6. Markup hyperlinks are loaded with the rest of the markup, which may be at the discretion of the

end user or of the application embedding the PrizmDoc Viewing Client.

Constructor

new DocumentHyperlink()

NOTE: this constructor is for internal use only.

DocumentHyperlinks cannot be added via the API, they can only be retrieved via the
PCCViewer.ViewerControl#requestDocumentHyperlinks method.

PCCViewer.ViewerControl#requestDocumentHyperlinks

Example

var viewerControl = new PCCViewer.ViewerControl(...);

// use
PCCViewer.ViewerControl#requestDocumentHyperlinks(pageNumber)

viewerControl.requestDocumentHyperlinks(1).then(
 function (documentHyperlinks) {
 // do something with the documentHyperlinks
 documentHyperlinks.forEach(function(dh) {
 // ...
 });
 },
 function (error) {
 alert("Something went wrong " + (error.message ?
error.message : error));
 }
);

Members
(readonly) href :string|number

PrizmDoc Viewer v13.17 479

©2021 My Company. All Rights Reserved.

See:

See:

See:

Gets the link target for DocumentHyperlink.

Type:

string | number

PCCViewer.DocumentHyperlink#getHref

Example

var href = documentHyperlink.href;

switch (typeof href) {
 case "number":
 // navigate to the page
 viewerControl.setPageNumber(href);
 break;
 case "string":
 default:
 // Interpret the URL and execute the navigation.
 window.location.href = href;
 break;
}

(readonly) pageNumber :number

Gets the page number where the DocumentHyperlink object is located.

Type:

number

PCCViewer.DocumentHyperlink#pageNumber

Example

var pageNumber = myDocumentHyperlink.pageNumber;

(readonly) rectangle :number

Gets the bounding rectangle for the DocumentHyperlink. The returned object has the type {x: xValue,
y: yValue, width: widthValue, height: heightValue}.

Type:

number

PCCViewer.DocumentHyperlink#rectangle

PrizmDoc Viewer v13.17 480

©2021 My Company. All Rights Reserved.

See:

See:

Example

var boundingRectangle = myDocumentHyperlink.rectangle;

Methods
getHref() → {string|number}

Gets the link target for DocumentHyperlink.

PCCViewer.DocumentHyperlink#href

Returns:

The link target.

A number value indicates that the target is a page number within the document.

Type
string | number

Example

var href = documentHyperlink.getHref();

switch (typeof href) {
 case "number":
 // navigate to the page
 viewerControl.setPageNumber(href);
 break;
 case "string":
 default:
 // Interpret the URL and execute the navigation.
 window.location.href = href;
 break;
}

getPageNumber() → {number}

Gets the page number where the DocumentHyperlink object is located.

PCCViewer.DocumentHyperlink#pageNumber

Returns:

PrizmDoc Viewer v13.17 481

©2021 My Company. All Rights Reserved.

See:

The page number where the DocumentHyperlink is located.

Type
number

Example

var pageNumber = myDocumentHyperlink.getPageNumber();

getRectangle() → {Object}

Gets the bounding rectangle for the DocumentHyperlink.

PCCViewer.DocumentHyperlink#rectangle

Returns:

A rectangle object of the type {x: xValue, y: yValue, width: widthValue, height:
heightValue}.

Type
Object

Example

var boundingRectangle = myDocumentHyperlink.getRectangle();

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. Error
new Error(code, message)

The constructor for a Error Object. PCCViewer. Error inherits from the JavaScript Error.

Parameters:

Name Type Description

code string A string that indicates the error code. As a convention used across PrizmDoc Viewing
Client and Server, the code should be PascalCased and should not contain any spaces.

Class: Error

PrizmDoc Viewer v13.17 482

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

message string A developer readable string that indicates details of the error.

Example

// assume we already have a PCCViewer.Mark object created
var error = new PCCViewer.Error('ResponseEmpty',
'Empty/invalid response from the server');

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Name Type Description

PCCViewer. Event
new Event(target, type)

Create an event object. This is the internal constructor used when the viewer emits any event. This object
describes the common attributes of all events. Augmented, event-specific, values can be found in the
descriptions of each event. See PCCViewer.EventType for specific events.

Parameters:

Name Type Description

target PCCViewer.ViewerControl The event target is the viewer where the event originated.

type string The name of the event type.

Members
(readonly) target :PCCViewer.ViewerControl

Contains the instance of the viewer that fired the event. See also PCCViewer.Event#getTarget.

ECMA5 accessor property that is defined only in browsers supporting ECMA 5. This property is not available in
the older browsers like IE8.

Type:

PCCViewer.ViewerControl

(readonly) type :string

Class: Event

PrizmDoc Viewer v13.17 483

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Contains the type of event. See also PCCViewer.Event#getType.

ECMA5 accessor property that is defined only in browsers supporting ECMA 5. This property is not available in
the older browsers like IE8.

Type:

string

Methods
getTarget() → {PCCViewer.ViewerControl}

Gets the instance of the viewer that fired the event.

Returns:

Type
PCCViewer.ViewerControl

Example

var viewerObj;
function pageCountReadyHandler (event) {
 console.log("page count ready event");
 if(event.getTarget() !== viewerObj){
 alert("The `pageCountReady` event did not originate
from the expected instance of the viewer object");
 }
}
//subscribe to the pageCountReady event
viewerObj = viewer.on(PCCViewer.EventType.PageCountReady,
pageCountReadyHandler);

getType() → {string}

Gets the name of the event type. This will be the same value as the eventType argument to the
PCCViewer.ViewerControl#on function.

PCCViewer.EventType for event types.

Returns:

a string containing event type.

Type
string

PrizmDoc Viewer v13.17 484

©2021 My Company. All Rights Reserved.

See:

Example

function pageCountReadyHandler (event) {
 console.log("page count ready event");
 if(event.getType() !==
PCCViewer.EventType.PageCountReady){
 alert("The event type did not match");
 }
}
//subscribe to the pageCountReady event
viewer.on(PCCViewer.EventType.PageCountReady,
pageCountReadyHandler);

Type Definitions
eventHandler(event)

The function to call when an event occurs. When the event is triggered, all subscribed event handlers are
called.

Parameters:

Name Type Description

event PCCViewer.Event A PCCViewer.Event object that represents the event. The event object is often
augmented with properties which provide event specific information.

PCCViewer.ViewerControl#on

PCCViewer.ViewerControl#off

PCCViewer.SearchRequest#on

PCCViewer.SearchRequest#off

PCCViewer.PrintRequest#on

PCCViewer.PrintRequest#off

Example

// Our event handler declaration.
// The handler will be called with one argument of type
PCCViewer.Event.
function pageCountReadyEventHandler(event) {
 var target = event.getTarget(), // `getTarget` is
defined on every event object
 type = event.getType(); // `getType` is
defined on every event object

 // The PageCountReady event augments the event object

PrizmDoc Viewer v13.17 485

©2021 My Company. All Rights Reserved.

with property `pageCount`
 var pageCount = event.pageCount;
}

// Subscribe the event handler to an event.
viewerControl.on("PageCountReady",
pageCountReadyEventHandler);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. ImageStamps
new ImageStamps(object)

The constructor for a ImageStamp Object. 'ImageStamp' object represents APIs for requesting the images
and source from the server.

Parameters:

Name Type Description

object object with link to imageHandler URL.

Example

var options = { imageHandlerUrl: "../pcc.ashx" }
 var stamp = PCCViewer.ImageStamps(options);

Methods
getImageSourceURL(imageStampId)

Returns the image source URL for the imageStampId

Parameters:

Name Type Description

imageStampId string

Example

Class: ImageStamps

PrizmDoc Viewer v13.17 486

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

var options = { imageHandlerUrl: "../pcc.ashx" }
 var stampApi = new PCCViewer.ImageStamps(options);

 var imageUrl = stampApi.getImageSourceURL(imageStampId);

reqestImageSourceBase64()

Deprecated since v13.4 (use the PCCViewer.ImageStamps#requestImageSourceBase64 method instead).

requestImageSourceBase64(imageStampId) → {PCCViewer.Promise}

Retrieves the data URL and data hash from the server for the provided image stamp ID. This method
utilizes an asynchronous server request to fetch the data and returns a PCCViewer.Promise to resolve the
request.

The onFulfilled callback will receive an object containing the dataUrl (a base64 encoded image
source) and dataHash (an encoded unique ID) of the image stamp.

If unable to retrieve the image stamp data URL and data hash from the server, then the returned
PCCViewer.Promise object is rejected with the reason set to a PCCViewer.Error object with its code
property set to ImageStampDataFail.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set to a
PCCViewer.Error object with its code property set to AjaxUnsupported.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the reason set
to a PCCViewer.Error object with its code property set to Error.

Parameters:

Name Type Description

imageStampId string A unique ID that corresponds to an image stamp stored on the server.

Returns:

A PCCViewer.Promise object.

Type
PCCViewer.Promise

Example

var options = { imageHandlerUrl: "../pcc.ashx" };
var stampApi = new PCCViewer.ImageStamps(options);

var stampPromise = stampApi.requestImageStampList();

stampPromise.then(
 function onSuccess(data) {
 var base64Promise =

PrizmDoc Viewer v13.17 487

©2021 My Company. All Rights Reserved.

stampApi.requestImageSourceBase64(data.imageStamps[0].id);

 base64Promise.then(
 function onSuccess(imageSource) {
 var pageNumber = 1;
 var rectangle = { x: 30, y: 30, width: 100,
height: 100 };
 var mark =
viewer.viewerControl.addMark(pageNumber,
"ImageStampAnnotation");
 mark.setImage({
 dataUrl: imageSource.dataUrl, id:
imageSource.dataHash
 });
 mark.setRectangle(rectangle);
 }
);

 },
 function onFailure(error) {
 alert(error.message ? error.message : error);
 }
);

requestImageStampList(object) → {PCCViewer.Promise}

Retrieves the image stamp list from the server.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the reason
set to a PCCViewer.Error object with its code property set to Error.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set to
a PCCViewer.Error object with its code property set to AjaxUnsupported.

Parameters:

Name Type Description

object object with web handler link assigned to the imageHandlerUrl property.

Returns:

a Promise object.

Type
PCCViewer.Promise

Example

var options = { imageHandlerUrl: "../pcc.ashx" }

PrizmDoc Viewer v13.17 488

©2021 My Company. All Rights Reserved.

 var stampApi = new PCCViewer.ImageStamps(options);
 var imageStamps = {};
 var base64Source = null;

 var stampPromise = stampApi.requestImageStampList();

 stampPromise.then(
 function onSuccess(data) {
 imageStamps = data.imageStamps;
 var base64Promise =
stampApi.requestImageSourceBase64(imageStamps[0].id);

 base64Promise.then(
 function onSuccess(imageSource) {
 base64Source = imageSource
 var pageNumber = 1;
 var rectangle = { x: 30, y: 30, width:
100, height: 100 };
 var mark =
viewer.viewerControl.addMark(pageNumber,
"ImageStampAnnotation");
 mark.setImage({
 dataUrl: base64Source.dataUrl, id:
base64Source.dataHash
 });
 mark.setRectangle(rectangle);
 }
);

 },
 function onFailure(error) {
 alert(error.message ? error.message : error)
 }
);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. LoadMarkupLayersRequest
(protected) new LoadMarkupLayersRequest(viewerControl, layerRecordIds)

The LoadMarkupLayersRequest object is created when loading markup layers using
PCCViewer.ViewerControl#loadMarkupLayers.

The LoadMarkupLayersRequest is a thenable object, which allows Promise-like interactions. Calling the
PCCViewer.LoadMarkupLayersRequest#then method will return a PCCViewer.Promise object. On successful

Class: LoadMarkupLayersRequest

PrizmDoc Viewer v13.17 489

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

layer loading, the Promise success method, if added, is called with the PCCViewer.LoadMarkupLayer
objects created by the loaded layer records. On a load failure, the Promise is rejected.

The LoadMarkupLayersRequest object also provides an event subscription method, to get notified of
other types of information. See PCCViewer.LoadMarkupLayersRequest.EventType.

Note: This constructor should not be used directly. Instead, a LoadMarkupLayersRequest is created by a call to
PCCViewer.ViewerControl#loadMarkupLayers.

Parameters:

Name Type Description

viewerControl string The PCCViewer.ViewerControl for the loaded document.

layerRecordIds Array.<string> An array of layer record IDs.

Example

function onSuccessfulLoad(annotationLayers) {
 console.log(annotationLayers);
}

function onFailedConvert(error) {
 alert("Markup layer record loading failed, reason:" +
(error.message ? error.message : error));
}

// A LoadMarkupLayersRequest object is created by and
returned from the call to the ViewerControl#convertDocument
method
var LoadMarkupLayersRequest =
viewerControl.loadMarkupLayers(['abc123']);
LoadMarkupLayersRequest.then(onSuccessfulConvert,
onFailedConvert);

//register some events
LoadMarkupLayersRequest

.on(PCCViewer.LoadMarkupLayersRequest.EventType.LoadMarkupLayersCompleted,

 function(ev) {
 alert("Markup layer loading completed.");
 })

.on(PCCViewer.LoadMarkupLayersRequest.EventType.LoadMarkupLayersProgress,

 function(event) {
 alert("Conversion progress: " + event.percent +
"%");
 })

PrizmDoc Viewer v13.17 490

©2021 My Company. All Rights Reserved.

3 4

See:

.on(PCCViewer.LoadMarkupLayersRequest.EventType.LoadMarkupLayersFailed,

 function(event) {
 alert("Markup layer loading failed.");
 })

.on(PCCViewer.LoadMarkupLayersRequest.EventType.LoadMarkupLayersCancelled,

 function(event) {
 alert("Markup layer loading was cancelled.");
 });

Members
(static, readonly) EventType :string

A list of events that can be triggered by the PCCViewer.LoadMarkupLayersRequest object.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

LoadMarkupLayersFailed : string

LoadMarkupLayersCompleted : string

LoadMarkupLayersCancelled : string

LoadMarkupLayersProgress : string

PCCViewer.Event

PCCViewer.LoadMarkupLayersRequest#on

PCCViewer.LoadMarkupLayersRequest#off

(readonly) errorCode :number

Gets the errorCode if there is a failure during load process.

This property is defined on all LoadMarkupLayersRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

PrizmDoc Viewer v13.17 491

©2021 My Company. All Rights Reserved.

See:

See:

See:

number

PCCViewer.LoadMarkupLayersRequest#getErrorCode

Example

var errorCode = LoadMarkupLayersRequest.errorCode;

(readonly) progress :number

Gets the current estimate of the loading process progress.

This property is defined on all LoadMarkupLayersRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

number

PCCViewer.LoadMarkupLayersRequest#getProgress

Example

var percentProgress = LoadMarkupLayersRequest.progress;

(readonly) viewerControl :Object

Gets the viewer control associated with this request.

This property is defined on all LoadMarkupLayersRequest objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.LoadMarkupLayersRequest#getViewerControl

Example

var viewerControl = LoadMarkupLayersRequest.viewerControl;

PrizmDoc Viewer v13.17 492

©2021 My Company. All Rights Reserved.

Methods
cancel() → {PCCViewer.LoadMarkupLayersRequest}

Cancels the load request. The PCCViewer.Promise object that is returned will be rejected. If the user
cancels the operation, then a PCCViewer.Error object will be returned as the rejection reason and its
code property will be set to UserCancelled.

Returns:

The cancelled request.

Type
PCCViewer.LoadMarkupLayersRequest

Example

var loadMarkupLayersRequest =
viewerControl.loadMarkupLayers(['abc123']);
loadMarkupLayersRequest.cancel();

getErrorCode() → {string}

Gets the error code for the load request, in cases where the request has failed.

Returns:

A value for programmatic identification of an error condition, or null if an error has not occurred.

Type
string

Example

var loadMarkupLayersRequest =
viewerControl.loadMarkupLayers(['abc123']);
var errorCode = loadMarkupLayersRequest.getErrorCode();

getProgress() → {number}

Gets the currently known loading progress value.

Returns:

A number between 0 and 100 (inclusive). A value of 100 means the loading process completed.

PrizmDoc Viewer v13.17 493

©2021 My Company. All Rights Reserved.

Type
number

Example

var loadMarkupLayersRequest =
viewerControl.loadMarkupLayers(['abc123']);
var percent = loadMarkupLayersRequest.getProgress();

getViewerControl() → {PCCViewer.ViewerControl}

Gets the viewer control associated with this request.

Returns:

A viewer control object.

Type
PCCViewer.ViewerControl

Example

var loadMarkupLayersRequest =
viewerControl.loadMarkupLayers(['abc123']);
var viewerControl =
loadMarkupLayersRequest.getViewerControl();

off(eventType, handler) → {PCCViewer.LoadMarkupLayersRequest}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.LoadMarkupLayersRequest.EventType for a list
and description of all supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the
ViewerControl.

Note: This must be the same function object previously
passed to PCCViewer.LoadMarkupLayersRequest#on. It
cannot be a different object that is functionally equivalent.

PrizmDoc Viewer v13.17 494

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.LoadMarkupLayersRequest#on

PCCViewer.ViewerControl#off for more details on unsubscribing event
handlers.

Returns:

The LoadMarkupLayersRequest object on which this method was called.

Type
PCCViewer.LoadMarkupLayersRequest

on(eventType, handler) → {PCCViewer.LoadMarkupLayersRequest}

Subscribe an event handler to an event of a specified type.

Parameters:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See
PCCViewer.LoadMarkupLayersRequest.EventType for a list
and description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

PCCViewer.LoadMarkupLayersRequest#off

PCCViewer.ViewerControl#on for more details on event subscription.

Returns:

The LoadMarkupLayersRequest object on which this method was called.

Type
PCCViewer.LoadMarkupLayersRequest

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. Mark

Class: Mark

PrizmDoc Viewer v13.17 495

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

The PCCViewer.Mark object represents an annotation or redaction. (We use the term "mark" as a
generic term for annotations and redactions.)

Marks Drawn on the Document

Typically a Mark object represents a mark that is drawn on the document. In the case that a Mark object
represents, a mark drawn on the document, then setting properties of the Mark object will cause the
appearance of the mark on the document to be updated.

To add a new mark to a document, use the method PCCViewer.ViewerControl#addMark.

Mark Properties

All marks have the following read-only properties that are set when the API creates the Mark object.

.getId() and .id

.getType() and .type

.getPageNumber() and .pageNumber

A Mark object can also have a number of writable properties, which are define on the object
depending on the mark type.

For example, a Mark object with type LineAnnotation will have a property .startPoint, accessible
through .getStartPoint() and .setStartPoint(...), but a Mark object with the type
RectangleAnnotation will not have the property .startPoint. Or, a Mark object with the type
StampAnnotation will have a property .color, accessible through .getColor() and
.setColor(...) and a LineAnnotation Mark object also has the property .color.

The full list of Mark properties is listed below. The documentation lists what properties are on what
mark types, and vice versa.

To programatically determine if a mark has a property, use the JavaScript in operator. Or use the !
operator if you are referencing the property's getter or setter method. Examples are shown below.

!!myMarkObject.getStartPoint; // true if the startPoint property was
added to the Mark object
//Note: this option will only be available in ECMAScript 5 compatible
browsers
'startPoint' in myMarkObject; // true if the startPoint property was
added to the Mark object

Template Marks

A Mark object can also act as a template for mouse tools that create marks. For example, a
LineAnnotation mouse tool will have a "template mark" that is used as a template for any mark
created by the mouse tool. Setting the color of the template mark to yellow will cause all marks created
by the mouse tool to be yellow.

The template mark is accessible via the method PCCViewer.MouseTool#getTemplateMark.

Constructor

new Mark(parameters)

NOTE: this constructor is for internal use only.

To programmatically add a Mark (an annotation or redaction) to a document, use
PCCViewer.ViewerControl#addMark.

PrizmDoc Viewer v13.17 496

©2021 My Company. All Rights Reserved.

See:

See:

Parameters:

Name Type Description

parameters Object The parameters object takes the following properties:

type {string} [required] Mark Type PCCViewer.Mark.Type
pageNumber {number} [optional] Page Number on which the Mark is
located . If this property is not specified, the page number will default to
the current page.

PCCViewer.ViewerControl#addMark

PCCViewer.MouseTool#getTemplateMark

PCCViewer.Mark.Type

Example

var viewerControl = new PCCViewer.ViewerControl(...);

// use PCCViewer.ViewerControl#addMark(pageNumber,
markType) to create
// and add a mark instead of new Mark()
viewerControl.addMark(1, "LineAnnotation");

Members
(static, readonly) FontStyles :string

The PCCViewer.Mark.FontStyles enumeration defines Font Styles known to the ViewerControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you
may pass string values of the FontStyles (enumeration values).

Type:

string

Properties:

Name Description

Bold : string Specifies that the text should be bold.

Italic : string Specifies that the text should be italic.

Strikeout : string Specifies that the text should be struck out.

Underline : string Specifies that the text should be underlined.

PCCViewer.Mark#setFontStyle

PrizmDoc Viewer v13.17 497

©2021 My Company. All Rights Reserved.

3 4

Example

// use the enumeration to make text Bold
mark.setFontStyle([PCCViewer.Mark.FontStyles.Bold]);

// or just use the string value. Note: The parameter
should be an array of styles required.
mark.setFontStyle(["Bold"]);

(static, readonly) HorizontalAlignment :string

The PCCViewer.Mark.HorizontalAlignment enumeration defines horizontal alignment known to
the ViewerControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you
may pass string values of the HorizontalAlignment (enumeration values).

Type:

string

Properties:

Name Description

Center : string Specifies that the text should be centered horizontally.

Left : string Specifies that the text should be left-justified.

Right : string Specifies that the text should be right-justified.

Example

// use the enumeration to make text centered
mark.setHorizontalAlignment(PCCViewer.Mark.HorizontalAlignment.Center);

// or just use the string value
mark.setHorizontalAlignment("Center");

(static, readonly) InteractionMode :string

The PCCViewer.Mark.InteractionMode enumeration defines possible interaction modes for a
Mark. The interaction mode affects the behavior of the mark when the user interacts with the mark
through mouse, touch, or API.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you
may pass string values of the InteractionMode (enumeration values).

PrizmDoc Viewer v13.17 498

©2021 My Company. All Rights Reserved.

3 4

See:

Type:

string

Properties:

Name Description

Full : string Specifies that the mark is fully interactive using the mouse, touch-input, and
API.

SelectionDisabled
: string

Specifies that the mark cannot be selected.

Note: If a mark is selected when the mark’s interaction mode is set to
“SelectionDisabled”, then the mark will be deselected and the ViewerControl’s
MarkSelectionChanged event will fire.

PCCViewer.Mark#getInteractionMode

PCCViewer.Mark#setInteractionMode

PCCViewer.Mark#interactionMode

Example

// use the enumeration to make the mark non-selectable
mark.setInteractionMode(PCCViewer.Mark.InteractionMode.SelectionDisabled);

// or just use the string value of the enumeration
mark.setInteractionMode("SelectionDisabled");

(static, readonly) LineHeadType :string

The PCCViewer.Mark.LineHeadType enumeration defines Mark LineHeadTypes known to the
ViewerControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you
may pass string values of the LineHeadType (enumeration values).

Type:

string

Properties:

Name Description

None : string No line head.

FilledTriangle : string A filled triangle line head. Note: this makes the line an arrow. :)

PrizmDoc Viewer v13.17 499

©2021 My Company. All Rights Reserved.

3 4

Example

// use the enumeration to make a line an arrow
myLineAnnotation.setEndHeadType(PCCViewer.Mark.LineHeadType.FilledTriangle);

// or just use the string value
myLineAnnotation.setEndHeadType("FilledTriangle");

(static, readonly) Type :string

The PCCViewer.Mark.Type enumeration defines Mark Types known to the ViewerControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you
may pass string values of the Type (enumeration values).

Type:

string

Properties:

Name Description

LineAnnotation : string This mark is drawn as a line on the document. A head can be
added to the end of the line to make the line an arrow.

The properties specific for this are: color, thickness,
opacity, startPoint, endPoint, endHeadType.

RectangleAnnotation : string This mark is drawn as a rectangle on the document.

The properties specific for this are: fillColor, opacity,
borderColor, borderThickness, rectangle.

EllipseAnnotation : string This mark is drawn as an ellipse on the document.

The properties specific for this are: fillColor, opacity,
borderColor, borderThickness, rectangle.

TextAnnotation : string This mark is drawn as text on the document. The text has a
background and border.

The properties specific for this are: text, fontColor,
fillColor, opacity, borderColor, borderThickness,
fontName, fontSize, fontStyle, horizontalAlignment,
rectangle.

The methods specific for this are: highlightText.

StampAnnotation : string This mark is drawn as a stamp on the document. A stamp has a
label (text) and a border.

The properties specific for this are: color, label, rectangle.

HighlightAnnotation : string This mark is drawn as a text highlight on the document.

PrizmDoc Viewer v13.17 500

©2021 My Company. All Rights Reserved.

The properties specific for this are: fillColor and text.

The methods specific for this are: highlightText.

RectangleRedaction : string This mark is drawn as a rectangle on the document.

The properties specific for this are: rectangle, borderColor,
borderThickness, fillColor, fontColor, reason,
reasons. Note: You can provide either a plural reasons
property with an array of strings or a singular reason property
with a single string value. If you provide an array of reasons,
they will be displayed together as a single string with a
semicolon separating each reason.

TransparentRectangleRedaction
: string

This mark is drawn as a transparent rectangle on the document.
The color is always yellow and the opacity is always 50%
(127/255).

The properties specific for this are: rectangle.

TextHyperlinkAnnotation :
string

This mark is drawn as a text hyperlink on the document.

The properties specific for this are: href, position and text
(read-only).

The methods specific for this are: highlightText.

TextRedaction : string This mark is drawn as a rectangle on the document. This
redaction can be burned into the document.

The properties specific for this are: text, fontColor,
fontName, fontSize, fontStyle, rectangle.

The methods specific for this are: highlightText.

StampRedaction : string This mark is drawn as a stamp on the document. This redaction
can be burned into the document.

The properties specific for this are: label, rectangle.

FreehandAnnotation : string This mark is drawn as a freehand line on the document.

The properties specific for this are: path, rectangle, color,
thickness, opacity.

FreehandSignature : string This mark is drawn as a signature on the document and is
confined to a rectangle.

The properties specific for this are: path, rectangle, color,
thickness.

TextSignature : string This mark is drawn as a text signature on the document and is
confined to a rectangle.

The properties specific for this are: text, rectangle, color,
fontName.

TextInputSignature : string This mark is drawn as a single line of text that auto-fits to the
containing rectangle. The user can interact with the mark using

Name Description

PrizmDoc Viewer v13.17 501

©2021 My Company. All Rights Reserved.

the mouse, touch-screen, and keyboard in order to set the text
and adjust the rectangle.

The properties specific for this are: text, rectangle,
fontColor, fontName, mask, horizontalAlignment,
maxLength.

TextAreaSignature : string This mark is drawn as a text area that auto-fits to the containing
rectangle. The user can interact with the mark using the mouse,
touch-screen, and keyboard in order to set the text and adjust
the rectangle.

The properties specific for this are: text, rectangle,
fontColor, fontName, maxFontSize, fontStyle,
horizontalAlignment, maxLength.

TextSelectionRedaction :
string

This mark is drawn as a text highlight redaction on the
document.

The properties specific for this are: text, reason, reasons.
Note: You can provide either a plural reasons property with
an array of strings or a singular reason property with a single
string value. If you provide an array of reasons, they will be
displayed together as a single string with a semicolon
separating each reason.

The methods specific for this are: highlightText.

ImageStampAnnotation : string This mark is drawn as an ImageStamp annotation on the
document.

The properties specific for this are: none.

ImageStampRedaction : string This mark is drawn as an ImageStamp redaction on the
document.

The properties specific for this are: none.

PolylineAnnotation : string This mark is drawn as a Polyline on the document. It is in a form
of a set of connected line segments.

The properties specific for this are: color, thickness,
opacity, points.

StrikethroughAnnotation :
string

This mark is drawn as a Strikethrough annotation on the
document. The annotation itself is just a line that is placed over
the specified text.

The properties specific for this are: color, thickness and
text.

The methods specific for this are: highlightText.

Example

Name Description

PrizmDoc Viewer v13.17 502

©2021 My Company. All Rights Reserved.

See:

See:

// use the enumeration to make a line annotation
myViewerControl.addMark(1,
PCCViewer.Mark.Type.LineAnnotation);

// or just use the string value
myViewerControl.addMark(1, "LineAnnotation");

borderColor :string

Gets or sets the border color of the Mark.

This property is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getBorderColor

PCCViewer.Mark#setBorderColor

Example

if ('borderColor' in mark) {
 var oldValue = mark.borderColor;
 mark.borderColor = "#FF0000"; // set border color to
red
}

borderThickness :number

Gets or sets the border thickness of the Mark.

This property is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#getBorderThickness

PCCViewer.Mark#setBorderThickness

PrizmDoc Viewer v13.17 503

©2021 My Company. All Rights Reserved.

See:

See:

Example

if ('borderThickness' in mark) {
 var oldValue = mark.borderThickness;
 mark.borderThickness = 3; // set the border thickness
of the mark
}

boundingRectangle :Object

Gets the bounding rectangle of the Mark.

This property is defined on all Mark objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getBoundingRectangle

Example

var boundingRectangle = mark.boundingRectangle;

color :string

Gets or sets the color of the Mark.

This property is defined on marks of type: LineAnnotation, StampAnnotation,
FreehandAnnotation, FreehandSignature, TextSignature, PolylineAnnotation and
StrikethroughAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getColor

PCCViewer.Mark#setColor

Example

if ('color' in mark) {

PrizmDoc Viewer v13.17 504

©2021 My Company. All Rights Reserved.

See:

See:

 var oldValue = mark.color;
 mark.color = "#FF0000"; // set color to red
}

(readonly) conversation :string

Gets the conversation associated with the Mark.

This property is defined on all Mark objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getConversation

Example

var conversation = mark.conversation;

endHeadType :string

Gets or sets the end head type of the Mark.

The value of end head type determines if the line looks like an arrow or a plain line.

This property is defined on marks of type: LineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark.LineHeadType

PCCViewer.Mark#getEndHeadType

PCCViewer.Mark#setEndHeadType

Example

if ('endHeadType' in mark) {
 var oldValue = mark.endHeadType;

 // set the head to be a filled triangle, so the line
looks like an arrow

PrizmDoc Viewer v13.17 505

©2021 My Company. All Rights Reserved.

See:

See:

 mark.endHeadType = "FilledTriangle";
}

endPoint :Object

Gets or sets the end point coordinates of the line Mark.

This property is defined on marks of type: LineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getEndPoint

PCCViewer.Mark#setEndPoint

Example

if ('endPoint' in mark) {
 var oldValue = mark.endPoint;
 mark.endPoint = {x: 100, y: 100}; // set the start
point to (100, 100)
}

endPoint :Object

Gets or sets the end point coordinates of the line Mark.

This property is defined on marks of type: LineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getEndPoint

PCCViewer.Mark#setEndPoint

Example

if ('endPoint' in mark) {
 var oldValue = mark.endPoint;
 mark.endPoint = {x: 100, y: 100}; // set the start

PrizmDoc Viewer v13.17 506

©2021 My Company. All Rights Reserved.

See:

See:

point to (100, 100)
}

fillColor :string

Gets or sets the fill color of the Mark.

This property is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, HighlightAnnotation, 'TextHyperlinkAnnotation' and RectangleRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getFillColor

PCCViewer.Mark#setFillColor

Example

if ('fillColor' in mark) {
 var oldValue = mark.fillColor;
 mark.fillColor = "#FF0000"; // set color to red
}

fontColor :string

Gets or sets the font color of the text in the Mark.

This property is defined on marks of type: TextAnnotation, TextRedaction,
TextInputSignature, RectangleRedaction and TextAreaSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getFontColor

PCCViewer.Mark#setFontColor

Example

if ('fontColor' in mark) {
 var oldValue = mark.fontColor;

PrizmDoc Viewer v13.17 507

©2021 My Company. All Rights Reserved.

See:

See:

 mark.fontColor = "#ffccbb";
}

fontName :string

Gets or sets the font name of the text in the Text Mark.

This property is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
TextAreaSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getFontName

PCCViewer.Mark#setFontName

Example

if ('fontName' in mark) {
 var oldValue = mark.fontName;
 mark.fontName = "Aerial";
}

fontSize :number

Gets or sets the font size (in points) for the text in the Text Mark.

This property is defined on marks of type: TextAnnotation, TextRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#getFontName

PCCViewer.Mark#setFontName

Example

if ('fontSize' in mark) {
 var oldValue = mark.fontSize;
 mark.fontSize = 12;

PrizmDoc Viewer v13.17 508

©2021 My Company. All Rights Reserved.

See:

See:

}

fontStyle :Array.<string>

Gets or sets the font Style of the text in the mark.

This property is defined on marks of type: TextRedaction, TextAreaSignature,
TextAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Array.<string>

PCCViewer.Mark.FontStyles

PCCViewer.Mark#getFontStyle

PCCViewer.Mark#setFontStyle

Example

if ('fontStyle' in mark) {
 var oldValue = mark.fontStyle;
 mark.fontStyle = ["Bold",Underline,Italic];
}

horizontalAlignment :string

Gets or sets the text horizontal alignment of the text in the Text Mark.

This property is defined on marks of type: TextAnnotation, TextRedaction,
FreehandSignature, TextSignature, TextInputSignature and TextAreaSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark.HorizontalAlignment

PCCViewer.Mark#getHorizontalAlignment

PCCViewer.Mark#setHorizontalAlignment

Example

if ('horizontalAlignment' in mark) {

PrizmDoc Viewer v13.17 509

©2021 My Company. All Rights Reserved.

See:

See:

 var oldValue = mark.horizontalAlignment;
 mark.horizontalAlignment = "left";
}

href :string

Gets or sets the link target for hyperlink annotations.

All strings and numbers are valid values. It is the responsibility of the API consumer to handle clicks of
hyperlink annotations. When handling the click, the API consumer should interpret the href value and
take the appropriate navigation action.

This property is defined on marks of type: TextHyperlinkAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getHref

PCCViewer.Mark#setHref

Example

if ('href' in mark) {
 var oldValue = mark.href;
 mark.href = "http://www.accusoft.com/";
}

(readonly) id :string

Gets the ID of the Mark.

This property is defined on all Mark objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getId

Example

var id = mark.id;

PrizmDoc Viewer v13.17 510

©2021 My Company. All Rights Reserved.

See:

See:

image :PCCViewer.Mark~ImageData

Gets the image that is displayed for the Mark.

This property is defined on marks of type: ImageStampAnnotation and ImageStampRedaction

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

PCCViewer.Mark~ImageData

PCCViewer.Mark#getImage

PCCViewer.Mark#setImage

Example

if ('image' in mark) {
 // get old image data
 var oldImageData = mark.image;

 // set new image
 mark.image = {
 dataUrl: " string",
 id: "myUniqueImageIDABC123"
 };
}

interactionMode :string

Gets or sets a value that indicates the allowed interactions with the mark. Possible values are defined in
the enumeration PCCViewer.Mark.InteractionMode.

This property is defined on all Mark objects.

This is an ECMA 5 property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getInteractionMode

PCCViewer.Mark#setInteractionMode

Example

PrizmDoc Viewer v13.17 511

©2021 My Company. All Rights Reserved.

See:

See:

// get
var interactionMode = mark.interactionMode;

// set
mark.interactionMode =
PCCViewer.Mark.InteractionMode.SelectionDisabled;

label :string

Gets or sets the text in the Stamp Mark.

This property is defined on marks of type: StampAnnotation, StampRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getLabel

PCCViewer.Mark#setLabel

Example

if ('label' in mark) {
 var oldValue = mark.label;
 mark.label = "Approved";
}

mask :object

Gets or sets the mask for text input signatures.

This property is defined on marks of type: TextInputSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

object

PCCViewer.Mark#getMask

PCCViewer.Mark#setMask

Example

PrizmDoc Viewer v13.17 512

©2021 My Company. All Rights Reserved.

See:

See:

if ('mask' in mark) {
 var oldValue = mark.mask;

 mark.mask = {
 value: '(###) ###-####',
 translations: {
 '#': /\d/
 }
 };
}

maxFontSize :number

Gets or sets a value that determines the maximum font size for a mark.

This method is defined on marks of type: TextAreaSignature.

This is an ECMA 5 property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#setMaxFontSize

PCCViewer.Mark#getMaxFontSize

Example

// get
var maxFontSize = mark.maxFontSize;

// set
mark.maxFontSize = 13;

maxLength :number

Gets or sets a value that determines the max length of text for a mark

This method is defined on marks of type: TextAnnotation, TextRedaction, TextAreaSignature
and TextInputSignature.

This is an ECMA 5 property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#setMaxLength

PrizmDoc Viewer v13.17 513

©2021 My Company. All Rights Reserved.

See:

PCCViewer.Mark#getMaxLength

Example

// get
var maxLength = mark.maxLength;

// set
mark.maxLength = 13;

opacity :number

Gets or sets the opacity of the Mark. This value is a number between 0 and 255.

This property is defined on marks of type: LineAnnotation, RectangleAnnotation,
EllipseAnnotation, TextAnnotation,PolylineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#getOpacity

PCCViewer.Mark#setOpacity

Example

if ('opacity' in mark) {
 var oldValue = mark.opacity;
 mark.opacity = 127; // set the opacity so that the
mark is transparent
}

(readonly) pageNumber :number

Gets the page number of the page that the Mark is on.

This property is defined on all Mark objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PrizmDoc Viewer v13.17 514

©2021 My Company. All Rights Reserved.

See:

See:

See:

PCCViewer.Mark#getPageNumber

Example

var pageNumber = mark.pageNumber;

path :string

Gets or sets the path data of FreehandSignature and FreehandAnnotation.

This property is defined on marks of type: FreehandSignature, FreehandAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getPath

PCCViewer.Mark#setPath

Example

if ('path' in mark) {
 var oldValue = mark.path;
 mark.path = "M0,0L1,1L1,0";
}

position :Object

Gets or sets the position of the Mark.

Important - The setter only works if the ViewerControl instance has page text for all pages that the text-
based mark will span. See PCCViewer.Mark#setPosition for complete information on safely setting the
mark's position.

This property is defined on marks of type: HighlightAnnotation, TextSelectionRedaction,
TextHyperlinkAnnotation, and StrikethroughAnnotation

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getPosition

PCCViewer.Mark#setPosition

PrizmDoc Viewer v13.17 515

©2021 My Company. All Rights Reserved.

See:

Example

// Basic usage.
if ('position' in mark) {
 var oldValue = mark.position;

 // Requesting page text ensures that the
ViewerControl has page text for the page (which
 // is a pre-requisite) and it also gives us the page
text so that we have context when
 // setting the position.

viewerControl.requestPageText(1).then(function(pageText)
{
 // It is unsafe to set the mark position without
first
 mark.position = {startIndex: 0, length:
pageText.length};
 });
}

reason :string

Gets or sets the reason in the Mark.

This property is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Note: Throws an error if the ViewerControlOptions.enableMultipleRedactionReasons property was
set to true when initializing ViewerControl. In such case you should use the
PCCViewer.Mark#reasons instead.

Type:

string

PCCViewer.Mark#getReason

PCCViewer.Mark#setReason

Example

if ('reason' in mark) {
 var oldValue = mark.reason;
 mark.reason = "Information for top security clearance
only.";
}

PrizmDoc Viewer v13.17 516

©2021 My Company. All Rights Reserved.

See:

See:

reasons :Array.<string>

Gets or sets the reasons in the Mark.

This property is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Note: Throws an error if the ViewerControlOptions.enableMultipleRedactionReasons property was
set to false when initializing ViewerControl. In such case you should use the
PCCViewer.Mark#reason instead.

Type:

Array.<string>

PCCViewer.Mark#getReasons

PCCViewer.Mark#setReasons

Example

if ('reasons' in mark) {
 var oldValue = mark.reasons;
 mark.reasons = ["1.a", "2.b", "Private Information"];
}

rectangle :Object

Gets or sets the bounding rectangle of the Mark.

This property is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, StampAnnotation, RectangleRedaction,
TransparentRectangleRedaction, TextRedaction, StampRedaction,
FreehandAnnotation, FreehandSignature, TextSignature, ImageStampAnnotation,
ImageStampRedaction, TextInputSignature and TextAreaSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getRectangle

PCCViewer.Mark#setRectangle

Example

PrizmDoc Viewer v13.17 517

©2021 My Company. All Rights Reserved.

See:

See:

if ('rectangle' in mark) {
 var oldValue = mark.rectangle;
 mark.rectangle = {x: 0, y: 0, width: 100, height:
100};
}

signature :string

Note: This property is defined on the template mark of the PlaceSignature mouse tool, and is not
available on any mark.

Gets or sets the template signature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getSignature

PCCViewer.Mark#setSignature

startPoint :Object

Gets or sets the start point coordinates of the line Mark.

This property is defined on marks of type: LineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

Object

PCCViewer.Mark#getStartPoint

PCCViewer.Mark#setStartPoint

Example

if ('startPoint' in mark) {
 var oldValue = mark.startPoint;
 mark.startPoint = {x: 1, y: 1}; // set the start
point to (1, 1)
}

text :string

PrizmDoc Viewer v13.17 518

©2021 My Company. All Rights Reserved.

See:

See:

Gets or sets the text in the Mark.

This property is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
TextAreaSignature HighlightAnnotation, TextSelectionRedaction,
TextHyperlinkAnnotation and StrikethroughAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getText

PCCViewer.Mark#setText

Example

if ('text' in mark) {
 var oldValue = mark.text;
 mark.text = "This is a Test";
}

thickness :number

Gets or sets the thickness of the Mark.

This property is defined on marks of type: LineAnnotation, FreehandAnnotation,
FreehandSignature, PolylineAnnotation.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

number

PCCViewer.Mark#getThickness

PCCViewer.Mark#setThickness

Example

if ('thickness' in mark) {
 var oldValue = mark.thickness;
 mark.thickness = 3; // set the thickness of the mark
}

PrizmDoc Viewer v13.17 519

©2021 My Company. All Rights Reserved.

See:

See:

(readonly) type :string

Gets the type of the Mark.

This property is defined on all Mark objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark.Type

PCCViewer.Mark#getType

Example

switch (mark.type) {
 case Mark.Type.LineAnnotation:
 ...
 break;
 default:
 ...
}

visible :string

Gets or sets the Mark visible.

This property is defined on all mark types.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is
not available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding
getter and setter methods.

Type:

string

PCCViewer.Mark#getVisible

PCCViewer.Mark#setVisible

Example

if ('visible' in mark) {
 var oldValue = mark.visible;
 mark.visible = true; // set mark to visible
}

PrizmDoc Viewer v13.17 520

©2021 My Company. All Rights Reserved.

See:

See:

Methods
clearHighlights() → {PCCViewer.Mark}

Clears any text highlights within the mark object. The text highlights would have been created with
PCCViewer.Mark#highlightText.

It is invalid to call this method on the template mark of a PCCViewer.MouseTool object.

This method is defined on marks of type: TextAnnotation, TextRedaction,
HighlightAnnotation, TextSelectionRedaction, TextHyperlinkAnnotation, and
StrikethroughAnnotation.

PCCViewer.Mark#highlightText

Throws:

If the mark is the template mark of a PCCViewer.MouseTool object.

Type
Error

If the mark was created with the constructor new Mark().

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.clearHighlights) {
 mark.clearHighlights();
}

getBorderColor() → {string}

Gets the border color of the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

PCCViewer.Mark#setBorderColor

PrizmDoc Viewer v13.17 521

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.Mark#borderColor

Returns:

The border color of the Mark as a hexadecimal string.

Type
string

Example

if (mark.getBorderColor) {
 var borderColor = mark.getBorderColor();
}

getBorderThickness() → {number}

Gets the border thickness of the mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

PCCViewer.Mark#setBorderThickness

PCCViewer.Mark#borderThickness

Returns:

The border thickness of the mark.

Type
number

Example

if (mark.getBorderThickness) {
 var borderThickness = mark.getBorderThickness();
}

getBoundingRectangle() → {Object}

Gets the bounding rectangle for the Mark.

This method is defined on all Mark objects.

PCCViewer.Mark#boundingRectangle

PrizmDoc Viewer v13.17 522

©2021 My Company. All Rights Reserved.

See:

Returns:

A rectangle object of the type {x: xValue, y: yValue, width: widthValue, height:
heightValue}.

Type
Object

Example

var boundingRectangle = mark.getBoundingRectangle();

getColor() → {string}

Gets the color of the Mark.

This method is defined on marks of type: LineAnnotation, StampAnnotation,
FreehandAnnotation, FreehandSignature, TextSignature, PolylineAnnotation and
StrikethroughAnnotation.

PCCViewer.Mark#setColor

PCCViewer.Mark#color

Returns:

The color of the Mark as a hexadecimal string.

Type
string

Example

if (mark.getColor) {
 var color = mark.getColor();
}

getConversation() → {PCCViewer.Conversation}

Gets the conversation associated with the Mark.

This method is defined on all Mark objects.

Returns:

The conversation associated with this Mark.

Type
PCCViewer.Conversation

PrizmDoc Viewer v13.17 523

©2021 My Company. All Rights Reserved.

See:

getData(key) → {string|object}

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

This method is defined on all Mark objects.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getData

PCCViewer.Mark#setData

PCCViewer.Mark#getDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// The key "Author" is set the value "Mark".
mark.setData("Author", "Mark");

// The key "Note" is set the value "This is really
important!".
mark.setData("Note", "This is really important!");

mark.getData("Author"); // returns "Mark"
mark.getData(); // returns {"Author":"Mark",

PrizmDoc Viewer v13.17 524

©2021 My Company. All Rights Reserved.

See:

See:

"Note":"This is really important!"}
mark.getData("FooBar"); // returns undefined

getDataKeys() → {Array.<string>}

Gets an array of data keys known to this Mark.

This method is defined on all Mark objects.

PCCViewer.Data#getDataKeys

PCCViewer.Mark#getData

PCCViewer.Mark#setData

Returns:

Returns an array of data keys known to this Mark. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// Returns an empty array before key-value pairs are
stored.
mark.getDataKeys(); // returns []

// Returns a list of all keys.
mark.setData("Author", "Mark");
mark.setData("Note", "This is really important!");
mark.getDataKeys(); // returns ["Author", "Note"]

getEndHeadType() → {string|PCCViewer.Mark.LineHeadType}

Gets the line Mark end head type.

This method is defined on marks of type: LineAnnotation.

PCCViewer.Mark#setEndHeadType

PCCViewer.Mark#endHeadType

Returns:

A line head type enum value.

PrizmDoc Viewer v13.17 525

©2021 My Company. All Rights Reserved.

See:

See:

Type
string | PCCViewer.Mark.LineHeadType

Example

if (mark.getEndHeadType) {
 var endHeadType = mark.getEndHeadType();
}

getEndPoint() → {Object}

Gets the end point coordinates of the line Mark.

This method is defined on marks of type: LineAnnotation.

PCCViewer.Mark#setEndPoint

PCCViewer.Mark#endPoint

Returns:

A point object of the type {x: xvalue, y: yvalue}

Type
Object

Example

if (mark.getEndPoint) {
 var endPoint = mark.getEndPoint();
}

getFillColor() → {string}

Gets the fill color of the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, HighlightAnnotation, 'TextHyperlinkAnnotation' and RectangleRedaction.

PCCViewer.Mark#setFillColor

PCCViewer.Mark#fillColor

Returns:

The fill color of the Mark as a hexadecimal string.

Type
string

PrizmDoc Viewer v13.17 526

©2021 My Company. All Rights Reserved.

See:

See:

Example

if (mark.getFillColor) {
 var fillColor = mark.getFillColor();
}

getFontColor() → {string}

Gets the font color of the text contained in the Text Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction,
TextInputSignature, RectangleRedaction and TextAreaSignature.

PCCViewer.Mark#setFontColor

PCCViewer.Mark#fontColor

Returns:

The text contained in the Text mark.

Type
string

Example

if (mark.getFontColor) {
 var text = mark.getFontColor();
}

getFontName() → {string}

Gets the font color of the text contained in the Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
TextInputSignature and TextAreaSignature.

PCCViewer.Mark#setFontName

PCCViewer.Mark#fontName

Returns:

The text contained in the Text mark.

Type
string

PrizmDoc Viewer v13.17 527

©2021 My Company. All Rights Reserved.

See:

See:

Example

if (mark.getFontName) {
 var text = mark.getFontName();
}

getFontSize() → {number}

Gets the font size (in points) of the text in the Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction.

PCCViewer.Mark#setFontSize

PCCViewer.Mark#fontSize

Returns:

The font size of the text in the text mark.

Type
number

Example

if (mark.getFontSize) {
 var fontSize = mark.getFontSize();
}

getFontStyle() → {Array.<string>}

Gets an array of font styles of the text contained in the mark.

This method is defined on marks of type: TextAnnotation, TextAreaSignature,
TextRedaction.

PCCViewer.Mark.FontStyles

PCCViewer.Mark#setFontStyle

PCCViewer.Mark#fontStyle

Returns:

An array containing the font styles of text contained in the Text mark.

Type
Array.<string>

PrizmDoc Viewer v13.17 528

©2021 My Company. All Rights Reserved.

See:

See:

Example

if (mark.getFontStyle) {
 var fontStyleArray = mark.getFontStyle();
}

getHorizontalAlignment() → {string}

Gets the horizontalAlignment of the text contained in the Text Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction,
FreehandSignature, TextSignature, TextInputSignature and TextAreaSignature.

PCCViewer.Mark.HorizontalAlignment

PCCViewer.Mark#setHorizontalAlignment

PCCViewer.Mark#horizontalAlignment

Returns:

A string containing horizontalAlignment contained in the Text mark.

Type
string

Example

if (mark.getHorizontalAlignment) {
 var horizontalAlignment =
mark.getHorizontalAlignment();
}

getHref() → {string|number}

Gets the link target for hyperlink annotations.

This method is defined on marks of type: TextHyperlinkAnnotation.

PCCViewer.Mark#setHref

PCCViewer.Mark#href

Returns:

The link target.

Type
string | number

PrizmDoc Viewer v13.17 529

©2021 My Company. All Rights Reserved.

See:

See:

Example

if (mark.getHref) {
 var href = mark.getHref();

 switch (typeof href) {
 case "number":
 // navigate to the page
 viewerControl.setPageNumber(href);
 break;
 case "string":
 // Interpret the URL and execute the
navigation.
 window.location.href = href;
 break;
 case "undefined":
 case "object":
 default:
 // do nothing, or define some special rules
 break;
 }
}

getId() → {string}

Gets the ID of the Mark.

This method is defined on all Mark objects.

PCCViewer.Mark#id

Returns:

The ID of the Mark.

Type
string

Example

var markId = mark.getId();

getImage() → {PCCViewer.Mark~ImageData}

Gets the image that is displayed for the Mark.

This method is defined on marks of type: ImageStampAnnotation and ImageStampRedaction.

PCCViewer.Mark#setImage

PrizmDoc Viewer v13.17 530

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.Mark#image

Returns:

An object that represents the image to be shown for the mark.

Type
PCCViewer.Mark~ImageData

Example

if (mark.getImage) {
 var imageData = mark.getImage();
}

getInteractionMode() → {string}

Gets a value that indicates the allowed interactions with this mark.

This method is defined on all Mark objects.

PCCViewer.Mark#setInteractionMode

PCCViewer.Mark#interactionMode

Returns:

A string value from the enumeration PCCViewer.Mark.InteractionMode, which indicates the allowed
interactions with this mark.

Type
string

Example

var interactionMode = mark.getInteractionMode();

getLabel() → {string}

Gets the text string contained in the Stamp Mark.

This method is defined on marks of type: StampAnnotation, StampRedaction.

PCCViewer.Mark#setLabel

PCCViewer.Mark#label

Returns:

PrizmDoc Viewer v13.17 531

©2021 My Company. All Rights Reserved.

See:

See:

The text string in the Stamp mark.

Type
string

Example

if (mark.getLabel) {
 var label = mark.getLabel();
}

getMask() → {object}

Gets the applied mask for the text input signature mark.

This method is defined on marks of type: TextInputSignature.

PCCViewer.Mark#setMask

PCCViewer.Mark#mask

Returns:

The mask for the mark.

Type
object

Example

if (mark.getMask) {
 var mask = mark.getMask();
}

getMaxFontSize() → {Number}

Gets the maximum font size (in points) for text in the mark.

This method is defined on marks of type: TextAreaSignature.

PCCViewer.Mark#setMaxFontSize

PCCViewer.Mark#maxFontSize

Returns:

The maximum font size of the mark.

PrizmDoc Viewer v13.17 532

©2021 My Company. All Rights Reserved.

See:

See:

Type
Number

Example

if (mark.getMaxFontSize) {
 var mask = mark.getMaxFontSize();
}

getMaxLength() → {Number}

Gets the applied max length for the mark.

This method is defined on marks of type: TextAnnotation, TextRedaction, TextAreaSignature
and TextInputSignature.

PCCViewer.Mark#setMaxLength

PCCViewer.Mark#maxLength

Returns:

The max length for the mark.

Type
Number

Example

if (mark.getMaxLength) {
 var mask = mark.getMaxLength();
}

getOpacity() → {number}

Gets the opacity of the Mark. This value is a number between 0 and 255.

This method is defined on marks of type: LineAnnotation, RectangleAnnotation,
EllipseAnnotation, TextAnnotation.

PCCViewer.Mark#setOpacity

PCCViewer.Mark#opacity

Returns:

The opacity of the line.

Type

PrizmDoc Viewer v13.17 533

©2021 My Company. All Rights Reserved.

See:

See:

number

Example

if (mark.getOpacity) {
 var opacity = mark.getOpacity();
}

getPageNumber() → {number}

Gets the page number where the Mark object is located.

This method is defined on all Mark objects.

PCCViewer.Mark#pageNumber

Returns:

The page number where the Mark is located.

Type
number

Example

var pageNumber = mark.getPageNumber();

getPath() → {string}

Gets the path data for FreehandSignature and FreehandAnnotation.

This method is defined on marks of type: FreehandSignature, FreehandAnnotation.

PCCViewer.Mark#setPath

PCCViewer.Mark#path

Returns:

The path data string.

Type
string

Example

if (mark.getPath) {

PrizmDoc Viewer v13.17 534

©2021 My Company. All Rights Reserved.

See:

See:

 var path = mark.getPath();
}

getPoints() → {Array}

Gets the array of points that make up coordinates of the vertices of the PolylineAnnotation Mark.

This method is defined on marks of type: PolylineAnnotation.

PCCViewer.Mark#setPoints

PCCViewer.Mark#points

Returns:

of point objects of the type {x: xvalue, y: yvalue}

Type
Array

Example

if (mark.getPoints) {
 var points = mark.getPoints();
}

getPosition() → {Object}

Gets the position of the text-based Mark.

This method is defined on marks of type: HighlightAnnotation, TextSelectionRedaction,
TextHyperlinkAnnotation, and StrikethroughAnnotation.

PCCViewer.Mark#setPosition

PCCViewer.Mark#position

Returns:

A position object of the type {startIndex: startIndexValue, length: lengthValue}.

Type
Object

Example

if (mark.getPosition) {
 var position = mark.getPosition();
}

PrizmDoc Viewer v13.17 535

©2021 My Company. All Rights Reserved.

See:

See:

getReason() → {string}

Gets the reason contained in the Redaction Mark.

This method is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

PCCViewer.Mark#setReason

PCCViewer.Mark#reason

Throws:

If the ViewerControlOptions.enableMultipleRedactionReasons property was set to true
when initializing ViewerControl. In such case you should use the PCCViewer.Mark#getReasons
instead.

Type
Error

Returns:

The reason contained in the Redaction mark.

Type
string

Example

if (mark.getReason) {
 var reason = mark.getReason();
}

getReasons() → {Array.<string>}

Gets the reasons contained in the Redaction Mark.

This method is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

PCCViewer.Mark#setReasons

PCCViewer.Mark#reasons

Throws:

If the ViewerControlOptions.enableMultipleRedactionReasons property was set to false
when initializing ViewerControl. In such case you should use the PCCViewer.Mark#getReason
instead.

PrizmDoc Viewer v13.17 536

©2021 My Company. All Rights Reserved.

See:

Type
Error

Returns:

The reasons contained in the Redaction mark.

Type
Array.<string>

Example

if (mark.getReasons) {
 var reasons = mark.getReasons();
}

getRectangle() → {Object}

Gets the bounding rectangle for the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, StampAnnotation, RectangleRedaction,
TransparentRectangleRedaction, TextRedaction, StampRedaction,
FreehandAnnotation, FreehandSignature, TextSignature, ImageStampAnnotation,
ImageStampRedaction, TextInputSignature and TextAreaSignature.

PCCViewer.Mark#setRectangle

PCCViewer.Mark#rectangle

Returns:

An object of the type {x: xValue, y: yValue, width: widthValue, height:
heightValue} describing the rectangle in pixels.

Type
Object

Example

if (mark.getRectangle) {
 var boundingRectangle = mark.getRectangle();
}

getSessionData(key) → {string|object}

Gets the session data value for the given key, or gets a hash containing all key values, if a key was not

PrizmDoc Viewer v13.17 537

©2021 My Company. All Rights Reserved.

See:

provided. Unlike PCCViewer.Mark#getData, this data is not saved with the annotation, it only lasts for
the session.

This method is defined on all Mark objects.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getSessionData

PCCViewer.Mark#setSessionData

PCCViewer.Mark#getSessionDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// The key "Visibility" is set the value "Shown".
mark.setSessionData("Visibility", "Shown");

// The key "Note" is set the value "This is not going to
be saved!".
mark.setSessionData("Note", "This is not going to be
saved!");

mark.getSessionData("Visibility"); // returns "Shown"
mark.getSessionData(); // returns
{"Visibility":"Shown", "Note":"This is not going to be
saved!"}

PrizmDoc Viewer v13.17 538

©2021 My Company. All Rights Reserved.

See:

See:

mark.getSessionData("FooBar"); // returns undefined

getSessionDataKeys() → {Array.<string>}

Gets an array of data keys known to this Mark. Unlike PCCViewer.Mark#getDataKeys, this data is not
saved with the annotation, it only lasts for the session.

This method is defined on all Mark objects.

PCCViewer.Data#getSessionDataKeys

PCCViewer.Mark#getSessionData

PCCViewer.Mark#setSessionData

Returns:

Returns an array of data keys known to this Mark. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// Returns an empty array before key-value pairs are
stored.
mark.getSessionDataKeys(); // returns []

// Returns a list of all keys.
mark.setSessionData("Visibility", "Shown");
mark.setSessionData("Note", "This is not going to be
saved!");
mark.getSessionDataKeys(); // returns ["Visibility",
"Note"]

getSignature() → {Object|undefined}

Note: This property is defined on the template mark of the PlaceSignature mouse tool, and is not
available on any mark.

Gets the last signature object that was associated with the particular template mark.

PCCViewer.Mark#setSignature

PCCViewer.Mark#signature

Returns:

PrizmDoc Viewer v13.17 539

©2021 My Company. All Rights Reserved.

3 4

See:

The PlaceSignature object, or undefined. See PCCViewer.Signatures~FreehandSignature and
PCCViewer.Signatures~TextSignature.

Type
Object | undefined

Example

// get the mouse tool
var accusoftPlaceSignature =
PCCViewer.MouseTools.getMouseTool('AccusoftPlaceSignature');

// get the template mark
var signatureTemplateMark =
accusoftPlaceSignature.getTemplateMark();
// get the signature associated with the template
var signature = signatureTemplateMark.getSignature();

getStartPoint() → {Object}

Gets the start point coordinates of the line Mark.

This method is defined on marks of type: LineAnnotation.

PCCViewer.Mark#setStartPoint

PCCViewer.Mark#startPoint

Returns:

A point object of the type {x: xvalue, y: yvalue}

Type
Object

Example

if (mark.getStartPoint) {
 var startPoint = mark.getStartPoint();
}

getText() → {string}

Gets the text contained in marks with text or text-selection based marks.

This method is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
HighlightAnnotation, TextSelectionRedaction, TextHyperlinkAnnotation,

PrizmDoc Viewer v13.17 540

©2021 My Company. All Rights Reserved.

See:

See:

TextInputSignature, StrikethroughAnnotation and TextAreaSignature.

PCCViewer.Mark#setText

PCCViewer.Mark#text

Returns:

The text contained in the in the above mentioned mark types.

Type
string

Example

if (mark.getText) {
 var text = mark.getText();
}

getThickness() → {number}

Gets the thickness of the line.

This method is defined on marks of type: LineAnnotation, FreehandAnnotation,
FreehandSignature,PolylineAnnotation, StrikethroughAnnotation.

PCCViewer.Mark#setThickness

PCCViewer.Mark#thickness

Returns:

The thickness of the line.

Type
number

Example

if (mark.getThickness) {
 var thickness = mark.getThickness();
}

getType() → {string}

Gets the type of the Mark type.

This method is defined on all Mark objects.

PrizmDoc Viewer v13.17 541

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.Mark.Type for a list of possible Mark types.

PCCViewer.Mark.Type

PCCViewer.Mark#type

Returns:

The type of Mark.

Type
string

Example

switch (mark.getType()) {
 case Mark.Type.LineAnnotation:
 ...
 break;
 default:
 ...
}

getVisible() → {boolean}

Gets the visibility of the Mark.

This method is defined on all mark types.

PCCViewer.Mark#setVisible

PCCViewer.Mark#visible

Returns:

Returns true if the mark is visible, false otherwise.

Type
boolean

Example

if (mark.getVisible) {
 var visible = mark.getVisible();
}

highlightText(highlights) → {PCCViewer.Mark}

Highlights text within the mark. The highlights are not persisted when mark is saved using saveMarkup.

PrizmDoc Viewer v13.17 542

©2021 My Company. All Rights Reserved.

See:

Existing highlights that were created with a previous call to this method, are cleared when this method
is called.

It is invalid to call this method on the template mark of a PCCViewer.MouseTool object.

This method is defined on marks of type: TextAnnotation, TextRedaction,
HighlightAnnotation, TextSelectionRedaction, TextHyperlinkAnnotation and
StrikethroughAnnotation.

Parameters:

Name Type Description

highlights Array.
<object>
| object

An array of objects or a single object that defines a highlight.

Each object has the following properties:
startIndex {number} - required

The start index of the highlight in the mark text.
The valid range is 0 <= startIndex <
mark.getText().length.

length {number} - required
The length of the highlight in the mark.
If the length is greater than the number of remaining
characters in the mark, then the remaining characters in
the mark will be highlighted. The excessive length value
will be ignored.
The valid range is length > 0.

color {string} - required
Specifies the Hexadecimal color for the highlight.
Valid values are any 7-character string representing a
color. The first letter must be a "#" symbol and the
other six characters must be hexadecimal digits
representing the red, green, and blue portions of the
color.

opacity {number} - optional
Specifies the opacity of the highlight.
Valid values are from 0 to 255 (inclusive).
If unspecified, an opacity value of 127 will be used.

If passed a value of null, undefined, or an empty array, then the highlights
are cleared.

PCCViewer.Mark#clearHighlights

PCCViewer.Mark#getText

Throws:

If any of the highlights in highlights param are missing required properties or contain
invalid data.

Type
Error

PrizmDoc Viewer v13.17 543

©2021 My Company. All Rights Reserved.

See:

If the mark is the template mark of a PCCViewer.MouseTool object.

Type
Error

If the mark was created with the constructor new Mark().

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.highlightText) {
 mark.highlightText([
 {startIndex: 0, length: 5, color: "#FF0000"},
 {startIndex: 10, length: 5, color: "#FF0000",
opacity: 200}
]);
}

setBorderColor(value) → {PCCViewer.Mark}

Sets the border color of the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

Parameters:

Name Type Description

value string Hexadecimal string representing border color. This string must be prepended with '#'
character.

PCCViewer.Mark#getBorderColor

PCCViewer.Mark#borderColor

Returns:

PrizmDoc Viewer v13.17 544

©2021 My Company. All Rights Reserved.

See:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setBorderColor) {
 mark.setBorderColor("#FF0000"); // set the border
color to red
}

setBorderThickness(value) → {PCCViewer.Mark}

Sets the border thickness of the mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation and RectangleRedaction.

Parameters:

Name Type Description

value number Border thickness of the mark.

PCCViewer.Mark#getBorderThickness

PCCViewer.Mark#borderThickness

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setBorderThickness) {
 mark.setBorderThickness(3);
}

setColor(value) → {PCCViewer.Mark}

Sets the color of the Mark.

This method is defined on marks of type: LineAnnotation, StampAnnotation,
FreehandAnnotation, FreehandSignature, TextSignature,PolylineAnnotation and
StrikethroughAnnotation.

PrizmDoc Viewer v13.17 545

©2021 My Company. All Rights Reserved.

See:

Parameters:

Name Type Description

value string Hexadecimal string representing color. This string must be prepended with '#'
character.

PCCViewer.Mark#getColor

PCCViewer.Mark#color

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setColor) {
 mark.setColor("#FF0000"); // set the mark's color to
red
}

setData(key, value) → {PCCViewer.Mark}

Sets the data value for the given key.

This method is defined on all Mark objects.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PrizmDoc Viewer v13.17 546

©2021 My Company. All Rights Reserved.

See: PCCViewer.Data#setData

PCCViewer.Mark#getData

PCCViewer.Mark#getDataKeys

Returns:

The Mark object on which the method was called.

Type
PCCViewer.Mark

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// Get data returns undefined before the key is set.
mark.getData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
mark.setData("Author", "Mark");
mark.getData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value
"Clark".
mark.setData("Author", "Clark");
mark.getData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
mark.setData("Author", undefined);
mark.getData("Author"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
mark.setData("FooBar", null); // throws
mark.setData("FooBar", 1); // throws
mark.setData("FooBar", true); // throws
mark.setData("FooBar", {}); // throws
mark.setData("FooBar", []); // throws

setEndHeadType(value) → {PCCViewer.Mark}

Sets the line head type.

This method is defined on marks of type: LineAnnotation.

Parameters:

PrizmDoc Viewer v13.17 547

©2021 My Company. All Rights Reserved.

3 4

See:

See:

Name Type Description

value PCCViewer.Mark.LineHeadType The line head type. For example,
PCCViewer.Mark.LineHeadType.FilledRectangle

can be specified to make the line appear as an arrow.

PCCViewer.Mark.LineHeadType

PCCViewer.Mark#getEndHeadType

PCCViewer.Mark#endHeadType

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setEndHeadType) {
 // Put a triangle head on the end of the line to make
it an arrow
 mark.setEndHeadType("FilledTriangle");
 // or use the enumeration to accomplish the same
thing

mark.setEndHeadType(PCCViewer.Mark.LineHeadType.FilledTriangle);

}

setEndPoint(value) → {PCCViewer.Mark}

Sets the end point coordinate of the line Mark.

This method is defined on marks of type: LineAnnotation.

Parameters:

Name Type Description

value Object Start point coordinates of a line Mark. The parameter object must be of the following
type: {x: xvalue, y: yvalue}

PCCViewer.Mark#getEndPoint

PCCViewer.Mark#endPoint

PrizmDoc Viewer v13.17 548

©2021 My Company. All Rights Reserved.

See:

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setEndPoint) {
 mark.setEndPoint({x:100, y:100});
}

setFillColor(value) → {PCCViewer.Mark}

Sets the fill color of the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, HighlightAnnotation, 'TextHyperlinkAnnotation' and RectangleRedaction.

Parameters:

Name Type Description

value string Hexadecimal string representing fill color. This string must be prepended with '#'
character.

PCCViewer.Mark#getFillColor

PCCViewer.Mark#fillColor

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setFillColor) {
 mark.setFillColor("#FF0000"); // set the fill color
to red
}

setFontColor(value) → {PCCViewer.Mark}

Sets the font color of the text in the Text Mark.

PrizmDoc Viewer v13.17 549

©2021 My Company. All Rights Reserved.

See:

See:

This method is defined on marks of type: TextAnnotation, TextRedaction,
TextInputSignature, RectangleRedaction and TextAreaSignature.

Parameters:

Name Type Description

value string A string value containing the hexadecimal color for the text of the text annotation.

PCCViewer.Mark#getFontColor

PCCViewer.Mark#fontColor

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setFontColor) {
 mark.setFontColor("#000000");
}

setFontName(value) → {PCCViewer.Mark}

Sets the font name of the text in the Text Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
TextInputSignature and TextAreaSignature.

Parameters:

Name Type Description

value string A string value containing the font name for the text in the text annotation.

PCCViewer.Mark#getFontName

PCCViewer.Mark#fontName

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

PrizmDoc Viewer v13.17 550

©2021 My Company. All Rights Reserved.

See:

Example

if (mark.setFontName) {
 mark.setFontName("Aerial");
}

setFontSize(value) → {PCCViewer.Mark}

Sets the font size (in points) for the text to use in the Mark.

Note: The API uses the resolution of the image to determine the size of a point so, for example, a line
of 12 point text on a 300 DPI raster image will be 12 points / 72 point-per-inch * 300 pixels-per-inch =
50 pixels tall. The default value is 12 points.

This method is defined on marks of type: TextAnnotation, TextRedaction.

Parameters:

Name Type Description

value number A number for the font size for the text in the text annotation.

PCCViewer.Mark#getFontSize

PCCViewer.Mark#fontSize

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setFontSize) {
 mark.setFontSize(12);
}

setFontStyle(value) → {PCCViewer.Mark}

Sets the font styles provided in the parameter array of the text in the mark.

This method is defined on marks of type: TextAnnotation, TextAreaSignature,
TextRedaction.

Parameters:

PrizmDoc Viewer v13.17 551

©2021 My Company. All Rights Reserved.

See:

See:

Name Type Description

value Array.
<string>

An array containing values containing the font styles for the text in the text
annotation.

Valid values in the array are:

"Bold" (PCCViewer.Mark.FontStyles.Bold)
"Italic" (PCCViewer.Mark.FontStyles.Italic)
"Underline" (PCCViewer.Mark.FontStyles.Underline)
"Strikeout" (PCCViewer.Mark.FontStyles.Strikeout)

Note: An empty array would render the text with normal font style.

PCCViewer.Mark.FontStyles

PCCViewer.Mark#getFontStyle

PCCViewer.Mark#fontStyle

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setFontStyle) {
 var fontStylesArray = ["Bold","Italic","Underline"];
 mark.setFontStyle(fontStylesArray);
}

setHorizontalAlignment(value) → {PCCViewer.Mark}

Sets the horizontal alignment of the text in the Text Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction,
FreehandSignature, TextSignature, TextInputSignature and TextAreaSignature.

Parameters:

Name Type Description

value string A string value containing the horizontal alignment for the text in the text annotation.

PCCViewer.Mark.HorizontalAlignment

PCCViewer.Mark#getHorizontalAlignment

PCCViewer.Mark#horizontalAlignment

PrizmDoc Viewer v13.17 552

©2021 My Company. All Rights Reserved.

See:

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setHorizontalAlignment) {
 mark.setHorizontalAlignment("center");
}

setHref(href) → {PCCViewer.Mark}

Sets the link target for hyperlink annotations.

All strings and numbers are valid values. It is the responsibility of the API consumer to handle clicks of
hyperlink annotations. When handling the click, the API consumer should interpret the href value and
take the appropriate navigation action.

This method is defined on marks of type: TextHyperlinkAnnotation.

Parameters:

Name Type Description

href string | number The link target.

PCCViewer.Mark#getHref

PCCViewer.Mark#href

PCCViewer.EventType.Click

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setHref) {
 // set to fully qualified URL
 mark.setHref("http://www.accusoft.com/");

 // or a URL fragment
 mark.setHref("#named-annotation");

PrizmDoc Viewer v13.17 553

©2021 My Company. All Rights Reserved.

See:

 // or a numeric value
 mark.setHref(4);
}

setImage(imageData) → {PCCViewer.Mark}

Sets the image that is displayed for the Mark.

This method is defined on marks of type: ImageStampAnnotation and ImageStampRedaction.

Parameters:

Name Type Description

imageData PCCViewer.Mark~ImageData An object that represents the image to be shown for the
mark.

PCCViewer.Mark#getImage

PCCViewer.Mark#image

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

var param = {
 dataUrl: " string",
 id: "imageId"
};
if (mark.setImage) {
 mark.setImage(param);
}

setInteractionMode(interactionMode) → {PCCViewer.ViewerControl}

Sets a value that indicates the allowed interactions with this mark.

This method is defined on all Mark objects.

Parameters:

Name Type Description

interactionMode string A string value from the enumeration PCCViewer.Mark.InteractionMode,
which indicates the allowed interactions with this mark.

PrizmDoc Viewer v13.17 554

©2021 My Company. All Rights Reserved.

3 4

See:

See:

PCCViewer.Mark#getInteractionMode

PCCViewer.Mark#interactionMode

Returns:

The object on which this method was called.

Type
PCCViewer.ViewerControl

Example

mark.setInteractionMode(PCCViewer.Mark.InteractionMode.Full);

setLabel(value) → {PCCViewer.Mark}

Sets the text string in the Stamp Mark.

This method is defined on marks of type: StampAnnotation, StampRedaction.

Parameters:

Name Type Description

value string A string value containing the text in the Stamp annotation.

PCCViewer.Mark#getLabel

PCCViewer.Mark#label

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setLabel) {
 mark.setLabel("Approved");
}

setMask(mask) → {PCCViewer.Mark}

Sets the mask for the text input signature mark. Once this mark enters edit mode, the user input will be

PrizmDoc Viewer v13.17 555

©2021 My Company. All Rights Reserved.

See:

masked according to the properties set using this method.

This method is defined on marks of type: TextInputSignature.

Parameters:

Name Type Description

mask object The mask to set on this mark to assist user input.

Properties

Name Type Description

value string The string representation of the mask. The user input will
look like this string once they have finished their input. Each
character in this string that does not have a translation will
be represented to the user literally.

translations object The translations to use for the given mask value. The key
represents a character present in the mask value, and the
value is a regular expression which validates the acceptable
user input for that character.

PCCViewer.Mark#getMask

PCCViewer.Mark#mask

PCCViewer.ViewerControl#enterTextMarkEditingMode

Throws:

If mask is not an object, undefined or null.

Type
Error

If mask.value is not a string.

Type
Error

If mask.translations is not an object.

Type
Error

If mask.translations contains a key with a string length not equal to 1.

Type

PrizmDoc Viewer v13.17 556

©2021 My Company. All Rights Reserved.

Error

If mask.translations contains a value that is not a regular expression.

Type
Error

If mask.translations contains a value that is a regular expression with flags.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setMask) {
 // only allow a US phone number as input
 mark.setMask({
 value: '(###) ###-####'
 translations: {
 '#': /\d/
 }
 });

 // only allow an Arizona driver's license number
 mark.setMask({
 value: 'A######-AA#####-#########-A########',
 translations: {
 'A': /[a-zA-Z]/,
 '#': /\d/
 }
 });
}

setMaxFontSize(maxFontSize) → {PCCViewer.Mark}

Sets the maximum font size (in points) for text in the mark. Setting a value of 0 indicates no max font
size (in this case, the text will enlarge to fit to the mark bounds no matter how large the mark is).

This method is defined on marks of type: TextAreaSignature.

Parameters:

PrizmDoc Viewer v13.17 557

©2021 My Company. All Rights Reserved.

See:

See:

Name Type Description

maxFontSize number The positive number to set as the maximum font size of the mark.

PCCViewer.Mark#getMaxFontSize

PCCViewer.Mark#maxFontSize

Throws:

If maxFontSize is not a positive integer or 0.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setMaxFontSize) {
 // only allow the font to enlarge to 72px
 mark.setMaxFontSize(72);
}

setMaxLength(maxLength) → {PCCViewer.Mark}

Sets the maximum number of characters that may be entered into an input

This method is defined on marks of type: TextAnnotation, TextRedaction,
TextAreaSignature, and TextInputSignature.

Parameters:

Name Type Description

maxLength number The positive number to set as the max length of the mark

PCCViewer.Mark#getMaxLength

PCCViewer.Mark#maxLength

Throws:

PrizmDoc Viewer v13.17 558

©2021 My Company. All Rights Reserved.

See:

If maxLength is not a positive integer or 0.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setMaxLength) {
 // only allow 5 characters to be entered
 mark.setMaxLength(5);
}

setOpacity(value) → {PCCViewer.Mark}

Sets the opacity of the Mark. This value is a number between 0 and 255.

This method is defined on marks of type: LineAnnotation, RectangleAnnotation,
EllipseAnnotation, TextAnnotation, FreehandAnnotation, PolylineAnnotation.

Parameters:

Name Type Description

value number Opacity of the Mark. Acceptable values are in the range 0 to 255.

PCCViewer.Mark#getOpacity

PCCViewer.Mark#opacity

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setOpacity) {
 mark.setOpacity(255); // fully opaque
 mark.setOpacity(127); // semi-transparent
 mark.setOpacity(0); // transparent

PrizmDoc Viewer v13.17 559

©2021 My Company. All Rights Reserved.

See:

See:

}

setPath(path) → {PCCViewer.Mark}

Sets the path data of FreehandSignature and FreehandAnnotation.

This method is defined on marks of type: FreehandSignature, FreehandAnnotation.

Parameters:

Name Type Description

path string The path data string. This includes a subset of the SVG path standard, including the M,
L, and C commands only.

PCCViewer.Mark#getPath

PCCViewer.Mark#path

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setPath) {
 mark.setPath("M0,0L1,1L1,0");
}

setPoints(value) → {PCCViewer.Mark}

Sets the points vertices coordinate array of the PolylineAnnotation Mark.

This method is defined on marks of type: PolylineAnnotation.

Parameters:

Name Type Description

value Object is an array of coordinates of the vertices in a Polyline Mark. Each point must be of the
following type: {x: xvalue, y: yvalue}

PCCViewer.Mark#getPoints

Throws:

PrizmDoc Viewer v13.17 560

©2021 My Company. All Rights Reserved.

If value is not an array.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setPoints) {
 mark.setPoints([{x:100, y:100}, {x:200, y: 250}...,
{x:1000, y: 1000});
}

setPosition(value) → {PCCViewer.Mark}

Sets the position of text-based Marks.

Important - This method only works if the ViewerControl instance has page text for all pages that the
text-based mark will span. In common use cases the ViewerControl will have text for these pages,
however the ViewerControl API provides methods to check if it has text for a page and also to force it
to get text for a page.

There are certain methods that force the ViewerControl to get text for a page or all pages.

Calling PCCViewer.ViewerControl#requestPageText will force the ViewerControl to get text for a
specified page if it does not already have the text for the page. This method also has the benefit
of providing you with the page text, so that you are not blindly setting the position of the mark
on the page.
Calling PCCViewer.ViewerControl#search will force the viewer to get text for all pages by the
time the search completes.

There are means to determine if the ViewerControl has text for a page.

Calling PCCViewer.ViewerControl#isPageTextReady will synchronously indicate if the viewer has
text for a page.
The ViewerControl will trigger the PCCViewer.EventType.PageTextReady event when it gets text
for a page.

This method is defined on marks of type: HighlightAnnotation, TextSelectionRedaction,
TextHyperlinkAnnotation, and StrikethroughAnnotation.

Parameters:

PrizmDoc Viewer v13.17 561

©2021 My Company. All Rights Reserved.

See:

Name Type Description

value Object Position of a Mark. The parameter object must be of the following type:
{startIndex: startIndexValue, length: lengthValue}

PCCViewer.Mark#getPosition

PCCViewer.Mark#position

Throws:

If the viewer does not have text for any page that the mark will span.

Type
Error

If position.startIndex is not a valid number that indicates the index of a character on
the mark's page.

Type
Error

If position.length is negative or will cause the mark to extend past the last character in
the document.

Type
Error

If position does not contain the property startIndex or length.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

// Example 1
// ------------------------
// Basic (unsafe) usage, call setPosition and pass in an
object with a startIndex and length.
if (mark.setPosition) {

PrizmDoc Viewer v13.17 562

©2021 My Company. All Rights Reserved.

 mark.setPosition({startIndex:0, length:5});
}

// Example 2
// ------------------------
// Safe usage, request the page text and then highlight
something within that page.
// This code highlights the half of the characters on the
page.
viewerControl.requestPageText(1).then(
 function(pageText) {
 // Now that we have the page text for page 1,
 // Add a HighlightAnnotation to page 1 and set
the position of the highlight.
 viewerControl.addMark(1,
PCCViewer.Mark.Type.HighlightAnnotation)
 .setPosition({startIndex: pageText.length /
4, length: pageText.length / 2});
 });

// Example 3
// ------------------------
// Safe highlighting of arbitrary spans of text.
// We highlight 3000 characters starting at index 100 on
page 2.
var markPage = 2,
 markPosition = {startIndex: 100, length: 3000};

// Since the highlight will be 3000 characters, it may
span multiple pages.
// We use a helper method to ensure that the
ViewerControl has text for all pages that it will span.
ensureViewerControlHasPageText(viewerControl, markPage,
markPosition)
 .then(addHighlightAnnotation,
 function(error) {
 alert("Something went wrong when trying to
get page text. " + (error.message ? error.message :
error));
 });

// This function uses the ViewerControl API to add a
HighlightAnnotation.
// It will be called when ensureViewerControlHasPageText
completes.
function addHighlightAnnotation() {
 // Add the HighlightAnnotation using
ViewerControl#addMark and then
 // set the position and color of the highlight.
 viewerControl.addMark(markPage,
PCCViewer.Mark.Type.HighlightAnnotation)

PrizmDoc Viewer v13.17 563

©2021 My Company. All Rights Reserved.

 .setPosition(markPosition)
 .setFillColor("#FF0000");

 // Scroll to the page containing the mark.
 viewerControl.setPageNumber(markPage);
}

// A helper method to ensure that a ViewerControl
instance has page text
// for all pages that a HighlightAnnotation or
TextSelectionRedaction spans.
function ensureViewerControlHasPageText(viewerControl,
markPageNumber, markPostion) {

 // Calling ViewerControl#requestPageText will cause
the ViewerControl to get text
 // from the server if it does not already have it.
This method also gives us the page
 // text so we can check if the mark will extend to
the next page.
 return
viewerControl.requestPageText(markPageNumber).then(

 // If requestPageText promise is fulfilled, we
compare the markPosition to the
 // page text, and if necessary, recursively
ensure text for the next page.
 function(pageText) {
 // Check for an invalid markPosition. The
method setPosition will now allow the caller
 // to crate a mark that starts after the last
character on the page.
 if (markPostion.startIndex >=
pageText.length) {
 throw new Error("Mark cannot start after
last character on the page.");
 }

 // Determine if the highlight extends into
the next page.
 var remainingCharsOnPage = pageText.length -
markPostion.startIndex;
 var remainingCharsInHighlight =
markPostion.length - remainingCharsOnPage;
 var extendsToNextPage =
remainingCharsInHighlight > 0;

 // If the highlight extends to the next page,
and we are not on the last page,
 // then ensure the viewer has the text for
the next page.

PrizmDoc Viewer v13.17 564

©2021 My Company. All Rights Reserved.

See:

 if (extendsToNextPage) {
 if (markPageNumber <
viewerControl.getPageCount()) {
 return
ensureViewerControlHasPageText(viewerControl,
markPageNumber + 1,
 {startIndex: 0, length:
remainingCharsInHighlight});
 }
 // Mark#setPosition does not allow the
mark to extend off of the document.
 else {
 throw new Error("Mark cannot extend
off the document.")
 }
 }
 }
)
}

setReason(value) → {PCCViewer.Mark}

Sets the reason in the Redaction Mark.

This method is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

Parameters:

Name Type Description

value string Redaction reason of the Mark. Acceptable values are any string.

PCCViewer.Mark#getReason

PCCViewer.Mark#reason

Throws:

If the ViewerControlOptions.enableMultipleRedactionReasons property was set to true
when initializing ViewerControl. In such case you should use the PCCViewer.Mark#setReasons
instead.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

PrizmDoc Viewer v13.17 565

©2021 My Company. All Rights Reserved.

See:

Example

if (mark.setReason) {
 mark.setReason("Information for top security
clearance only.");
}

setReasons(value) → {PCCViewer.Mark}

Sets the reasons in the Redaction Mark.

This method is defined on marks of type: RectangleRedaction, TextSelectionRedaction.

Parameters:

Name Type Description

value Array.<string> Redaction reasons of the Mark. Acceptable values are an array of any string.

PCCViewer.Mark#getReasons

PCCViewer.Mark#reasons

Throws:

If the ViewerControlOptions.enableMultipleRedactionReasons property was set to false
when initializing ViewerControl. In such case you should use the PCCViewer.Mark#setReason
instead.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setReasons) {
 mark.setReasons(["1.a", "2.b", "Private
Information"]);
}

setRectangle(value) → {PCCViewer.Mark}

PrizmDoc Viewer v13.17 566

©2021 My Company. All Rights Reserved.

See:

Sets the bounding rectangle of the Mark.

This method is defined on marks of type: RectangleAnnotation, EllipseAnnotation,
TextAnnotation, StampAnnotation, RectangleRedaction,
TransparentRectangleRedaction, TextRedaction, StampRedaction,
FreehandAnnotation, FreehandSignature, TextSignature, ImageStampAnnotation,
ImageStampRedaction, TextInputSignature and TextAreaSignature.

Parameters:

Name Type Description

value Object Bounding rectangle of a Mark. The parameter object must be of the following type:
{x: xValue, y: yValue, width: widthValue, height: heightValue}

PCCViewer.Mark#getRectangle

PCCViewer.Mark#rectangle

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setRectangle) {
 mark.setRectangle({x:0, y:0, width:100, height:100});
}

setSessionData(key, value) → {PCCViewer.Mark}

Sets the session data value for the given key. Unlike PCCViewer.Mark#setData, this data is not saved
with the annotation, it only lasts for the session.

This method is defined on all Mark objects.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PrizmDoc Viewer v13.17 567

©2021 My Company. All Rights Reserved.

See: PCCViewer.Data#setSessionData

PCCViewer.Mark#getSessionData

PCCViewer.Mark#getSessionDataKeys

Returns:

The Mark object on which the method was called.

Type
PCCViewer.Mark

Example

var mark = viewerControl.addMark(1,
"RectangleRedaction");

// Get data returns undefined before the key is set.
mark.getSessionData("Visibility"); // returns undefined

// The key "Visibility" is set the value "Shown".
mark.setSessionData("Visibility", "Shown");
mark.getSessionData("Visibility"); // returns "Shown"

// The key "Visibility" is overwritten with the value
"Hidden".
mark.setSessionData("Visibility", "Hidden");
mark.getSessionData("Visibility"); // returns "Hidden"

// The key "Visibility" is unset, by setting the value to
undefined.
mark.setSessionData("Visibility", undefined);
mark.getSessionData("Visibility"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
mark.setSessionData("FooBar", null); // throws
mark.setSessionData("FooBar", 1); // throws
mark.setSessionData("FooBar", true); // throws
mark.setSessionData("FooBar", {}); // throws
mark.setSessionData("FooBar", []); // throws

setSignature(signature) → {PCCViewer.Mark}

Note: This property is defined on the template mark of the PlaceSignature mouse tool, and is not
available on any mark.

Sets the signature data to use by the PlaceSignature mouse tool.

Parameters:

PrizmDoc Viewer v13.17 568

©2021 My Company. All Rights Reserved.

See:

Name Type Description

signature Object |
undefined

An object with properties that specify the signature data. Using undefined
will reset the state of the mouse tool back to default.

See PCCViewer.Signatures~FreehandSignature and
PCCViewer.Signatures~TextSignature

PCCViewer.Mark#getSignature

PCCViewer.Mark#signature

Throws:

If signature is not an Object or undefined.

Type
Error

If the signature object does not have either a path or text string property.

Type
Error

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

// get the mouse tool
var accusoftPlaceSignature =
PCCViewer.MouseTools.getMouseTool('AccusoftPlaceSignature');

// get the template mark
var signatureTemplateMark =
accusoftPlaceSignature.getTemplateMark();

// set signature path for freehand signature
signatureTemplateMark.setSignature({path:
"M0,0L100,0L100,100L0,100L0,0"});

// the same template can be reused for text signature
signatureTemplateMark.setSignature({ text: "Joe Smith",

PrizmDoc Viewer v13.17 569

©2021 My Company. All Rights Reserved.

3 4

See:

See:

fontName: "Arial" });

setStartPoint(value) → {PCCViewer.Mark}

Sets the start point coordinate of the line Mark.

This method is defined on marks of type: LineAnnotation.

Parameters:

Name Type Description

value Object Start point coordinates of a line Mark. The parameter object must be of the following
type: {x:xvalue, y: yvalue}

PCCViewer.Mark#getStartPoint

PCCViewer.Mark#startPoint

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setStartPoint) {
 mark.setStartPoint({x:1, y:1});
}

setText(value) → {PCCViewer.Mark}

Sets the text in the Text Mark.

This method is defined on marks of type: TextAnnotation, TextRedaction, TextSignature,
TextInputSignature and TextAreaSignature.

Note: This method is NOT available for marks of type:HighlightAnnotation,
TextSelectionRedaction, TextHyperlinkAnnotation and StrikethroughAnnotation

Parameters:

Name Type Description

value string Text of the Mark. Acceptable values are any string.

PCCViewer.Mark#getText

PCCViewer.Mark#text

PrizmDoc Viewer v13.17 570

©2021 My Company. All Rights Reserved.

See:

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setText) {
 mark.setText("This is test Text");
}

setThickness(value) → {PCCViewer.Mark}

Sets the thickness of line.

This method is defined on marks of type: LineAnnotation, FreehandAnnotation,
FreehandSignature, PolylineAnnotation, StrikethroughAnnotation.

Parameters:

Name Type Description

value number Thickness of the line.

PCCViewer.Mark#getThickness

PCCViewer.Mark#thickness

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setThickness) {
 mark.setThickness(3);
}

setVisible() → {PCCViewer.Mark}

Sets the Mark to either visible or invisible depending on the boolean parameter.

PrizmDoc Viewer v13.17 571

©2021 My Company. All Rights Reserved.

See:

This method is defined on all mark types.

Parameters:

Name Type Description

value. boolean

PCCViewer.Mark#getVisible

PCCViewer.Mark#visible

Returns:

The Mark object on which this method was called.

Type
PCCViewer.Mark

Example

if (mark.setVisible) {
 mark.setVisible(true); // sets the mark visible
}

Type Definitions
ImageData

This type is used to specify the image data and a unique identifier for the image data. Objects of this
type are used by the PCCViewer.Mark#getImage, PCCViewer.Mark#setImage, and
PCCViewer.Mark#image members.

Type:

Object

Properties:

Name Description

id :
string

An arbitrary string id used to identify this image. Though this can be any string, it is
expected that the same string identifier be used to identify the same image data.

dataUrl
: string

A base64-encoded data URL representation of an image.

PrizmDoc Viewer v13.17 572

©2021 My Company. All Rights Reserved.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. MarkupLayer
(protected) new MarkupLayer(viewerControl, markReferencesopt)

The MarkupLayer object is used to group together marks and their associated comments. A layer may be
persisted to the web tier using PCCViewer.ViewerControl#saveMarkupLayer. Also, a layer may be stored in
a PCCViewer.MarkupLayerCollection where it can be retrieved for later use.

When creating a layer, mark references may be added. A mark reference is a JSON object that represents a
comment that refers to a mark on another layer. When the current user comments on a mark that does not
exist in his layer, then his persisted layer record will contain a reference to the mark while the full mark will
exist in another record. Because records might be loaded out of order or in an incomplete set, this
parameter provides a way to store the mark reference. If the record containing the full mark loads later
then the data stored here can be attached to it.

After creating a layer, marks may be added and removed from it.

The MarkupLayer object also provides an event subscription method, to get notified of other types of
information. See PCCViewer.MarkupLayer.EventType.

Parameters:

Name Type Attributes Description

viewerControl string The PCCViewer.ViewerControl for the loaded
document.

markReferences Object | Array.
<Object>

<optional> The JSON reference node (or an array of them) from
the markup layer record.

Example

// Optionally, specify any references to marks on another
layer or layers
var markReference = {
 creationDateTime: "2015-06-12T21:20:58.527Z",
 data: {
 "key1": "value1",
 "key2": "value2"
 },
 markUid:
"ZZZrOV8yMDE1LTA2LTExVDE5OjU5OjEwLjE3MlpfNDg2dzI5",
 text: "user 1 comment on user 3 mark"
};

// Create a new layer
var layer = new PCCViewer.MarkupLayer(viewerControl,

Class: MarkupLayer

PrizmDoc Viewer v13.17 573

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

3 4

markReference);

//register some events
layer
 .on(PCCViewer.MarkupLayer.EventType.MarkupLayerCreated,
function(ev) {
 alert("Markup layer created.");
 })

.on(PCCViewer.MarkupLayer.EventType.MarkupLayerDestroyed,
function(ev) {
 alert("Markup layer destroyed.");
 })
 .on(PCCViewer.MarkupLayer.EventType.MarksAddedToLayer,
function(ev) {
 alert("Mark added to layer: " +
ev.marks[0].getId());
 })

.on(PCCViewer.MarkupLayer.EventType.MarksRemovedFromLayer,
function(ev) {
 alert("Mark removed from layer: " +
ev.marks[0].getId());
 })

.on(PCCViewer.MarkupLayer.EventType.MarkupLayerInteractionModeChanged,
function(ev) {
 alert("Layer's interaction mode changed to: " +
ev.interactionMode);
 })
 .on(PCCViewer.MarkupLayer.EventType.MarkupLayerHidden,
function(ev) {
 alert("MarkupLayer#hide() called.");
 })
 .on(PCCViewer.MarkupLayer.EventType.MarkupLayerShown,
function(ev) {
 alert("MarkupLayer#show() called.");
 });

// Create a new mark
var mark = viewerControl.addMark(1, "HighlightAnnotation");
// Add the mark to the layer
layer.addMarks(mark);
// Determine if a mark is contained in a layer
var markInLayer = layer.hasMark(mark.getId());

Members
(static, readonly) EventType :string

PrizmDoc Viewer v13.17 574

©2021 My Company. All Rights Reserved.

See:

See:

A list of events that can be triggered by the PCCViewer.MarkupLayer object.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

MarkupLayerCreated : string

MarkupLayerDestroyed : string

MarksAddedToLayer : string

MarksRemovedFromLayer : string

MarkupLayerInteractionModeChanged : string

MarkupLayerHidden : string

MarkupLayerShown : string

PCCViewer.Event

PCCViewer.MarkupLayer#on

PCCViewer.MarkupLayer#off

(readonly) id :Object

Gets the layer's ID.

This property is defined on all MarkupLayer objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayer#getId

Example

var id = MarkupLayer.id;

name :Object

PrizmDoc Viewer v13.17 575

©2021 My Company. All Rights Reserved.

See:

See:

Gets and sets the layer's name.

This property is defined on all MarkupLayer objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayer#getName

PCCViewer.MarkupLayer#setName

Example

var name = MarkupLayer.name;

originalXmlName :Object

Gets and sets the layer's original XML name.

This property is defined on all MarkupLayer objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayer#getOriginalXmlName

PCCViewer.MarkupLayer#setOriginalXmlName

Example

var name = MarkupLayer.originalXmlName;

(readonly) recordId :Object

Gets the ID of web tier record from which this layer was created.

This property is defined on all MarkupLayer objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

PrizmDoc Viewer v13.17 576

©2021 My Company. All Rights Reserved.

See:

See:

Object

PCCViewer.MarkupLayer#getRecordId

Example

var recordId = MarkupLayer.recordId;

(readonly) viewerControl :Object

Gets the viewer control associated with this layer.

This property is defined on all MarkupLayer objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayer#getViewerControl

Example

var viewerControl = MarkupLayer.viewerControl;

Methods
addMarks(A) → {PCCViewer.MarkupLayer}

Used to add marks to the layer.

Parameters:

Name Type Description

A PCCViewer.Mark | Array.<PCCViewer.Mark> {PCCViewer.Mark} object or an array of them.

Returns:

The markup layer Object.

Type
PCCViewer.MarkupLayer

PrizmDoc Viewer v13.17 577

©2021 My Company. All Rights Reserved.

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var mark = viewerControl.addMark(1, 'HighlightAnnotation');
// Create a new mark
markupLayer.addMarks(mark);

copyLayers(marks) → {PCCViewer.MarkupLayer}

Copies marks from other layers to this layer.

Note: This method requires that attributes of each page referenced by the layer marks have been obtained
by the viewer prior to calling. Use PCCViewer.ViewerControl#requestPageAttributes to obtain the
necessary page attributes before calling this method.

Note: The copied marks are assigned new unique IDs, and any references to the original mark (such as a
comment on the mark that is stored in another layer) will not reference the copied mark. A copy of each
comment on the mark is put on the copy of the mark in this layer.

Parameters:

Name Type Description

marks Array.<PCCViewer.MarkupLayer> An array of markup layers to copy to this layer.

Throws:

If markupLayers is not an array of markup layers known to the viewer.

Type
Error

Returns:

The markup layer Object on which this method was called.

Type
PCCViewer.MarkupLayer

Example

var markupLayer1 =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var markupLayer2 =
viewerControl.getMarkupLayerCollection().getAll()[1]; //
Get the second markup layer.
var markupLayer4 =

PrizmDoc Viewer v13.17 578

©2021 My Company. All Rights Reserved.

See:

viewerControl.getMarkupLayerCollection().getAll()[3]; //
Get the fourth markup layer.
// Concatenate layers 2 and 4 to a single array.
var layersToCopy = markupLayer2.concat(markupLayer4);
// Copy the layers to this layer.
markupLayer1.copyLayers(layersToCopy);

destroy()

This method will remove the layer from the viewer control's markup layer collection. Also, it will de-register
any event listeners associated with the layer.

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.destroy();

getData(key) → {string|object}

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

This method is defined on all MarkupLayer objects.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#getData

PCCViewer.MarkupLayer#setData

PCCViewer.MarkupLayer#getDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

PrizmDoc Viewer v13.17 579

©2021 My Company. All Rights Reserved.

See:

Type
string | object

Example

// The key "Username" is set the value "Admin".
layer.setData("Username", "Admin");

// The key "CreatedDate" is set the value "1970-01-01".
layer.setData("CreatedDate", "1970-01-01");

layer.getData("Username"); // returns "Admin"
layer.getData(); // returns {"Username":"Admin",
"CreatedDate":"1970-01-01"}
layer.getData("FooBar"); // returns undefined

getDataKeys() → {Array.<string>}

Gets an array of data keys known to this MarkupLayer.

This method is defined on all MarkupLayer objects.

PCCViewer.Data#getDataKeys

PCCViewer.MarkupLayer#getData

PCCViewer.MarkupLayer#setData

Returns:

Returns an array of data keys known to this MarkupLayer. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

// Returns an empty array before key-value pairs are
stored.
layer.getDataKeys(); // returns []

// Returns a list of all keys.
layer.setData("Username", "Admin");
layer.setData("CreatedDate", "1970-01-01");
layer.getDataKeys(); // returns ["Username", "CreatedDate"]

getId() → {string}

PrizmDoc Viewer v13.17 580

©2021 My Company. All Rights Reserved.

Gets the layer's ID.

Returns:

The ID of the layer.

Type
string

getMarkReferences() → {Array.<Object>}

Gets the mark references associated with this layer.

Returns:

An array of mark reference Objects.

Type
Array.<Object>

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var markReferences = markupLayer.getMarkReferences();

getMarks() → {Array.<PCCViewer.Mark>}

Gets the marks associated with this layer.

Returns:

An array of {PCCViewer.Mark} Objects.

Type
Array.<PCCViewer.Mark>

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var marks = markupLayer.getMarks();

PrizmDoc Viewer v13.17 581

©2021 My Company. All Rights Reserved.

getName() → {string}

Gets the layer's name.

Returns:

The name of the layer.

Type
string

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var layerName = markupLayer.getName();

getOriginalXmlName() → {string}

Gets the name of the web tier XML record from which the marks of this layer were originally stored.

Returns:

The name of the web tier XML record from which the marks of this layer were originally stored.

Type
string

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var originalXmlName = markupLayer.getOriginalXmlName();

getRecordId() → {string}

Gets the ID of web tier record from which this layer was created.

Returns:

The layer record ID

Type

PrizmDoc Viewer v13.17 582

©2021 My Company. All Rights Reserved.

See:

string

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var recordId = markupLayer.getRecordId();

getSessionData(key) → {string|object}

Gets the session data value for the given key, or gets a hash containing all key values, if a key was not
provided. Unlike PCCViewer.MarkupLayer#getData, this data is not saved with the annotation, it only lasts
for the session.

This method is defined on all MarkupLayer objects.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.SessionData#getSessionData

PCCViewer.MarkupLayer#setSessionData

PCCViewer.MarkupLayer#getSessionDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

// The key "Username" is set the value "Admin".

PrizmDoc Viewer v13.17 583

©2021 My Company. All Rights Reserved.

See:

layer.setSessionData("Username", "Admin");

// The key "CreatedDate" is set the value "1970-01-01".
layer.setSessionData("CreatedDate", "1970-01-01");

layer.getSessionData("Username"); // returns "Admin"
layer.getSessionData(); // returns
{"Username":"Admin", "CreatedDate":"1970-01-01"}
layer.getSessionData("FooBar"); // returns undefined

getSessionDataKeys() → {Array.<string>}

Gets an array of data keys known to this MarkupLayer. Unlike PCCViewer.MarkupLayer#getDataKeys, this
data is not saved with the annotation, it only lasts for the session.

This method is defined on all MarkupLayer objects.

PCCViewer.SessionData#getSessionDataKeys

PCCViewer.MarkupLayer#getSessionData

PCCViewer.MarkupLayer#setSessionData

Returns:

Returns an array of data keys known to this MarkupLayer. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

// Returns an empty array before key-value pairs are
stored.
layer.getSessionDataKeys(); // returns []

// Returns a list of all keys.
layer.setSessionData("Username", "Admin");
layer.setSessionData("CreatedDate", "1970-01-01");
layer.getSessionDataKeys(); // returns ["Username",
"CreatedDate"]

getViewerControl() → {PCCViewer.ViewerControl}

Gets the viewer control associated with this layer.

Returns:

PrizmDoc Viewer v13.17 584

©2021 My Company. All Rights Reserved.

A viewer control object.

Type
PCCViewer.ViewerControl

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var viewerControl = markupLayer.getViewerControl();

hasMark(A) → {boolean}

Used to query the layer to see if it contains a particular mark.

Parameters:

Name Type Description

A string mark's id.

Returns:

A true or false indication depending on whether the mark exists in the layer.

Type
boolean

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
var mark = viewerControl.getAllMarks()[0];
var markExistsInLayer = markupLayer.hasMark(mark.getId());

hide() → {PCCViewer.MarkupLayer}

Hides all of the marks in the layer.

Returns:

The markup layer Object on which this method was called.called.

Type
PCCViewer.MarkupLayer

PrizmDoc Viewer v13.17 585

©2021 My Company. All Rights Reserved.

See:

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.hide(); // Hide the marks in the layer.

off(eventType, handler) → {PCCViewer.MarkupLayer}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.MarkupLayer.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the
ViewerControl.

Note: This must be the same function object previously
passed to PCCViewer.MarkupLayer#on. It cannot be a
different object that is functionally equivalent.

PCCViewer.MarkupLayer#on

PCCViewer.ViewerControl#off for more details on unsubscribing event
handlers.

Returns:

The MarkupLayer object on which this method was called.

Type
PCCViewer.MarkupLayer

on(eventType, handler) → {PCCViewer.MarkupLayer}

Subscribe an event handler to an event of a specified type.

Parameters:

PrizmDoc Viewer v13.17 586

©2021 My Company. All Rights Reserved.

See:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See PCCViewer.MarkupLayer.EventType for a
list and description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

PCCViewer.MarkupLayer#off

PCCViewer.ViewerControl#on for more details on event subscription.

Returns:

The MarkupLayer object on which this method was called.

Type
PCCViewer.MarkupLayer

removeMarks(A) → {PCCViewer.MarkupLayer}

Used to remove marks from the layer.

Parameters:

Name Type Description

A PCCViewer.Mark | Array.<PCCViewer.Mark> {PCCViewer.Mark} object or an array of them.

Returns:

The markup layer Object.

Type
PCCViewer.MarkupLayer

Example

var markupLayer = viewerControl.getActiveMarkupLayer(); //
Get the active markup layer.
var mark = viewerControl.addMark(1, 'HighlightAnnotation');
// Create a new mark
markupLayer.removeMarks(mark); // remove the mark from the
active layer

setData(key, value) → {PCCViewer.MarkupLayer}

PrizmDoc Viewer v13.17 587

©2021 My Company. All Rights Reserved.

See:

Sets the data value for the given key.

This method is defined on all MarkupLayer objects.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#setData

PCCViewer.MarkupLayer#getData

PCCViewer.MarkupLayer#getDataKeys

Returns:

The MarkupLayer object on which the method was called.

Type
PCCViewer.MarkupLayer

Example

// Get data returns undefined before the key is set.
layer.getData("Username"); // returns undefined

// The key "Username" is set the value "Admin".
layer.setData("Username", "Admin");
layer.getData("Username"); // returns "Admin"

// The key "Username" is overwritten with the value
"Guest1".
layer.setData("Username", "Guest1");
layer.getData("Username"); // returns "Guest1"

// The key "Username" is unset, by setting the value to
undefined.

PrizmDoc Viewer v13.17 588

©2021 My Company. All Rights Reserved.

3 4

layer.setData("Username", undefined);
layer.getData("Username"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
layer.setData("FooBar", null); // throws
layer.setData("FooBar", 1); // throws
layer.setData("FooBar", true); // throws
layer.setData("FooBar", {}); // throws
layer.setData("FooBar", []); // throws

setInteractionMode(interactionMode) → {PCCViewer.MarkupLayer}

Used to alter the interaction mode of all marks in a layer.

Parameters:

Name Type Description

interactionMode string A string value from the enumeration PCCViewer.Mark.InteractionMode,

Returns:

The markup layer Object on which this method was called

Type
PCCViewer.MarkupLayer

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.setInteractionMode(PCCViewer.Mark.InteractionMode.SelectionDisable

setName(name) → {PCCViewer.MarkupLayer}

Sets the layer's name.

Parameters:

Name Type Description

name string The name to apply to this layer.

Returns:

PrizmDoc Viewer v13.17 589

©2021 My Company. All Rights Reserved.

The markup layer Object on which this method was called.

Type
PCCViewer.MarkupLayer

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.setName('Final Draft');

setOriginalXmlName(name) → {PCCViewer.MarkupLayer}

Sets the name of the web tier XML record from which the marks of this layer were originally stored. If the
layer is not associated with an XML file, the property should be set to an empty string.

When the original XML name is set and a markup layer is saved, the original XML name is saved in the
markup layer JSON. When the PCCViewer.ViewerControl#requestMarkupLayerNames method is called, the
original XML name will be provided.

Parameters:

Name Type Description

name string The name of the web tier XML record from which the marks of this layer were originally
stored.

Returns:

The markup layer Object on which this method was called.

Type
PCCViewer.MarkupLayer

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.setOriginalXmlName('my marks');

setSessionData(key, value) → {PCCViewer.MarkupLayer}

Sets the session data value for the given key. Unlike PCCViewer.MarkupLayer#setData, this data is not
saved with the annotation, it only lasts for the session.

This method is defined on all MarkupLayer objects.

PrizmDoc Viewer v13.17 590

©2021 My Company. All Rights Reserved.

See:

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.SessionData#setSessionData

PCCViewer.MarkupLayer#getSessionData

PCCViewer.MarkupLayer#getSessionDataKeys

Returns:

The MarkupLayer object on which the method was called.

Type
PCCViewer.MarkupLayer

Example

// Get data returns undefined before the key is set.
layer.getSessionData("Username"); // returns undefined

// The key "Username" is set the value "Admin".
layer.setSessionData("Username", "Admin");
layer.getSessionData("Username"); // returns "Admin"

// The key "Username" is overwritten with the value
"Guest1".
layer.setSessionData("Username", "Guest1");
layer.getSessionData("Username"); // returns "Guest1"

// The key "Username" is unset, by setting the value to
undefined.
layer.setSessionData("Username", undefined);
layer.getSessionData("Username"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
layer.setSessionData("FooBar", null); // throws
layer.setSessionData("FooBar", 1); // throws
layer.setSessionData("FooBar", true); // throws
layer.setSessionData("FooBar", {}); // throws
layer.setSessionData("FooBar", []); // throws

PrizmDoc Viewer v13.17 591

©2021 My Company. All Rights Reserved.

show() → {PCCViewer.MarkupLayer}

Shows all of the marks in the layer.

Returns:

The markup layer Object on which this method was called.

Type
PCCViewer.MarkupLayer

Example

var markupLayer =
viewerControl.getMarkupLayerCollection().getAll()[0]; //
Get the first markup layer.
markupLayer.show(); // Show the marks in the layer.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. MarkupLayerCollection
(protected) new MarkupLayerCollection(viewerControl)

The MarkupLayerCollection object is used to hold and manage the markup layers as they are added,
removed, shown and hidden. These actions will determine what marks and comments are displayed.

After creating a MarkupLayerCollection, PCCViewer.MarkupLayer objects may be added and removed
from it. Additionally, mark references may also be added to it.

The MarkupLayerCollection object also provides an event subscription method, to get notified of
other types of information. See PCCViewer.MarkupLayerCollection.EventType.

Parameters:

Name Type Description

viewerControl string The PCCViewer.ViewerControl for the loaded document.

Example

// Get the `MarkupLayerCollection` associated with the
viewerControl

Class: MarkupLayerCollection

PrizmDoc Viewer v13.17 592

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

3 4

See:

var layerCollection =
viewerControl.getMarkupLayerCollection()
// Get all the layers in a collection
var layers = layerCollection.getAll();
// Remove a layer from a collection
layerCollection.remove(layers[0].getId());

//register some events
layerCollection

.on(PCCViewer.MarkupLayerCollection.EventType.MarkupLayerAdded,

 function(ev) {
 alert("Markup layer added to the collection with
id = " + ev.layerId);
 })

.on(PCCViewer.MarkupLayerCollection.EventType.MarkupLayerRemoved,

 function(ev) {
 alert("Markup layer removed from the collection
with id = " + ev.layerId);
 });

Members
(static, readonly) EventType :string

A list of events that can be triggered by the PCCViewer.MarkupLayerCollection object.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

MarkupLayerAdded : string

MarkupLayerRemoved : string

PCCViewer.Event

PCCViewer.MarkupLayerCollection#on

PCCViewer.MarkupLayerCollection#off

PrizmDoc Viewer v13.17 593

©2021 My Company. All Rights Reserved.

See:

See:

(readonly) viewerControl :Object

Gets the number representing how many layers are in the collection.

This property is defined on all MarkupLayerCollection objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayerCollection#getCount

Example

var layerCount = MarkupLayerCollection.count;

(readonly) viewerControl :Object

Gets the viewer control associated with this markup layer collection.

This property is defined on all MarkupLayerCollection objects.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
and setter methods.

Type:

Object

PCCViewer.MarkupLayerCollection#getViewerControl

Example

var viewerControl = MarkupLayerCollection.viewerControl;

Methods
addItem(layer) → {PCCViewer.MarkupLayerCollection}

This method is used to add a layer to the collection.

Parameters:

Name Type Description

layer PCCViewer.MarkupLayer A markup layer object.

PrizmDoc Viewer v13.17 594

©2021 My Company. All Rights Reserved.

Returns:

The markup layer collection object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var layer = new PCCViewer.MarkupLayer(viewerControl);
layerCollection.addItem(layer);

forEach(iterator, thisArgopt) → {PCCViewer.MarkupLayerCollection}

A method to iterate over all items in the collection. This method matches the spec for
Array.prototype.forEach.

Parameters:

Name Type Attributes Description

iterator function |
PCCViewer.MarkupLayerCollection~iterator

The function to execute for each
item in the collection.

thisArg * <optional> The Object to be used as this for
the iterator function.

Throws:

If the iterator parameter is not a function.

Type
TypeError

Returns:

The markup layer collection Object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

Name Type Description

PrizmDoc Viewer v13.17 595

©2021 My Company. All Rights Reserved.

getAll() → {Array.<PCCViewer.MarkupLayer>}

Gets all the layers from the collection.

Returns:

An array of markup layer objects.

Type
Array.<PCCViewer.MarkupLayer>

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var layers = layerCollection.getAll();

getCount() → {number}

Gets the number representing how many layers are in the collection.

Returns:

The number representing how many layers are in the collection.

Type
number

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var layerCount = layerCollection.getCount();

getItem(layerId) → {PCCViewer.MarkupLayer|undefined}

Gets a specific layer from the collection.

Parameters:

Name Type Description

layerId string A layer ID that corresponds to a layer object contained in the collection.

PrizmDoc Viewer v13.17 596

©2021 My Company. All Rights Reserved.

Returns:

A markup layer object or undefined if layerId does not correspond to a layer in the collection.

Type
PCCViewer.MarkupLayer | undefined

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var layers = layerCollection.getAll();
var layer = layerCollection.getItem(layers[0].getId());

getViewerControl() → {PCCViewer.ViewerControl}

Gets the viewer control associated with this layer.

Returns:

A viewer control object.

Type
PCCViewer.ViewerControl

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var viewerControl = layerCollection.getViewerControl();

off(eventType, handler) → {PCCViewer.MarkupLayerCollection}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.MarkupLayerCollection.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the
ViewerControl.

PrizmDoc Viewer v13.17 597

©2021 My Company. All Rights Reserved.

See:

See:

Note: This must be the same function object previously
passed to PCCViewer.MarkupLayerCollection#on. It cannot
be a different object that is functionally equivalent.

PCCViewer.MarkupLayerCollection#on

PCCViewer.ViewerControl#off for more details on unsubscribing event
handlers.

Returns:

The MarkupLayerCollection object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

on(eventType, handler) → {PCCViewer.MarkupLayerCollection}

Subscribe an event handler to an event of a specified type.

Parameters:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See
PCCViewer.MarkupLayerCollection.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

PCCViewer.MarkupLayerCollection#off

PCCViewer.ViewerControl#on for more details on event subscription.

Returns:

The MarkupLayerCollection object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

removeAll() → {PCCViewer.MarkupLayerCollection}

This method is used to remove all layers from the collection.

Name Type Description

PrizmDoc Viewer v13.17 598

©2021 My Company. All Rights Reserved.

Returns:

The markup layer collection object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
layerCollection.removeAll();

removeItem(layerId) → {PCCViewer.MarkupLayerCollection}

This method is used to remove a layer from the collection.

Parameters:

Name Type Description

layerId string An ID of a layer in the collection.

Returns:

The markup layer collection object on which this method was called.

Type
PCCViewer.MarkupLayerCollection

Example

var layerCollection =
viewerControl.getMarkupLayerCollection(); // Get the markup
layer collection associated with the viewerControl
var layers = layerCollection.getAll();
layerCollection.removeItem(layers[0].getId());

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Class: MouseTool

PrizmDoc Viewer v13.17 599

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

PCCViewer. MouseTool
This object represents an instance of a mouse tool. Each mouse tool is given a name and type when it is
created. The name is used as a handle to the mouse tool. The type defines the behavior and properties of
the mouse tool.

A named mouse tool is a global tool that is available to all viewers. Each viewer instance can access the
same MouseTool object by name. This permits one mouse tool to be used by two different viewer
instances at the same time.

Constructor

new MouseTool()

The MouseTool constructor is for internal use only. The appropriate way to create and register a new
named mouse tool is to use the method PCCViewer.MouseTools.createMouseTool.

PCCViewer.MouseTools.createMouseTool

Throws:

If the type is unknown. See PCCViewer.MouseTool.Type for a list of known tool types.

Type
RangeError

Example

// use the PCCViewer.MouseTools.createMouseTool(name, type)
// function instead of this constructor.
PCCViewer.MouseTools.createMouseTool("myMouseTool",
"LineAnnotation");

Members
(static, readonly) Type :string

This enumerable contains a list of all known tool types. There are used to create new
PCCViewer.MouseTool objects, and are the known types returned PCCViewer.MouseTool#getType.

Type:

string

Properties:

PrizmDoc Viewer v13.17 600

©2021 My Company. All Rights Reserved.

Name Description

Magnifier : string Use the magnifier mouse tool type to display a magnifying glass
on left click and drag.

SelectToZoom : string Use the select to zoom mouse tool type to select an area of the
page to zoom in on.

Pan : string Use the pan mouse tool type to drag the image up, down, left, or
right.

PanAndEdit : string Use the mouse or touch to drag the image up, down, left, or right.
When clicking or touching over an annotation, the annotation will
be selected, edited, moved, or resized, based on user actions.

SelectText : string Use the select text mouse tool type to select text in the document.

EditMarks : string Use the edit marks mouse tool type to select one or more marks
(annotations and redactions) in the document. A mark can be
clicked on for editing, or a rectangle can be drawn to select
multiple marks.

LineAnnotation : string Use the line annotation tool mouse tool type to draw a line
annotation.

RectangleAnnotation : string Use the rectangle annotation mouse tool type to draw a rectangle
annotation.

EllipseAnnotation : string Use the ellipse annotation mouse tool type to draw an ellipse
annotation.

TextAnnotation : string Use the text annotation mouse tool type to draw a text annotation.

StampAnnotation : string Use the stamp annotation mouse tool type to draw a stamp
annotation.

HighlightAnnotation : string Use the highlight annotation mouse tool type to select text and
create a highlight annotation.

TextHyperlinkAnnotation :
string

Use the text hyperlink annotation mouse tool type to select text
and create a text hyperlink annotation.

FreehandAnnotation : string Use the freehand annotation tool mouse tool type to draw a
freehand annotation.

RectangleRedaction : string Use the rectangle redaction mouse tool type to draw a rectangle
redaction.

TransparentRectangleRedaction
: string

Use the transparent rectangle redaction mouse tool type to draw a
transparent rectangle redaction.

TextRedaction : string Use the text redaction mouse tool type to draw a text redaction.

TextInputSignature : string Use the text input signature mouse tool type to draw a text input
signature.

TextAreaSignature : string Use the text area signature mouse tool type to draw a text area
signature.

StampRedaction : string Use the stamp redaction mouse tool type to draw a stamp
redaction.

PrizmDoc Viewer v13.17 601

©2021 My Company. All Rights Reserved.

See:

PlaceSignature : string Use to click on the document and place a signature in that
location.

TextSelectionRedaction :
string

Use the TextSelectionRedaction mouse tool type to select text and
create a text selection redaction.

ImageStampAnnotation : string Use the ImageStampAnnotation mouse tool type to place
ImageStamp annotation.

ImageStampRedaction : string Use the ImageStampAnnotation mouse tool type to place
ImageStamp redaction.

PolylineAnnotation : string Use the PolylineAnnotation mouse tool type to place Polyline
annotation.

StrikethroughAnnotation :
string

Use the StrikethroughAnnotation mouse tool type to place
Strikethrough annotation.

name :string

Gets the name of the mouse tool.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
method PCCViewer.MouseTool#getName.

Type:

string

PCCViewer.MouseTool#getName

Example

// get the mouse tool's name
var mouseToolName = myMouseTool.name;

// do something with the name
alert("Mouse tool name is " + mouseToolName);

templateMark :PCCViewer.Mark

Gets the template mark associated with an annotation or redaction mouse tool.

This property is defined on MouseTool objects that are annotation or redaction types: LineAnnotation,
RectangleAnnotation, EllipseAnnotation, TextAnnotation, StampAnnotation,
HighlightAnnotation, RectangleRedaction, TransparentRectangleRedaction,
TextRedaction, TextInputSignature, StampRedaction, TextHyperlinkAnnotation,
StrikethroughAnnotation, TextAreaSignature.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter

Name Description

PrizmDoc Viewer v13.17 602

©2021 My Company. All Rights Reserved.

See:

See:

method PCCViewer.MouseTool#getTemplateMark.

Type:

PCCViewer.Mark

PCCViewer.MouseTool#getTemplateMark

Example

var myMouseTool =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

// Check if templateMark is a property in the MouseTool
object
if (templateMark in myMouseTool) {
 // get the template mark
 var templateMark = myMouseTool.templateMark;

 // Do something with the template mark. For example,
set the color.
 if (templateMark.setColor) {
 templateMark.setColor("#FF0000");
 }
}

type :string

Gets the type of the mouse tool.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter
method PCCViewer.MouseTool#getType.

Type:

string

PCCViewer.MouseTool.Type for a list of possible mouse tool types.

PCCViewer.MouseTool#getType

Example

var myMouseTool =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

// get the mouse tool's type
var mouseToolType = myMouseTool.type;

PrizmDoc Viewer v13.17 603

©2021 My Company. All Rights Reserved.

See:

// do something with the type
switch (mouseToolType) {
 case PCCViewer.MouseTool.Type.LineAnnotation:
 ...
 break;
 default:
 ...
}

Methods
getName() → {string}

Gets the name of the mouse tool.

PCCViewer.MouseTool#name

Returns:

The name of the mouse tool.

Type
string

Example

// get the mouse tool's name
var mouseToolName = myMouseTool.getName();

// do something with the name
alert("Mouse tool name is " + mouseToolName);

getTemplateMark() → {PCCViewer.Mark}

Gets the template mark associated with an annotation or redaction mouse tool.

This method is defined on MouseTool objects that are annotation or redaction types: LineAnnotation,
RectangleAnnotation, EllipseAnnotation, TextAnnotation, StampAnnotation,
HighlightAnnotation, RectangleRedaction, TransparentRectangleRedaction,
TextRedaction, TextInputSignature, StampRedaction, TextHyperlinkAnnotation,
StrikethroughAnnotation, TextAreaSignature.

Returns:

The template mark for the mouse tool.

Type

PrizmDoc Viewer v13.17 604

©2021 My Company. All Rights Reserved.

See:

PCCViewer.Mark

Example

var myMouseTool =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

// Check if getTemplateMark is defined
if (myMouseTool.getTemplateMark) {
 // get the template mark
 var templateMark = myMouseTool.getTemplateMark();

 // Do something with the template mark. For example,
set the color.
 if (templateMark.setColor) {
 templateMark.setColor("#FF0000");
 }
}

getType() → {string}

Gets the type of the mouse tool.

PCCViewer.MouseTool.Type for a list of possible mouse tool types.

PCCViewer.MouseTool#type

Returns:

The type of the mouse tool.

Type
string

Example

var myMouseTool =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

// get the mouse tool's type
var mouseToolType = myMouseTool.getType();

// do something with the type
switch (mouseToolType) {
 case PCCViewer.MouseTool.Type.LineAnnotation:
 ...
 break;
 default:

PrizmDoc Viewer v13.17 605

©2021 My Company. All Rights Reserved.

 ...
}

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. ObservableCollection
new ObservableCollection()

Represents a dynamic collection that provides notifications when items get added or removed.

Members
(static, readonly) EventType :string

The known events for the collection.

Type:

string

Properties:

Name Description

ItemAdded : string Triggered when an item is added to the collection.

ItemRemoved : string Triggered when an item is removed from the collection.

Methods
add(item) → {PCCViewer.ObservableCollection}

Add an item to the collection.

Parameters:

Name Type Description

item * Any object or value to add to the collection.

Returns:

Class: ObservableCollection

PrizmDoc Viewer v13.17 606

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

The collection object.

Type
PCCViewer.ObservableCollection

forEach(iterator, thisArgopt) → {PCCViewer.ObservableCollection}

A method to iterate over all items in the collection. This method matches the spec for
Array.prototype.forEach.

Parameters:

Name Type Attributes Description

iterator function |
PCCViewer.ObservableCollection~iterator

The function to execute for each
item in the collection.

thisArg * <optional> The Object to be used as this for
the iterator function.

Throws:

If the iterator parameter is not a function.

Type
TypeError

Returns:

The collection object.

Type
PCCViewer.ObservableCollection

off(eventType, handler) → {PCCViewer.ObservableCollection}

Unsubscribe from an event triggered on the collection.

Parameters:

Name Type Description

eventType string The type of event being unsubscribed.

handler function The function that was used to subscribe to the event.

PCCViewer.ViewerControl#off

PrizmDoc Viewer v13.17 607

©2021 My Company. All Rights Reserved.

See:

Returns:

The collection object.

Type
PCCViewer.ObservableCollection

on(eventType, handler) → {PCCViewer.ObservableCollection}

Subscribe to an event triggered on the collection.

Parameters:

Name Type Description

eventType string The type of event being subscribed.

handler function The function to call when the event is triggered.

PCCViewer.ViewerControl#on

PCCViewer.ObservableCollection.EventType

Returns:

The collection object.

Type
PCCViewer.ObservableCollection

remove(item) → {PCCViewer.ObservableCollection}

Remove an item from the collection.

Parameters:

Name Type Description

item * The item to be removed. This must be the same object that was added to the collection.

Returns:

The collection object.

Type
PCCViewer.ObservableCollection

removeAll() → {PCCViewer.ObservableCollection}

PrizmDoc Viewer v13.17 608

©2021 My Company. All Rights Reserved.

Removes all items from the collection.

Returns:

The collection object.

Type
PCCViewer.ObservableCollection

toArray() → {Array.<*>}

Generates an array of all of the items in the collection.

Returns:

An array of all items in the collection.

Type
Array.<*>

Type Definitions
iterator(item, index, array)

The iterator function for the PCCViewer.ObservableCollection#forEach method.

This function can also have an optional this argument, as defined in the
PCCViewer.ObservableCollection#forEach method.

Parameters:

Name Type Description

item * The item from the collection.

index Number The index of the item from the collection.

array Array An array of all the items in the collection.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. PrintRequest

Class: PrintRequest

PrizmDoc Viewer v13.17 609

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

(protected) new PrintRequest()

The PrintRequest object is created when printing the document. This constructor should not be used
directly. Instead, a print request is created by PCCViewer.ViewerControl#print, and it is also made available
through the PCCViewer.EventType.PrintRequested event.

Example

// A PrintRequest object is created by and returned from
the call to the print method
var printRequest = viewerControl.print();

Members
(static, readonly) EventType :string

A list of events that can be triggered by the PCCViewer.PrintRequest object.

Type:

string

Properties:

Name Description

PrintPagePrepared
: string

Event triggered when a page has been prepared. This event is used to indicate
print progress.

Augmented properties of the PCCViewer.Event object for this event:

index {number} Indicates the index of the page that was prepared in
respect to totalPages.
pageNumber {number} Indicates the page number of the page that was
prepared. This page number of the page in the document.
totalPages {number} Indicates the total number of pages that are being
printed.

PrintCompleted :
string

Event triggered when print has completed, either due to a success, failure, or a
cancel. This event does not indicate whether a user successfully printed the
document, as they can still cancel the browser dialog, but rather that all pages
were prepared successfully in the print request.

Augmented properties of the PCCViewer.Event object for this event:

none

PrintCancelled :
string

Event triggered if printing is cancelled during the preparation process.

Augmented properties of the PCCViewer.Event object for this event:

PrizmDoc Viewer v13.17 610

©2021 My Company. All Rights Reserved.

See:

See:

See:

See:

none

PrintFailed :
string

Event triggered if the printing process failed due to an error.

Augmented properties of the PCCViewer.Event object for this event:

none

PCCViewer.PrintRequest#on

PCCViewer.PrintRequest#off

(readonly) options :object

Gets a copy of the validated options object which is used by the print request.

The original options object may have been provided to the method PCCViewer.ViewerControl#print. If no
options object was provided to print, or the options object did not define all properties, then the
returned object will represent the actual options used.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5.

Type:

object

PCCViewer.PrintRequest#getOptions

(readonly) pageCount :number

This property gets the number of pages which were requested in the print request.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5.

Type:

number

PCCViewer.PrintRequest#getPageCount

(readonly) preparedCount :number

This property gets the number of pages which have currently been prepared.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5.

Type:

number

PCCViewer.PrintRequest#getPreparedCount

Name Description

PrizmDoc Viewer v13.17 611

©2021 My Company. All Rights Reserved.

Methods
cancel()

Cancels the print request. This immediately stops the print progress, and no pages will be printed.

getOptions() → {object}

Gets a copy of the validated options object which is used by the print request.

The original options object may have been provided to the method PCCViewer.ViewerControl#print. If no
options object was provided to print, or the options object did not define all properties, then the
returned object will represent the actual options used.

Returns:

A copy of the print options object which is used by this print request.

range {string} A comma-separated string with all page numbers for the requested pages.
orientation {string} The requested print orientation.
paperSize {string} The requested size of the paper to print on.
margins {string} Indicated whether default or none margins were used. See
PCCViewer.ViewerControl#print.
includeMarks {boolean} Whether to print the document marks.
includeAnnotation {boolean} Whether to print the document annotations.
includeRedactions {boolean} Whether to print the document redactions.
includeComments {string} Location to print comments.
includeReasons {string} Location to print redaction reasons.
redactionViewMode {string} Whether to print document content text underneath solid rectangle
redactions and selection text redactions marks.

Type
object

getPageCount() → {number}

Gets the number of pages which were requested in the print request.

Returns:

The number of pages which were requested to print.

Type
number

getPreparedCount() → {number}

PrizmDoc Viewer v13.17 612

©2021 My Company. All Rights Reserved.

See:

See:

Gets the number of pages which have currently been prepared.

Returns:

The number of pages which have been prepared.

Type
number

off() → {PCCViewer.PrintRequest}

Remove event listeners from the PrintRequest object.

PCCViewer.ViewerControl#off for more on how it is used.

PCCViewer.PrintRequest.EventType for a list of events.

Returns:

The object on which this method was called.

Type
PCCViewer.PrintRequest

on() → {PCCViewer.PrintRequest}

Add event listeners to the PrintRequest object.

PCCViewer.PrintRequest.EventType for a list of events.

PCCViewer.ViewerControl#on for more detailed examples.

Returns:

The object on which this method was called.

Type
PCCViewer.PrintRequest

Example

var printRequest = viewerControl.print();
printRequest
 .on(PCCViewer.PrintRequest.EventType.PrintCompleted,
 function(ev) {
 alert("Print completed.");
 })

PrizmDoc Viewer v13.17 613

©2021 My Company. All Rights Reserved.

 .on(PCCViewer.PrintRequest.EventType.PrintPagePrepared,
 function(ev) {
 alert("Print progress: " + 100 * (ev.index + 1) /
ev.totalPages + "%");
 });

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. Promise
The PCCViewer.Promise object is an implementation of the Promises/A+ standard.

"A promise represents the eventual result of an asynchronous operation. The primary way of
interacting with a promise is through its then method, which registers callbacks to receive
either a promise's eventual value or the reason why the promise cannot be fulfilled." --
Promises/A+ standard

The PrizmDoc Viewing Client API uses Promises as a means for a caller to subscribe callbacks for an
asynchronous operation. This API uses promises as an alternative to the pattern of providing callbacks as
arguments to the API method.

The PCCViewer.Promise object is compatible with other Promises/A+ implementations, and other non-
conformant promise implementations, which are "thenable" (i.e. the promise exposes a .then() method).

Constructor

new Promise()

The Promise constructor is for internal use only. Promise objects returned by other API methods are
created with this constructor.

Methods
(static) all(promises)

Returns a promise that is fulfilled when all of the input promises are fulfilled. The returned promise is
fulfilled with an array of the fulfilment values for all of the input promises.

If any of the promises are rejected, then the returned promise will be rejected with the reason of that
rejected promise. If rejected, there will be guarantee of the state all promises in the promises array, some
have been resolved and some may still be pending.

Parameters:

Class: Promise

PrizmDoc Viewer v13.17 614

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc
https://github.com/promises-aplus/promises-spec

Name Type Description

promises Array.
<(PCCViewer.Promise|thenable|*)>

An array of values that will be resolved. If a value is not a
PCCViewer.Promise object, then this method will create a
new PCCViewer.Promise and fulfill it with the value.

Resolution of various types is as follows.

If the item is a PCCViewer.Promise, then the
output value will be the fulfilment value of the
promise.
If the item is thenable, then the output value will
be the fulfilment value of the thenable.
Otherwise, the output value will be the item.

Throws:

If the promises argument is not an array.

Type
TypeError

Example

var viewerControl =
$("#myElement").pccViewer(...).viewerControl;

// Get page text for specific pages
PCCViewer.Promise.all([
 viewerControl.requestPageText(1),
 viewerControl.requestPageText(2)]).then(
 function onFulfilled(values) {
 // Values is an array that contains the text of
pages 1 & 2.
 var page1Text = values[0];
 var page2Text = values[1];
 },
 function onRejected(error) {
 alert("Something went wrong getting the page text.
" + (error.message ? error.message : error));
 }
);

// Get attributes for all pages
var allPages = _.range(1, viewerControl.getPageCount() +
1); // Using Underscore.js - generates an array like [1, 2,
..., 12]
var pageAttributePromises = _.map(allPages,
viewerControl.requestPageAttributes, viewerControl); //

PrizmDoc Viewer v13.17 615

©2021 My Company. All Rights Reserved.

Using Underscore.js
PCCViewer.Promise.all(pageAttributePromises).then(
 function onFulfilled(allPageAttributes) {
 console.log(JSON.stringify(allPageAttributes));
 },
 function onRejected(error) {
 alert("Something went wrong getting the page
attributes. " + (error.message ? error.message : error));
 }
);

// it's OK to pass a value that is not a promise
PCCViewer.Promise.all([
 viewerControl.requestPageAttributes(1),
 true]).then(
 function(values) {
 // Values is an array that contains the text of
pages 1 and the value `true`.
 var page1Text = values[0]; // text of page 1
 var otherValue = values[1]; // true
 }
);

then(onFulfilledopt, onRejectedopt) → {PCCViewer.Promise}

Use .then(...) to register callbacks to access the current or eventual value, or reason, of the promise.

A promise is in one of three states: pending, resolved, rejected. The onFulfilled callback will be called
when a promise is resolved, or if a promise is already resolved, then the onFulfilled callback will be
called immediately. The onRejected callback will be called when a promise is rejected, or if a promise is
already rejected, then the onRejected callback will be called immediately.

Parameters:

Name Type Attributes Description

onFulfilled PCCViewer.Promise~onFulfilled <optional> Called if or when the promise is resolved.
Optionally pass a value of null or
undefined if you do not use this
callback, but you want to provide an
onRejected callback.

onRejected PCCViewer.Promise~onRejected <optional> Called if or when the promise is rejected.

Returns:

A promise object that is resolved according to the Promises/A+ standard.

Type
PCCViewer.Promise

PrizmDoc Viewer v13.17 616

©2021 My Company. All Rights Reserved.

Example

var viewerControl =
$("#myElement").pccViewer(...).viewerControl;

// a basic example
viewerControl.requestPageText(1).then(
 function onFulfilled(value) {
 // according to the definition of requestPageText,
the promise will be resolved with the text
 // of the page.
 var pageText = value;
 },
 function onRejected(error) {
 // according to the definition of requestPageText,
the promise will be rejected if there is
 // an error extracting text for the document.
 alert("Something went wrong getting the text of
page 1. " + (error.message ? error.message : error));
 }
);

// it's OK to pass a value of null (or undefined) for
`onFulfilled`
viewerControl.requestPageText(1).then(
 null,
 function onRejected(error) { ... }
);

// it's OK to ignore the onRejected parameter, or pass null
or undefined
viewerControl.requestPageText(1).then(
 function onFulfilled(value) { ... }
);

Type Definitions
onFulfilled(value)

An onFulfilled callback is called if or when a PCCViewer.Promise is resolved.

Parameters:

Name Type Description

value * The type and value of the value argument depends on the API method that generated
the Promise object. See the documentation for the method that generated the Promise.

PrizmDoc Viewer v13.17 617

©2021 My Company. All Rights Reserved.

onRejected(reason)

An onRejected callback is called if or when a PCCViewer.Promise is rejected.

Parameters:

Name Type Description

reason * The type and value of the reason argument depends on the API method that generated
the Promise object. See the documentation for the method that generated the Promise.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

See:

PCCViewer. Revision
new Revision()

The Revision object is created when requesting the revisions for a document comparison. It represents a
change identified in a document comparison and retrieved using
PCCViewer.ViewerControl#requestRevisions.

This constructor should not be used directly. Instead, only access revisions created by
PCCViewer.ViewerControl#requestRevisions, through the PCCViewer.RevisionsRequest object.

Use PCCViewer.RevisionsRequest#getRevisions to get results from a
`RevisionsRequest` object.

Use PCCViewer.RevisionsRequest#revisions to get results from a
`RevisionsRequest` object.

Members
(static, readonly) Type :string

The PCCViewer.Revision.Type enumeration defines Revision Types known to the ViewerControl.

Type:

string

Properties:

Name Description

ContentInserted : string Indicates that an insertion occurred.

Class: Revision

PrizmDoc Viewer v13.17 618

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

ContentDeleted : string Indicates that a deletion occurred.

PropertyChanged : string Indicates that a property was changed.

ParagraphNumberChanged : string Indicates that a paragraph number changed.

FieldDisplayChanged : string Indicates that a field display changed.

RevisionMarkedAsReconciledConflict :
string

Indicates that a revision was marked as reconciled
conflict.

RevisionMarkedAsConflict : string Indicates that a revision was marked as conflict.

StyleChanged : string Indicates a style change.

ContentReplaced : string Indicates that content was replaced.

ParagraphPropertyChanged : string Indicates that a paragraph property changed.

TablePropertyChanged : string Indicates that a table property changed.

SectionPropertyChanged : string Indicates that a section property changed.

StyleDefinitionChanged : string Indicates that a style definition changed.

ContentMovedFrom : string Indicates that content was moved from this location.

ContentMovedTo : string Indicates that content was moved to this location.

TableCellInserted : string Indicates that a table cell was inserted.

TableCellDeleted : string Indicates that a table cell was deleted.

TableCellsMerged : string Indicates that table cells were merged.

Unknown : string Indicates a revision of an unknown type.

(readonly) id :number

Gets the ID of the revision.

The ID is unique only to revisions in the current revisions request and may be repeated in later revisions
requests.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.Revision#getId

(readonly) pageNumber :number

Gets the page number of the document on which the revision ends.

If the revision is contained on a single page, this returns the page number of that page. If the revision
spans multiple pages, this returns the page number of the last page.

Name Description

PrizmDoc Viewer v13.17 619

©2021 My Company. All Rights Reserved.

See:

See:

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.Revision#getEndPageNumber

(readonly) type :PCCViewer.Revision.Type

Gets the type of the revision.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

PCCViewer.Revision.Type

PCCViewer.Revision#getType

Methods
getEndPageNumber() → {number}

Gets the page number of the document on which the revision ends.

If the revision is contained on a single page, this returns the page number of that page. If the revision
spans multiple pages, this returns the page number of the last page.

Returns:

The page number on which the revision ends.

Type
number

Example

var revisions = revisionsRequest.getRevisions();
var revision = revisions[0];
var pageNumber = revision.getEndPageNumber();
alert("Revision found on page: " + pageNumber);

getId() → {number}

Gets the ID of the revision.

PrizmDoc Viewer v13.17 620

©2021 My Company. All Rights Reserved.

See:

The ID is unique only to revisions in the current revisions request and may be repeated in later revisions
requests.

PCCViewer.RevisionsRequest#getRevisions

Returns:

The ID of the revision.

Type
number

Example

var revisions = revisionsRequest.getRevisions();
var revision = revisions[0];
var id = revision.getId();

getType() → {PCCViewer.Revision.Type}

Gets the type of the revision.

Returns:

The type of the revision.

Type
PCCViewer.Revision.Type

Example

var revisions = revisionsRequest.getRevisions();
var revision = revisions[0];
var revisionType = revision.getType();

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. RevisionsRequest
(protected) new RevisionsRequest()

Class: RevisionsRequest

PrizmDoc Viewer v13.17 621

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

The RevisionsRequest object is created when requesting revisions for a document comparison. It
triggers events to indicate revision retrieval progress and has properties to get the retrieved revisions and
status.

This constructor should not be used directly. Instead, a revisions request is created by
PCCViewer.ViewerControl#requestRevisions.

Example

// A RevisionsRequest object is created by and returned
from the call to the requestRevisions method
var revisionsRequest = viewerControl.requestRevisions();

Members
(readonly) errorCode :number

Gets the error code if there was an error. If there was no error, null will be returned.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.RevisionsRequest#getErrorCode

(readonly) errorMessage :string

Returns a plain text, human-readable, fixed-local message that explains the error condition. If there was no
error, null will be returned.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.RevisionsRequest#getErrorMessage

(readonly) revisions :Array.<PCCViewer.Revision>

Gets an array of all revisions produced by this RevisionsRequest up until this point.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

PrizmDoc Viewer v13.17 622

©2021 My Company. All Rights Reserved.

See:

Array.<PCCViewer.Revision>

PCCViewer.RevisionsRequest#getRevisions

Methods
getErrorCode() → {number}

Returns the error code if there was an error. If there was no error, null will be returned.

Returns:

An error code indicating the type of error, or null.

Type
number

Example

var errorCode = revisionsRequest.getErrorCode();

getErrorMessage() → {string}

Returns a plain text, human-readable, fixed-local message that explains the error condition. If there was no
error, null will be returned.

Returns:

A plain text error message that explains the error condition, or null.

Type
string

Example

var errorMessage = revisionsRequest.getErrorMessage();

getRevisions() → {Array.<PCCViewer.Revision>}

Returns an array of all revisions produced by this RevisionsRequest up until this point.

Returns:

PrizmDoc Viewer v13.17 623

©2021 My Company. All Rights Reserved.

3 4

An array of Revision objects. If no results are found, this will be an empty array.

Type
Array.<PCCViewer.Revision>

Example

var revisions = revisionsRequest.getRevisions();

off(eventType, handler) → {PCCViewer.RevisionsRequest}

Unsubscribe a handler from an event of the RevisionsRequest.

Typically, event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See PCCViewer.RevisionsRequest#on for
possible values.

handler function The function that was previously subscribed to the event type.

Returns:

The RevisionsRequest object on which this method was called.

Type
PCCViewer.RevisionsRequest

Example

// subscribe
revisionsRequest.on(PCCViewer.EventType.RevisionsRetrievalCompleted,
onRevisionsRetrievalCompleted);

// unsubscribe
revisionsRequest.off(PCCViewer.EventType.RevisionsRetrievalCompleted,
onRevisionsRetrievalCompleted);

// handler declaration
function onRevisionsRetrievalCompleted(ev) {
 alert("Revisions retrieval completed! Number of
revisions: " + revisionsRequest.getRevisions().length);
}

PrizmDoc Viewer v13.17 624

©2021 My Company. All Rights Reserved.

3 4

on(eventType, handler) → {PCCViewer.RevisionsRequest}

Subscribe a handler to an event of the RevisionsRequest.

Parameters:

Name Type Description

eventType string A string that specifies the event type.

“RevisionsRetrievalCompleted” -
PCCViewer.EventType.RevisionsRetrievalCompleted
“RevisionsRetrievalFailed” - PCCViewer.EventType.RevisionsRetrievalFailed
“RevisionsAvailable” - PCCViewer.EventType.RevisionsAvailable
“PartialRevisionsAvailable” - PCCViewer.EventType.PartialRevisionsAvailable

handler function The function that will be called whenever the event is triggered.

Returns:

The RevisionsRequest object on which this method was called.

Type
PCCViewer.RevisionsRequest

Example

// subscribe
revisionsRequest.on(PCCViewer.EventType.RevisionsRetrievalCompleted,
onRevisionsRetrievalCompleted);

// handler declaration
function onRevisionsRetrievalCompleted(ev) {
 alert("Revisions retrieval completed! Number of
revisions: " + revisionsRequest.getRevisions().length);
}

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. SearchRequest
(protected) new SearchRequest()

Class: SearchRequest

PrizmDoc Viewer v13.17 625

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

The SearchRequest object is created when searching a document. It triggers events to indicate search
progress and it has properties to get the search results and status.

This constructor should not be used directly. Instead, a search request is created by
PCCViewer.ViewerControl#search, and it is also made available through the
PCCViewer.EventType.SearchPerformed event.

Example

// A SearchRequest object is created by and returned from
the call to the search method
var searchRequest = viewerControl.search("FooBar");

Members
(readonly) errorCode :number

Gets the error code if there was an error. If there was no error, null will be returned.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.SearchRequest#getErrorCode

(readonly) errorMessage :string

Returns a plain text, human-readable, fixed-local message that explains the error condition. If there was no
error, null will be returned.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchRequest#getErrorMessage

(readonly) isComplete :boolean

Gets a value (true or false) indicating if the search request is complete.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

PrizmDoc Viewer v13.17 626

©2021 My Company. All Rights Reserved.

See:

See:

See:

boolean

PCCViewer.SearchRequest#getIsComplete

(readonly) results :Array.<PCCViewer.SearchResult>

Gets an array of all search results produced by this SearchRequest up until this point.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

Array.<PCCViewer.SearchResult>

PCCViewer.SearchRequest#getResults

(readonly) searchQuery :string

Gets the search query passed to PCCViewer.ViewerControl#search.

If a string was passed to the search method, then this will return a
PCCViewer.ViewerControl~SearchQuery object. The object will contain one search term (the provided
string) and the options used for searching.

If an incomplete PCCViewer.ViewerControl~SearchQuery object was passed to search, then the object
will be augmented with all options used for searching.

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchRequest#getSearchQuery

Methods
cancel()

Cancels the current search execution and triggers SearchCancelled event.

Example

searchRequest.cancel();

getErrorCode() → {number}

PrizmDoc Viewer v13.17 627

©2021 My Company. All Rights Reserved.

Returns the error code if there was an error. If there was no error, null will be returned.

Returns:

An error code indicating the type of error, or null.

The possible error codes are:

1010 - An unexpected exception occurred.
1011 - There was a failure retrieving data from the server.
ServerSearchUnavailable - Server-side search is not available.

Type
number

Example

var errorCode = searchRequest.getErrorCode();

getErrorMessage() → {string}

Returns a plain text, human-readable, fixed-local message that explains the error condition. If there was no
error, null will be returned.

Returns:

A plain text error message that explains the error condition, or null.

Type
string

Example

var errorMessage = searchRequest.getErrorMessage();

getIsComplete() → {boolean}

Returns a value (true or false) indicating if the search request is complete.

Returns:

A value indicating if search is complete.

Type
boolean

PrizmDoc Viewer v13.17 628

©2021 My Company. All Rights Reserved.

Example

var status = searchRequest.getIsComplete(); // true if
search is complete

getPagesWithoutText() → {Array.<number>}

Returns an array of page numbers that could not be searched because searchable text was not available
for the page.

The set of pages without searchable text may still contain text embedded in a rasterized image, but the
viewer is unable to detect or search this text. Therefore it is useful to notify the end user when some pages
could not be searched.

Returns:

Returns an array of page numbers, or an empty array if all pages had searchable text.

Type
Array.<number>

Example

// Use pagesWithoutText to alert the end user that some
pages could not be search.
var pagesWithoutText = searchRequest.getPagesWithoutText();

getResults() → {Array.<PCCViewer.SearchResult>}

Returns an array of all search results produced by this SearchRequest up until this point.

Returns:

An array of SearchResult objects. If no results are found, this will be an empty array.

Type
Array.<PCCViewer.SearchResult>

Example

var searchResults = searchRequest.getResults();

getSearchQuery() → {PCCViewer.ViewerControl~SearchQuery}

Returns the search query passed to PCCViewer.ViewerControl#search.

PrizmDoc Viewer v13.17 629

©2021 My Company. All Rights Reserved.

If a string was passed to the search method, then this will return a
PCCViewer.ViewerControl~SearchQuery object. The object will contain one search term (the provided
string) and the options used for searching.

If an incomplete PCCViewer.ViewerControl~SearchQuery object was passed to search, then the object
will be augmented with all options used for searching.

Returns:

The search query for this search request.

Type
PCCViewer.ViewerControl~SearchQuery

Example

var searchQuery = searchRequest.getSearchQuery();

off(eventType, handler) → {PCCViewer.SearchRequest}

Unsubscribe a handler from an event of the SearchRequest.

Typically, event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See PCCViewer.SearchRequest#on for possible
values.

handler function The function that was previously subscribed to the event type.

Returns:

The SearchRequest object on which this method was called.

Type
PCCViewer.SearchRequest

Example

// subscribe
searchRequest.on(PCCViewer.EventType.SearchCompleted,
onSearchCompleted);

// unsubscribe
searchRequest.off(PCCViewer.EventType.SearchCompleted,
onSearchCompleted);

PrizmDoc Viewer v13.17 630

©2021 My Company. All Rights Reserved.

// handler declaration
function onSearchCompleted(ev) {
 alert("Search completed! Number of hits :" +
searchRequest.getResults().length);
}

on(eventType, handler) → {PCCViewer.SearchRequest}

Subscribe a handler to an event of the SearchRequest.

Parameters:

Name Type Description

eventType string A string that specifies the event type.

“SearchCompleted” - PCCViewer.EventType.SearchCompleted
“SearchFailed” - PCCViewer.EventType.SearchFailed
“SearchCancelled” - PCCViewer.EventType.SearchCancelled
“SearchResultsAvailable” - PCCViewer.EventType.SearchResultsAvailable
“PartialSearchResultsAvailable” -
PCCViewer.EventType.PartialSearchResultsAvailable

handler function The function that will be called whenever the event is triggered.

Returns:

The SearchRequest object on which this method was called.

Type
PCCViewer.SearchRequest

Example

// subscribe
searchRequest.on(PCCViewer.EventType.SearchCompleted,
onSearchCompleted);

// handler declaration
function onSearchCompleted(ev) {
 alert("Search completed! Number of hits :" +
searchRequest.getResults().length);
}

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 631

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

See:

PCCViewer. SearchResult
new SearchResult()

The SearchResult object is created when searching a document. It represents a "search hit", the text in
the document that matched a search term in the searchQuery, which was passed to
PCCViewer.ViewerControl#search.

This constructor should not be used directly. Instead, only access search results created by
PCCViewer.ViewerControl#search, through the PCCViewer.SearchRequest object.

Use PCCViewer.SearchRequest#getResults to get results from a
`SearchRequest` object.

Use PCCViewer.SearchRequest#results to get results from a `SearchRequest`
object.

Members
(readonly) boundingRectangle :Object

Gets the bounding rectangle of the search result.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

Object

PCCViewer.SearchResult#getBoundingRectangle

(readonly) context :string

Gets the search result text and some surrounding text.

The number of character in the context before and after the search result text can be configured using the
PCCViewer.ViewerControl~SearchQuery passed to the PCCViewer.ViewerControl#search method.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchResult#getContext

Class: SearchResult

PrizmDoc Viewer v13.17 632

©2021 My Company. All Rights Reserved.

See:

See:

See:

(readonly) highlightColor :string

Gets the highlight color of the search result, in hex notation (e.g. "#F1F1F1").

The highlight color can be specified in the PCCViewer.ViewerControl~SearchQuery passed to the
PCCViewer.ViewerControl#search method. If a highlight color is not specified on the searchQuery, then
a pseudo-random color is chosen.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchResult#getHighlightColor

(readonly) id :number

Gets the ID of the search result.

The ID is unique only to results in the current search request, and it may be repeated in later search
requests.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.SearchResult#getId

(readonly) pageNumber :number

Gets the page number of the document, on which the search result starts.

If the search result text is contained on a single page, this returns the page number of that page. If the
search result text spans multiple pages, this returns the page number of the first page.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.SearchResult#getPageNumber

(readonly) searchTerm
:PCCViewer.ViewerControl~SearchTerm|PCCViewer.ViewerControl~ProximitySearchTerm

Gets the search term object from the searchQuery object that was passed to the PCCViewer.SearchTask
constructor.

PrizmDoc Viewer v13.17 633

©2021 My Company. All Rights Reserved.

See:

See:

See:

If a string was passed to the search method, then this will return a
PCCViewer.ViewerControl~SearchTerm object generated from the string.

The returned object will be augmented with all options used for searching.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

PCCViewer.ViewerControl~SearchTerm | PCCViewer.ViewerControl~ProximitySearchTerm

PCCViewer.SearchResult#getSearchTerm

(readonly) searchTerm
:PCCViewer.ViewerControl~SearchTerm|PCCViewer.ViewerControl~ProximitySearchTerm

Gets the search term object from the searchQuery object that was passed to the
PCCViewer.ViewerControl#search method.

If a string was passed to the search method, then this will return a
PCCViewer.ViewerControl~SearchTerm object generated from the string.

The returned object will be augmented with all options used for searching.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

PCCViewer.ViewerControl~SearchTerm | PCCViewer.ViewerControl~ProximitySearchTerm

PCCViewer.SearchResult#getSearchTerm

(readonly) startIndexInContext :number

Gets the start index of the search result text within the context text returned by
PCCViewer.SearchTaskResult#getContext.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.SearchTaskResult#getStartIndexInContext

(readonly) startIndexInContext :number

Gets the start index of the search result text within the context text returned by
PCCViewer.SearchResult#getContext.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not

PrizmDoc Viewer v13.17 634

©2021 My Company. All Rights Reserved.

See:

See:

See:

available in the older browsers like IE8.

Type:

number

PCCViewer.SearchResult#getStartIndexInContext

(readonly) text :string

Gets the search result text. This is the text that matched the search query/term.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchResult#getText

Methods
getBoundingRectangle() → {Object}

Gets the bounding rectangle for the search result.

PCCViewer.SearchResult#boundingRectangle

Returns:

A rectangle object of the type {x: xValue, y: yValue, width: widthValue, height:
heightValue}.

Type
Object

Example

if (searchResult.getBoundingRectangle) {
 var boundingRectangle =
searchResult.getBoundingRectangle();
}

getContext() → {string}

Gets the search result text and some surrounding text.

PrizmDoc Viewer v13.17 635

©2021 My Company. All Rights Reserved.

See:

The number of character in the context before and after the search result text can be configured using the
PCCViewer.ViewerControl~SearchQuery passed to the PCCViewer.ViewerControl#search method.

Use PCCViewer.SearchResult#getStartIndexInContext to identify the location
of the search result text within the context.

Returns:

The context of the search result.

Type
string

Example

var results = searchRequest.getResults()
var result = results[0];

result.getText(); // e.g. "document"
result.getContext(); // e.g. "... the full
spectrum of document, content, & imaging s..."
result.getStartIndexInContext(); // e.g. 25

getHighlightColor() → {string}

Gets the highlight color of the search result, in hex notation (e.g. "#F1F1F1").

The highlight color can be specified in the PCCViewer.ViewerControl~SearchQuery passed to the
PCCViewer.ViewerControl#search method. If a highlight color is not specified on the searchQuery, then
a pseudo-random color is chosen.

Returns:

The color of the search result highlight, in hexadecimal notation.

Type
string

Example

var results = searchRequest.getResults()
var result = results[0];
var highlightColor = result.getHighlightColor();

getId() → {number}

Gets the ID of the search result.

PrizmDoc Viewer v13.17 636

©2021 My Company. All Rights Reserved.

See:

The ID is unique only to results in the current search request, and it may be repeated in later search
requests.

PCCViewer.SearchRequest#getResults

Returns:

The ID of the search result.

Type
number

Example

var results = searchRequest.getResults();
var result = results[0];
var id = result.getId();

getPageNumber() → {number}

Gets the page number of the document, on which the search result starts.

If the search result text is contained on a single page, this returns the page number of that page. If the
search result text spans multiple pages, this returns the page number of the first page.

Returns:

The page number on which the search result starts.

Type
number

Example

var results = searchRequest.getResults()
var result = results[0];
var pageNumber = result.getPageNumber();
alert("Search result found on page: " + pageNumber);

getSearchTerm() →
{PCCViewer.ViewerControl~SearchTerm|PCCViewer.ViewerControl~ProximitySearchTerm}

Gets the search term object from the searchQuery object that was passed to the
PCCViewer.ViewerControl#search method.

If a string was passed to the search method, then this will return a
PCCViewer.ViewerControl~SearchTerm object generated from the string.

PrizmDoc Viewer v13.17 637

©2021 My Company. All Rights Reserved.

See:

The returned object will be augmented with all options used for searching.

Returns:

The search term of the search result.

Type
PCCViewer.ViewerControl~SearchTerm | PCCViewer.ViewerControl~ProximitySearchTerm

Example

var results = searchRequest.getResults()
var result = results[0];
var searchTerm = result.getSearchTerm();
alert("This search result matched the search term: " +
searchTerm.searchTerm);

getStartIndexInContext() → {number}

Gets the start index of the search result text within the context text returned by
PCCViewer.SearchResult#getContext.

Returns:

The start index of the search result text within the context text.

Type
number

Example

var results = searchRequest.getResults();
var result = results[0];
var startIndex = result.getStartIndexInContext();

getStartIndexInPage() → {number}

Gets the start index of the search result text, within the entire text of the page that the result is on.

Use PCCViewer.ViewerControl#requestPageText to get the full text of a page.

Use PCCViewer.SearchResult#getText to get the matched text of the search
result.

Returns:

PrizmDoc Viewer v13.17 638

©2021 My Company. All Rights Reserved.

The start index of the matched text in the page.

Type
number

Example

var results = searchRequest.getResults()
var result = results[0];
var startIndex = result.getStartIndexInPage();
alert("The search result starts a character " + startIndex
+ " on the page.");

getText() → {string}

Gets the search result text. This is the text that matched the search query/term.

Returns:

The the search result text.

Type
string

Example

var results = searchRequest.getResults()
var result = results[0];
var text = result.getText();
alert("Search matched the text: " + text);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. SearchTask
This object represent a search task, which can be used to perform searches on any text string.

The PCCViewer.SearchTask.search method on the PCCViewer.SearchTask object can be used to search text
contained in the Mark and comments objects. It will also perform search on any other text string.

Constructor

Class: SearchTask

PrizmDoc Viewer v13.17 639

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

new SearchTask(searchQuery)

Creates a SearchTask object used for searching any text string.

Parameters:

Name Type Description

searchQuery string |
PCCViewer.ViewerControl~SearchQuery

A value specifying the search query. The value
specifies a single search term (string) or an
object specifying multiple search terms and
options. NOTE: The searchQuery can be a single
search term or a hash specifying one or more
terms and options. If only a single search term
(string) is supplied, then default options are used.

PCCViewer.SearchTask

PCCViewer.SearchTaskResult

Throws:

If search query is not a string or a valid PCCViewer.ViewerControl~SearchQuery object.

Type
Error

When using the SearchQuery object, if the searchQuery.searchTerm is not an Array.

Type
Error

When using the SearchQuery object, if the
searchQuery.searchTerms[i].searchTerm property of each Object in the
searchTerms array is not a string.

Type
Error

If the combination of a search terms and matching options results in an invalid search, such as
performing a wildcard search with only a * character and no valid content.

Type
Error

Example

// Search on multiple terms and specify options

PrizmDoc Viewer v13.17 640

©2021 My Company. All Rights Reserved.

var searchQuery = {
 searchTerms: [{
 searchTerm: "Full",
 contextPadding: 10,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true
 }
 }]
};

// create a text annotation
var mark1 = viewerControl.addMark(1, "TextAnnotation");
// set text in the text annotation
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
// create PCCViewer.SearchTask object
var searchTask = new PCCViewer.SearchTask(searchQuery);
// use the method PCCViewer.SearchTask.search to search the
word "Full" in the annotation text
var results = searchTask.search(mark1.getText());
// use it to search some other text string
var results2 = searchTask.search("To enable the full-text
search functionality, your system should have a dedicated
server.");

Methods
search(The) → {Array.<PCCViewer.SearchTaskResult>}

Searches any text string using the search criteria that were provided to the PCCViewer.SearchTask
constructor.

Parameters:

Name Type Description

The string text string to be searched.

Returns:

An array of PCCViewer.SearchTaskResult objects.

Type
Array.<PCCViewer.SearchTaskResult>

Example

PrizmDoc Viewer v13.17 641

©2021 My Company. All Rights Reserved.

var searchQuery = {
 searchTerms: [{
 searchTerm: "client",
 contextPadding: 10,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
 }]
};
var textString = "When Full-Text Search is being installed
for an existing client without Full-Text Search";
var searchTask = new PCCViewer.SearchTask(searchQuery);
//search the textString
var results = searchTask.search(textString);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

See:

PCCViewer. SearchTaskResult
new SearchTaskResult()

The SearchTaskResult object is created when searching a given text. It represents a "search hit", the
text in the provided text that matched a search term in the searchQuery, which was passed to the
method PCCViewer.SearchTask.search.

This constructor should not be used directly. Instead, only access search results created by the method
PCCViewer.SearchTask.search method.

Members
(readonly) context :string

Gets the search result text and some surrounding text.

The number of character in the context before and after the search result text can be configured using the
PCCViewer.ViewerControl~SearchQuery passed to the PCCViewer.SearchTask constructor.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchTaskResult#getContext

Class: SearchTaskResult

PrizmDoc Viewer v13.17 642

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

See:

(readonly) highlightColor :string

Gets the highlight color of the search result, in hex notation (e.g. "#F1F1F1").

The highlight color can be specified in the PCCViewer.ViewerControl~SearchQuery passed to the
PCCViewer.SearchTask constructor. If a highlight color is not specified on the searchQuery, then a
pseudo-random color is chosen.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchTaskResult#getHighlightColor

(readonly) id :number

Gets the ID of the search result.

The ID is unique only to results in the current search request, and it may be repeated in later search
requests.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

number

PCCViewer.SearchTaskResult#getId

(readonly) text :string

Gets the search result text. This is the text that matched the search query/term.

This is an ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Type:

string

PCCViewer.SearchTaskResult#getText

Methods
getContext() → {string}

Gets the search result text and some surrounding text.

PrizmDoc Viewer v13.17 643

©2021 My Company. All Rights Reserved.

See:

The number of character in the context before and after the search result text can be configured using the
PCCViewer.ViewerControl~SearchQuery passed to the PCCViewer.SearchTask#search method.

Use PCCViewer.SearchTaskResult#getStartIndexInContext to identify the
location of the search result text within the context.

Returns:

The context of the search result.

Type
string

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];

result.getText(); // e.g. "document"
result.getContext(); // e.g. "... the full
spectrum of document, content, & imaging s..."
result.getStartIndexInContext(); // e.g. 25

getHighlightColor() → {string}

Gets the highlight color of the search result, in hex notation (e.g. "#F1F1F1").

The highlight color can be specified in the PCCViewer.ViewerControl~SearchQuery passed to the
PCCViewer.ViewerControl#search method. If a highlight color is not specified on the searchQuery, then
a pseudo-random color is chosen.

Returns:

The color of the search result highlight, in hexadecimal notation.

Type
string

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);

PrizmDoc Viewer v13.17 644

©2021 My Company. All Rights Reserved.

var results = searchTask.search(mark1.getText());
var result = results[0];
var highlightColor = result.getHighlightColor();

getId() → {number}

Gets the ID of the search result.

The ID is unique only to results in the current search request, and it may be repeated in later search
requests.

Returns:

The ID of the search result.

Type
number

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];
var id = result.getId();

getSearchTerm() →
{PCCViewer.ViewerControl~SearchTerm|PCCViewer.ViewerControl~ProximitySearchTerm}

Gets the search term object from the searchQuery object that was passed to the PCCViewer.SearchTask
constructor.

If a string was passed to the PCCViewer.SearchTask constructor, then this will return a
PCCViewer.ViewerControl~SearchTerm object generated from the string.

The returned object will be augmented with all options used for searching.

Returns:

The search term of the search result.

Type
PCCViewer.ViewerControl~SearchTerm | PCCViewer.ViewerControl~ProximitySearchTerm

Example

PrizmDoc Viewer v13.17 645

©2021 My Company. All Rights Reserved.

See:

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];
var searchTerm = result.getSearchTerm();
alert("This search result matched the search term: " +
searchTerm.searchTerm);

getStartIndexInContext() → {number}

Gets the start index of the search result text within the context text returned by
PCCViewer.SearchResult#getContext.

Returns:

The start index of the search result text within the context text.

Type
number

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];
var startIndex = result.getStartIndexInContext();

getStartIndexInInput() → {number}

Gets the start index of the search result text, within the entire text string

Use PCCViewer.SearchTaskResult#getText to get the matched text of the
search result.

Returns:

The start index of the matched text in the provided text string to be searched.

Type
number

PrizmDoc Viewer v13.17 646

©2021 My Company. All Rights Reserved.

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];
var startIndex = result.getStartIndexInInput();
alert("The search result starts a character " + startIndex
+ " in the text string.");

getText() → {string}

Gets the search result text. This is the text that matched the search query/term.

Returns:

The search result text.

Type
string

Example

var mark1 = viewerControl.addMark(1, "TextAnnotation");
mark1.setText("When Full-Text Search is being installed for
an existing client without Full-Text Search");
var searchTask = new PCCViewer.SearchTask(searchQuery);
var results = searchTask.search(mark1.getText());
var result = results[0];
var text = result.getText();
alert("Search matched the text: " + text);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. SignatureControl
new SignatureControl(dom)

Creates a new signature drawing context in the given DOM element.

Class: Signature Control

PrizmDoc Viewer v13.17 647

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Parameters:

Name Type Description

dom HTMLElement
| string

A DOM Element, or a string representing a valid query selector. This DOM
element will be converted to a drawable area, so that the user can sign inside it. It
can be styled any way you wish. However, this element must be visible on the
page when the SignatureControl is initialized.

Throws:

If the parameter passed in is not an HTML Element or a string.

Type
Error

If the query selector string did not match any element.

Type
Error

Examples

// find the DOM element to use
var domElement = docuent.querySelector('#myDrawingArea');
// configure the control
var signatureControl =
PCCViewer.SignatureControl(domElement);

// shorthand to use the query selector directly
var signatureControl =
PCCViewer.SignatureControl('#myDrawingArea');

Methods
cancel() → {PCCViewer.SignatureControl}

Destroys the signature control and returns the HTMLElement back to its original state. Any drawn
elements will be discarded and no PCCViewer.Signatures~FreehandSignature will be created.

Returns:

The SignatureControl that owns the method.

Type
PCCViewer.SignatureControl

PrizmDoc Viewer v13.17 648

©2021 My Company. All Rights Reserved.

clear() → {PCCViewer.SignatureControl}

Removes all drawn lines from the signature control.

Returns:

The SignatureControl that owns the method.

Type
PCCViewer.SignatureControl

done() → {PCCViewer.Signatures~FreehandSignature}

Creates a new PCCViewer.Signatures~FreehandSignature object from the elements drawn inside the
SignatureControl. This method will also return the HTML Element that the SignatureControl was
embedded in back to its original state.

If no content is drawn, the path returned by this method will be M0,0, which is the shortest valid path
which indicates that there is no content.

Returns:

The newly created signature.

Type
PCCViewer.Signatures~FreehandSignature

resize() → {PCCViewer.SignatureControl}

Reinitializes the size of the drawing area, so that the drawing area fits the entire size of the HTMLElement.
Content already drawn in the area will remain unchanged.

Returns:

The SignatureControl that owns the method.

Type
PCCViewer.SignatureControl

undo() → {PCCViewer.SignatureControl}

Removes the last drawn line from the signature control.

Returns:

PrizmDoc Viewer v13.17 649

©2021 My Company. All Rights Reserved.

The SignatureControl that owns the method.

Type
PCCViewer.SignatureControl

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

PCCViewer. SignatureDisplay
new SignatureDisplay(domElement, signature) → {Object}

Builds a DOM preview of the signature, to be used to display the signature outside of the viewer.

Parameters:

Name Type Description

domElement HTMLElement The element in which to insert
signature preview.

signature Object | PCCViewer.Signatures~FreehandSignature |
PCCViewer.Signatures~TextSignature

The signature object to render
in the preview.

Throws:

If the domElement parameter is undefined or not a valid HTMLElement.

Type
Error

If the signature parameter is undefined.

Type
Error

If the signature.path property, in a FreehandSignature object, contains invalid data.

Type
Error

If the signature.text property, in a TextSignature object, is not a string.

Class: SignatureDisplay

PrizmDoc Viewer v13.17 650

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Type
Error

Returns:

An Object that contains the following properties:

width {Number} The calculated width of the signature in pixels.
height {Number} The calculated height of the signature in pixels.
clear {Function} Remove all inserted content from the original HTMLElement.

Note: the width and height of a text signature will always be calculated using a 12 point font.

Type
Object

Example

// create a signature and a div
var signature = { path: "M0,0L100,0L100,100L0,100L0,0" };
var div = document.createElement('div');

// generate the signature preview
PCCViewer.SignatureDisplay(div, signature);

// display the div now
document.body.appendChild(div);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

PCCViewer. ThumbnailControl
The ThumbnailControl is a viewer for the thumbnails associated with a document. It is associated with
a PCCViewer.ViewerControl object at initialization, and will display the thumbnails of the document being
viewed in that ViewerControl.

Constructor

new ThumbnailControl(domElement, viewerControl)

Creates a new PCCViewer.ThumbnailControl object.

Parameters:

Class: ThumbnailControl

PrizmDoc Viewer v13.17 651

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

Name Type Description

domElement HTMLElement The DOM element in which to embed the
ThumbnailControl.

viewerControl PCCViewer.ViewerControl The ViewerControl object for which to display
thumbnails.

PCCViewer.ViewerControl

Throws:

If either of the parameters is undefined or an invalid value.

Type
Error

Members
(static, readonly) EventType :string

The EventType enumeration defines event types known to PCCViewer.ThumbnailControl.

Note: This enumeration is for convenience for API developers. Instead of using this enumeration, you can
pass string values of the eventType (enumeration values)

Type:

string

Properties:

Name Description

PageSelectionChanged :
string

Event is triggered when the collection of selected thumbnails changes.

Augmented properties of the PCCViewer.Event object for this event:

pageNumbers {Array.<number>} The currently selected page
numbers.

PCCViewer.Event

PCCViewer.ThumbnailControl#on

PCCViewer.ThumbnailControl#off

selectedPages :Array.<number>|number

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

PrizmDoc Viewer v13.17 652

©2021 My Company. All Rights Reserved.

See:

See:

See:

See:

Gets and sets the selected pages in the Thumbnail Control.

Type:

Array.<number> | number

PCCViewer.ThumbnailControl#getSelectedPages

PCCViewer.ThumbnailControl#setSelectedPages

(readonly) viewerControl :PCCViewer.ViewerControl

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets the PCCViewer.ViewerControl object associated with this ThumbnailControl.

Type:

PCCViewer.ViewerControl

PCCViewer.ThumbnailControl#getViewerControl

(readonly) visiblePages :Array.<number>

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets the page numbers of the pages currently visible in the ThumbnailControl view.

Type:

Array.<number>

PCCViewer.ThumbnailControl#getVisiblePages

Methods
destroy()

This method will remove the thumbnails from the original HTMLElement and return it to its previous
state. It will destroy all of the thumbnails and release their resources. The ThumbnailControl can no
longer be used after calling this method, and a new one will need to be created to continue viewing
thumbnails.

getSelectedPages() → {Array.<number>}

Gets the currently selected thumbnails.

PCCViewer.ThumbnailControl#setSelectedPages

PrizmDoc Viewer v13.17 653

©2021 My Company. All Rights Reserved.

PCCViewer.ThumbnailControl#selectedPages

Returns:

The page numbers of the selected thumbnails.

Type
Array.<number>

getViewerControl() → {PCCViewer.ViewerControl}

Gets the PCCViewer.ViewerControl object associated with this ThumbnailControl.

Returns:

The ViewerControl associated with this ThumbnailControl.

Type
PCCViewer.ViewerControl

getVisiblePages() → {Array.<number>}

Gets the page numbers of the pages currently visible in the ThumbnailControl view. This will include
pages that are only partly visible, as well as pages that are not yet fully loaded but part of their placeholder
is visible.

Returns:

An array of page numbers.

Type
Array.<number>

off(eventType, handler) → {PCCViewer.ThumbnailControl}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.ThumbnailControl.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the

PrizmDoc Viewer v13.17 654

©2021 My Company. All Rights Reserved.

See:

See:

ViewerControl.

Note: This must be the same function object previously
passed to PCCViewer.ThumbnailControl#on. It cannot be
an different object that is functionally equivalent.

PCCViewer.ViewerControl#on

PCCViewer.ViewerControl#off for more details on usage.

Returns:

The ThumbnailControl object on which this method was called.

Type
PCCViewer.ThumbnailControl

on(eventType, handler) → {PCCViewer.ThumbnailControl}

Subscribe an event handler to an event of a specified type.

Parameters:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See PCCViewer.ThumbnailControl.EventType
for a list and description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

PCCViewer.ThumbnailControl#off

PCCViewer.ViewerControl#on for more details on usage.

Returns:

The ThumbnailControl object on which this method was called.

Type
PCCViewer.ThumbnailControl

reflow() → {PCCViewer.ThumbnailControl}

This method will calculate the size of a thumbnail based on the defined CSS, and will fit each individual
page element to the thumbnail container. This method can also be called to programmatically trigger the
loading of newly visible pages in cases where the thumbnail view either dynamically or manually changes
size, or the thumbnails themselves change size.

Name Type Description

PrizmDoc Viewer v13.17 655

©2021 My Company. All Rights Reserved.

Note: This method can be a bit expensive, so it is best to debounce it from any event that triggers a
thumbnail resize, such as a window resize.

Returns:

The ThumbnailControl object on which this method was called.

Type
PCCViewer.ThumbnailControl

Example

// First, get the thumbnailControl

// Create a resize function
var resize = function(){
 thumbnailControl.reflow();
};

// Create a debounce function
var debounceTimer;
var debounceEvent = function(){
 if (debounceTimer) {
 clearTimeout(debounceTimer);
 debounceTimer = undefined;
 }

 debounceTimer = setTimeout(resize, 300);
};

// Add the debounced function to the resize event
window.onresize = debounceEvent;

scrollTo(pageNumber, optionsopt) → {PCCViewer.ThumbnailControl}

Scrolls to a specified page. By default, this will be done using the minimum amount of scrolling, so pages
that are above the current view will be scrolled to appear at the top of the view, and pages below the
current view will be scrolled to appear at the bottom. This can be overridden with the options parameter.

Parameters:

Name Type Attributes Description

pageNumber number The page to scroll to.

options Object <optional> Provide options to the scroll method to indicate desired behavior.

Properties

Name Type Attributes Description

PrizmDoc Viewer v13.17 656

©2021 My Company. All Rights Reserved.

See:

forceAlignTop boolean <optional> Overrides the default
scrolling behavior, and
forces the specified page
to always be scrolled to
the top of the view.

Throws:

If the pageNumber is not within the range of the page count for the specified document.

Type
Error

Returns:

The ThumbnailControl object on which this method was called.

Type
PCCViewer.ThumbnailControl

setSelectedPages(pageNumbers) → {PCCViewer.ThumbnailControl}

Sets the currently selected thumbnails.

Parameters:

Name Type Description

pageNumbers Array.
<number>
| number

The page number (or numbers) to select. The first selected page will
automatically be scrolled into view if it is not already visible. See
PCCViewer.ThumbnailControl#scrollTo for more details on scrolling to a
page.

PCCViewer.ThumbnailControl#getSelectedPages

PCCViewer.ThumbnailControl#selectedPages

Throws:

If the pageNumbers parameter is undefined, or not a number or array of numbers.

Type
Error

If any of the numbers defined in pageNumbers is out of range of the document page count.

Name Type Attributes Description

PrizmDoc Viewer v13.17 657

©2021 My Company. All Rights Reserved.

Type
Error

Returns:

The ThumbnailControl object on which this method was called.

Type
PCCViewer.ThumbnailControl

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

See:

PCCViewer. Viewer
This class gives programmatic access to the HTML 5 viewer.

Constructor

new Viewer()

Use the jQuery plugin external:jQuery.fn#pccViewer to create the viewer.

Use the jQuery plugin external:jQuery.fn#pccViewer to create an instance of
this class.

Fires:

PCCViewer.Viewer#event:ViewerReady

Example

// Create an instance of the class using the jQuery plugin
$("#mydiv").pccViewer(options); // returns PCCViewer.Viewer
instance

Members
viewerControl :PCCViewer.ViewerControl

Gets the PCCViewer.ViewerControl object used by the viewer instance. Through the

Class: Viewer

PrizmDoc Viewer v13.17 658

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

PCCViewer.ViewerControl object, the caller has API access to control the viewer behavior.

Type:

PCCViewer.ViewerControl

Methods
destroy()

Cleans up the viewer DOM elements and leaves the elements as they were. This method also destroys the
PCCViewer.ViewerControl object by calling PCCViewer.ViewerControl#destroy on the ViewerControl
that is associated with this viewer.

Example

var viewerPlugin = $('#mydiv').pccViewer(options);
var viewerControl = viewerPlugin.viewerControl;

viewerPlugin.destroy();

Events
ViewerReady

Fired when the viewer has initialized and is ready to be manipulated.

Type:

PCCViewer.Viewer

Example

$('#mydiv').on('ViewerReady', function(pccViewer) {
 var marks = pccViewer.viewerControl.getAllMarks();
});

$('#mydiv').pccViewer(options);

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

Class: ViewerControl

PrizmDoc Viewer v13.17 659

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

PCCViewer. ViewerControl
The ViewerControl is a document viewer without any menus, buttons, dialogs, etc. The UI only
consists of a page list, which allows a user to scroll through the pages of a document. It is the most
basic viewer which shows a document. It can be used alone, or it can be augmented with UI elements
(chrome) to expose more functionality to the end user.

Our out-of-the-box HTML5 viewer uses the ViewerControl to build a desktop and mobile ready
viewer, with extensive UI chrome and a responsive design.

The ViewerControl has an API, which covers the full set of viewer functionality. Code that directly
uses the ViewerControl will typically create UI elements - buttons, menus, and inputs - for the end user
to interact with. These UI elements will be hooked up to call the ViewerControl API when the user
interacts with the UI elements (e.g. on button click, call .changeToNextPage()).

When the ViewerControl is instantiated it fires initialization events in the following order:

PCCViewer.EventType.ViewerReady
PCCViewer.EventType.PageCountReady

NOTE: do not use the ViewerControl API until PCCViewer.EventType.ViewerReady has fired.

When viewing session is changed with PCCViewer.ViewerControl#changeViewingSession method call,
ViewerControl fires events in the following order:

PCCViewer.EventType.ViewingSessionChanging
PCCViewer.EventType.ViewingSessionChanged
PCCViewer.EventType.PageCountReady

NOTE: once the PCCViewer.EventType.ViewingSessionChanging event has fired, do not use the
ViewerControl API until PCCViewer.EventType.ViewingSessionChanged event fires.

The ViewerControl also permits mouse and touch interaction. The behavior of the mouse tool or
touch is set using the API method PCCViewer.ViewerControl#setCurrentMouseTool. Once the tool is set,
the user can interact with the viewer using the mouse tool or touch.

Constructor

new ViewerControl(element, options)

Creates a new PCCViewer.ViewerControl object.

Parameters:

Name Type Description

element HTMLDivElement Embed the ViewerControl in this
element.

options PCCViewer.ViewerControl~ViewerControlOptions Specify options for the ViewerControl
object. Some options are required.

Members

PrizmDoc Viewer v13.17 660

©2021 My Company. All Rights Reserved.

See:

See:

See:

See:

(readonly) atMaxScale :boolean

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

It checks whether the viewer is currently at the maximum zoom level.

Type:

boolean

PCCViewer.ViewerControl#getAtMaxScale

(readonly) atMinScale :boolean

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

It checks whether the viewer is currently at the minimum zoom level.

Type:

boolean

PCCViewer.ViewerControl#getAtMinScale

currentMouseTool :string

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets and sets the current mouse tool of the viewer by name.

Type:

string

PCCViewer.ViewerControl#getCurrentMouseTool

PCCViewer.ViewerControl#setCurrentMouseTool

(readonly) isCommentsPanelOpen :boolean

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets a value indicating whether the comments panel is open.

Type:

boolean

PCCViewer.ViewerControl#getIsCommentsPanelOpen

PrizmDoc Viewer v13.17 661

©2021 My Company. All Rights Reserved.

See:

See:

See:

markHandleMode :PCCViewer.RedactionViewMode

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets or sets the mark handle mode.

Type:

PCCViewer.RedactionViewMode

PCCViewer.ViewerControl#getMarkHandleMode

PCCViewer.ViewerControl#setMarkHandleMode

PCCViewer.MarkHandleMode

(readonly) pageCount :number

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets the document page count.

Type:

number

PCCViewer.ViewerControl#getPageCount

pageNumber :number

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets and sets the current page of the viewer to the specified page number in the document. Setting the
page number to a value other than the current page number will cause the viewer to navigate to the
page number provided in the parameter.

Type:

number

PCCViewer.ViewerControl#getPageNumber

PCCViewer.ViewerControl#setPageNumber

redactionViewMode :PCCViewer.RedactionViewMode

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets or sets the redaction view mode. This defines whether the document content text underneath

PrizmDoc Viewer v13.17 662

©2021 My Company. All Rights Reserved.

See:

See:

See:

See:

redaction rectangles needs to be visible in a "Draft" mode PCCViewer.RedactionViewMode enumerable
values.

Type:

PCCViewer.RedactionViewMode

PCCViewer.ViewerControl#getRedactionViewMode

PCCViewer.ViewerControl#setRedactionViewMode

PCCViewer.RedactionViewMode

scaleFactor :number

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets or sets the scale factor to use in the viewer, with 1 being 100% zoom.

Type:

number

PCCViewer.ViewerControl#getScaleFactor

PCCViewer.ViewerControl#setScaleFactor

(readonly) searchRequest :PCCViewer.SearchRequest

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets the SearchRequest object from the last call to PCCViewer.ViewerControl#search.

Type:

PCCViewer.SearchRequest

PCCViewer.ViewerControl#getSearchRequest

selectedConversation :PCCViewer.Conversation

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets and sets the selected conversation.

Type:

PCCViewer.Conversation

PCCViewer.ViewerControl#getSelectedConversation

PrizmDoc Viewer v13.17 663

©2021 My Company. All Rights Reserved.

See:

See:

See:

PCCViewer.ViewerControl#setSelectedConversation

(readonly) selectedMarks :Array.<PCCViewer.Mark>

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets an array of selected marks.

Type:

Array.<PCCViewer.Mark>

PCCViewer.ViewerControl#getSelectedMarks

selectedSearchResult :PCCViewer.SearchResult|null

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets and sets the selected SearchResult object. Returns null if no search results are selected. Note:
Setting the search result through this property will always scroll to it.

Type:

PCCViewer.SearchResult | null

PCCViewer.ViewerControl#getSelectedSearchResult

PCCViewer.ViewerControl#setSelectedSearchResult

viewMode :PCCViewer.ViewMode

An ECMA 5 accessor property that is defined only in browsers supporting ECMA 5. This property is not
available in the older browsers like IE8.

Gets or sets the view mode. This defines how the document pages will be scaled, based on the values of
the PCCViewer.ViewMode enumerable values.

Type:

PCCViewer.ViewMode

PCCViewer.ViewerControl#getViewMode

PCCViewer.ViewerControl#setViewMode

PCCViewer.ViewMode

(inner) TextSelection

A plain object convention describing a text selection.

PrizmDoc Viewer v13.17 664

©2021 My Company. All Rights Reserved.

Properties:

Name Description

pageNumber : number The page number that the selection
starts on.

length : number The length of the text.

text : string The selected text. This is plain text
without any formatting.

startIndex : number The index at which the selection starts in
the page.

rectangles : Array.
<PCCViewer.ViewerControl~TextSelectionRectangle>

An array of all the rectangles that make
up the text selection.

(inner) TextSelectionRectangle

A plain object convention describing a text selection rectangle.

Properties:

Name Description

x : number The x-coordinate of the top-left corner of the rectangle.

y : number The y-coordinate of the top-left corner of the rectangle.

width : number The width of the rectangle.

height : number The height of the rectangle.

pageNumber : number The page number of the rectangle.

Methods
addMark(pageNumber, markType) → {PCCViewer.Mark}

Creates a new mark of a specific type and adds to the specified page.

Parameters:

Name Type Description

pageNumber number Indicates the page to which to add the mark.

markType PCCViewer.Mark.Type | string Indicates the type of mark being added

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

PrizmDoc Viewer v13.17 665

©2021 My Company. All Rights Reserved.

Type
Error

If an invalid pageNumber is provided.

Type
Error

Returns:

The new mark.

Type
PCCViewer.Mark

Example

viewerControl.addMark(1, "LineAnnotation");

addMarkFromSearchResult(searchResult, markType) → {PCCViewer.Mark}

Creates a new mark of a specific type and adds to the location where the specified search result is.

Parameters:

Name Type Description

searchResult PCCViewer.SearchResult Indicates the search result that will include the location for
the new mark.

markType PCCViewer.Mark.Type |
string

Indicates the type of mark being added.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If an invalid searchResult is provided.

Type
Error

If an invalid text based mark type is provided.

PrizmDoc Viewer v13.17 666

©2021 My Company. All Rights Reserved.

Type
Error

Returns:

The new mark.

Type
PCCViewer.Mark

Example

var requestObject = PCCViewer.search('Con');
 var marks = [];
 var newMark;
 requestObject.on(PCCViewer.EventType.SearchCompleted,
function (event) {
 var searchResults = event.completedSearchResults;
 for (var i = 0; i < searchResults.length; i++) {
 newMark =
viewer.addMarkFromSearchResult(searchResults[i],
PCCViewer.Mark.Type.TextSelectionRedaction);
 marks.push(newMark);
 }
 });

burnMarkup(optionsopt) → {PCCViewer.BurnRequest}

Burns redactions and signatures in the document. Note: CAD files are not supported.

If the parameter options.removeFormFields is invalid, then the PCCViewer.Promise object that
is returned will be rejected with the reason set to a PCCViewer.Error object with its code property
set to InvalidArgument.

Parameters:

PrizmDoc Viewer v13.17 667

©2021 My Company. All Rights Reserved.

Name Type Attributes Description

options Object <optional> This optional parameter specifies burn options to be used for burning the document.

Properties

Name Type Attributes Default Description

marks PCCViewer.Mark |
Array.
<PCCViewer.Mark>

<optional> Indicates which marks to bur
of their type.

burnSignatures boolean <optional> true Indicates whether signatures
to be burned.
exists, this parameter is igno

burnRedactions boolean <optional> true Indicates whether redactions
to be burned.
exists, this parameter is igno

burnAnnotations boolean <optional> false Indicates whether annotation
required to be burned.
options.marks exists, this par
ignored.

filename string <optional> Sets the value of the Conten
filename in the header of the
from the URL to download th
If not set, then the burned do
be downloaded with a defau

removeFormFields Array.<string> <optional> Specifies a list of the types o
to remove from the docume
only a list including the value
supported. If not set, then fo
not removed.

redactionOptions Object <optional> The parameters object takes
properties:

mode

{PCCViewer.Redaction
enum}. How redaction
applied. May be one o
following:

PrizmDoc Viewer v13.17 668

©2021 My Company. All Rights Reserved.

3 4

See:

draftOptions

to apply when mode i
"Draft"

contain:

PCCViewer.BurnRequest for more details on interacting with the burn
process.

Returns:

A result BurnRequest for this task.

Type
PCCViewer.BurnRequest

Example

function onSuccessfulBurn(burnturl) {
 alert("burntURL = " + burnturl);
 console.log(burnturl);
}

Name Type Attributes Description

PrizmDoc Viewer v13.17 669

©2021 My Company. All Rights Reserved.

function onFailedBurn(error) {
 alert("burn Process failed, error:" + (error.message ?
error.message : error));
}

// A BurnRequest object is created by and returned from
the call to the burnMarkup method
var burnRequest = viewerControl.burnMarkup();
burnRequest.then(onSuccessfulBurn, onFailedBurn);

//register some events
burnRequest
 .on(PCCViewer.BurnRequest.EventType.BurnCompleted,
 function(ev) {
 alert("Document burn completed.");
 })
 .on(PCCViewer.BurnRequest.EventType.BurnProgress,
 function(event) {
 alert("Burn progress: " + event.percent + "%");
 })
 .on(PCCViewer.BurnRequest.EventType.BurnFailed,
 function(event) {
 alert("Document burn failed.");
 });

 // Also, methods on the burnRequest object can be used

 // get the options used to burn the document.
 var optionsUsed = burnRequest.getOptions();

 //if the process is still incomplete, cancel can be
used to stop queries to the server.
 if (burnRequest.getProgress() >= 0 &&
burnRequest.getProgress() < 100) {
 burnRequest.cancel();
 }

canPrintMarks() → {boolean}

Informs whether the current browser is capable of printing the annotations and redactions on a
document. If true, the document can be printed with annotations and redactions. If false, the
document will be printed without annotations, regardless of the print request made.

Returns:

A value indicating whether the browser is capable of printing annotations and redactions on a
document.

Type
boolean

PrizmDoc Viewer v13.17 670

©2021 My Company. All Rights Reserved.

Example

var printWithMarks = true;
viewerControl.print({
 includeMarks: (printWithMarks &&
viewerControl.canPrintMarks())
});

changeToFirstPage() → {PCCViewer.ViewerControl}

Sets the current page of the viewer to the first page of the document.

Note: Does nothing if the current page is the first page of the document.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.changeToFirstPage();

changeToLastPage() → {PCCViewer.ViewerControl}

Sets the current page of the viewer to the last known page of the document.

Note: Does nothing if the current page is the last known page of the document.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.changeToLastPage();

changeToNextPage() → {PCCViewer.ViewerControl}

Sets the current page of the viewer to the next page of the document.

PrizmDoc Viewer v13.17 671

©2021 My Company. All Rights Reserved.

Note: Does nothing if the current page is the last known page of the document.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.changeToNextPage();

changeToPrevPage() → {PCCViewer.ViewerControl}

Sets the current page of the viewer to the previous page of the document.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.changeToPrevPage();

changeViewingSession(viewingSessionId, isRestorable) →
{PCCViewer.ViewerControl}

Changes the viewer to a different viewing session, allowing the viewer to work with a different
document. If you intend to return to the current viewing session in the future, set isRestorable to
true. Otherwise, the current viewer state and any annotation data in memory will be disposed.

Parameters:

Name Type Description

viewingSessionId string viewingSessionId for the new viewing session to switch to, changing
the document in use for the end user.

isRestorable boolean When true, unsaved changes to markup will be kept in memory and
automatically restored if you change back to the current viewing
session. When false, unsaved changes to markup will be discarded.

PrizmDoc Viewer v13.17 672

©2021 My Company. All Rights Reserved.

Throws:

If the PCCViewer.EventType.ViewerReady event has not fired prior to using this method.

Type
Error

If the web application has already called changeViewingSession (or
ViewingSessionChanging has fired in response to user activity in the viewer) but
corresponding ViewingSessionChanged event has not fired prior to using this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.changeViewingSession(anotherViewingSessionId)

 .on(PCCViewer.EventType.ViewingSessionChanged,
function(ev) {
 alert("Viewing session changed.");
 });

clearMouseSelectedText(textSelection) → {PCCViewer.ViewerControl}

Deselects the text provided in a TextSelected event.

Parameters:

Name Type Description

textSelection PCCViewer.ViewerControl~TextSelection The textSelection object provided in
the TextSelected event arguments.

Throws:

If textSelection is undefined.

Type
Error

PrizmDoc Viewer v13.17 673

©2021 My Company. All Rights Reserved.

If textSelection.pageNumber is not a known page number.

Type
Error

If textSelection.startIndex is not a number or is negative.

Type
Error

If textSelection.length is not a number or is less than 1.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

var onTextSelected = function(ev){
 var mark =
viewerControl.addMark(ev.textSelection.pageNumber,
'HighlightAnnotation');
 mark.setPosition(ev.textSelection);

 // clear the highlighted text

ViewerControl.clearMouseSelectedText(ev.textSelection);
};

viewerControl.on('TextSelected', onTextSelected);

clearSearch() → {PCCViewer.ViewerControl}

Clears the search hit highlights and removes the SearchRequest from the ViewerControl.

After calling this, PCCViewer.ViewerControl#getSearchRequest will not return the last SearchRequest.

Throws:

If the PCCViewer.EventType.ViewerReady event has not fired prior to using this method.

PrizmDoc Viewer v13.17 674

©2021 My Company. All Rights Reserved.

See:

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.search("Foo");
// As search results become available, they are
highlighted on the document.

// Clear search result highlights from the document.
viewerControl.clearSearch();

clearSelectedSearchResult() → {PCCViewer.ViewerControl}

This methods clears the search result selection, or in other words, it deselects the search result. If there
is not a selected search result when this method is called, then the method has no effect.

This method is offered as a convenience to API callers, who could also call
PCCViewer.ViewerControl#setSelectedSearchResult(null).

PCCViewer.ViewerControl#setSelectedSearchResult

PCCViewer.ViewerControl#clearSearch

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

PrizmDoc Viewer v13.17 675

©2021 My Company. All Rights Reserved.

See:

var searchRequest = viewerControl.search('Accusoft');

// add events to the search request
searchRequest.on("SearchCompleted", function(){
 // get the search results
 results = searchRequest.getResults();

 // set the result to the first
 viewerControl.setSelectedSearchResult(results[0],
true);

 // clear the selected search result
 viewerControl.clearSelectedSearchResult();
});

clientSearch(searchQuery) → {PCCViewer.SearchRequest}

Searches the text of the document for the given searchQuery. The search is performed client-side,
which requires requesting from the server text for each page. This is efficient for smaller documents, but
for large documents it is more efficient to use the PCCViewer.ViewerControl#serverSearch method
instead.

This query can be a single search term or a hash specifying one or more terms and options. If only a
single search term (string) is supplied, then default options are used.

Search completes asynchronously. The returned PCCViewer.SearchRequest object, provides events for
search progress and members to access search results.

Parameters:

Name Type Description

searchQuery string |
PCCViewer.ViewerControl~SearchQuery

A value specifying the search query. The
value specifies a single search term (string)
or an object specifying multiple search terms
and options.

PCCViewer.SearchRequest

PCCViewer.SearchResult

Returns:

An object that represents the search request. This object allows the calling code to subscribe to search
progress events and access search results.

Type
PCCViewer.SearchRequest

Examples

PrizmDoc Viewer v13.17 676

©2021 My Company. All Rights Reserved.

// Search on a single term with default options
var searchRequest = viewerControl.clientSearch("Hello");

// Subscribe to the PartialSearchResultsAvailable event
to get search results as they become available.
searchRequest.on('PartialSearchResultsAvailable',
function(_event) {
 // Get the newly available search results.
 var newResults = _event.partialSearchResults;
});

// Search on multiple terms and specify options
var searchQuery = {
 searchTerms: [{
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
 },
 {
 searchTerm: "Accusoft"
 }]
};

var requestObject =
viewerControl.clientSearch(searchQuery);

//subscribe to the search request
requestObject.on('PartialSearchResultsAvailable',
function(_event) {
 var newResults = [];
 //Retrieve results
 newResults = _event.partialSearchResults;
});

closeCommentsPanel() → {PCCViewer.ViewerControl}

Closes the comments panel.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

PrizmDoc Viewer v13.17 677

©2021 My Company. All Rights Reserved.

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.closeCommentsPanel();

convertDocument()

Deprecated since v11.0 (use the PCCViewer.ViewerControl#requestDocumentConversion method
instead).

convertPageToWindowCoordinates(pageNumber, points) → {Array.<Object>|Object}

Converts page-based coordinates to the current window coordinates. This allows passing in a
coordinate point or an array of points as used in the ViewerControl API, in order to get the position
of that point or points relative to the window.

Parameters:

Name Type Description

pageNumber number A known page number to the viewer.

points Array.<Object> |
Object

A point or array of points in page coordinates. Each point will have
the following properties:

Properties

Name Type Description

x number the x page coordinate

y number the y page coordinate

Throws:

If the PCCViewer.EventType.ViewerReady event has not fired prior to calling this method.

Type
Error

If pageNumber is not a currently known page.

Type

PrizmDoc Viewer v13.17 678

©2021 My Company. All Rights Reserved.

Error

If any of the points do not have a valid x and y numeric parameters.

Type
Error

Returns:

A window point or an array of window points, depending on how the method was called. These points
will be in the same order as the points passed into the function. Each window point will have the
following parameters:

clientX {number} The x window coordinate in pixels.
clientY {number} The y window coordinate in pixels.

Type
Array.<Object> | Object

convertToHighlight()

Deprecated since v13.16 (use the PCCViewer.ViewerControl#addMarkFromSearchResult method
instead).

convertToRedaction()

Deprecated since v13.16 (use the PCCViewer.ViewerControl#addMarkFromSearchResult method
instead).

copyMarks(marks) → {Array.<PCCViewer.Mark>}

Makes a copy of the specified marks.

Note: This method requires that attributes of each page referenced by the marks have been obtained
by the viewer prior to calling. Use PCCViewer.ViewerControl#requestPageAttributes to obtain the
necessary page attributes before calling this method.

Parameters:

Name Type Description

marks Array.<PCCViewer.Mark> An array of marks to copy.

Throws:

If marks is not an array of marks known to the viewer.

Type

PrizmDoc Viewer v13.17 679

©2021 My Company. All Rights Reserved.

Error

Returns:

An array of the copied marks.

Type
Array.<PCCViewer.Mark>

Example

// Make a copy of the selected marks.
markupLayer1.copyMarks(viewerControl.getSelectedMarks());

deleteAllMarks() → {PCCViewer.ViewerControl}

Deletes all marks in all the pages of the document.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.deleteAllMarks();

deleteMarks(marks) → {PCCViewer.ViewerControl}

Deletes the specified marks.

Parameters:

Name Type Description

marks Array.<PCCViewer.Mark> An Array of objects of type PCCViewer.Mark.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

PrizmDoc Viewer v13.17 680

©2021 My Company. All Rights Reserved.

If any of the marks passed in are not valid objects of the type PCCViewer.Mark.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// delete all selected marks
viewerControl.deleteMarks(viewer.getSelectedMarks());

deselectAllMarks() → {PCCViewer.ViewerControl}

Deselects all previously selected marks.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.deselectAllMarks();

deselectMarks(marks) → {PCCViewer.ViewerControl}

Deselects the marks provided in the parameter array object.

Parameters:

Name Type Description

marks Array.
<PCCViewer.Mark>

An array of PCCViewer.Mark objects that exist in the document and
need to be deselected.

Throws:

PrizmDoc Viewer v13.17 681

©2021 My Company. All Rights Reserved.

See:

If PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

If any of the mark objects are not valid PCCViewer.Mark objects, the id of the mark provided
does not match the id of mark loaded in the viewer, or the mark provided was not
previously added to the document pages.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// deselect all marks with an odd-number ID
viewerControl.getSelectedMarks().forEach(function(mark){
 var arr = [];
 if (+mark.getId() % 2) arr.push(mark);
 viewerControl.deselectMarks(arr);
});

deserializeMarks(values)

Deserializes JSON or a JSON-like object to PCCViewer.Mark objects, and adds them to the
ViewerControl. This will display all deserialized marks.

Parameters:

Name Type Description

values String.<JSON> | Object | Array.<Object> The value to deserialize.

PCCViewer.ViewerControl#serializeMarks

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

PrizmDoc Viewer v13.17 682

©2021 My Company. All Rights Reserved.

If the json parameter as a string is not a valid JSON string.

Type
Error

If any mark has an unknown page number in the pageNumber property. Note that if marks
are being added before the PageCountReady event fires, this method will only know about
page 1, and throw an error if adding marks to other pages.

Type
Error

If any mark has an unknown type in the type property.

Type
Error

Example

var markData = {
 "type": "RectangleAnnotation",
 "rectangle": {
 "x": 0,
 "y": 10,
 "width": 200,
 "height": 200
 },
 "fillColor": "#FB0404",
 "lineWidth": 4,
 "pageNumber": 1,
 "uid":
"dW9qaV8yMDE5LTA4LTAxVDA2OjUzOjA1LjgxOVpfazhhbDFi",
 "data": {},
 "conversation": {
 "data": {}
 }
};

// Deserialize mark from object value
viewerControl.deserializeMarks(markData);

// Deserialize mark from JSON string
var markJson = JSON.stringify(markData);
viewerControl.deserializeMarks(markJson);

// Deserialize marks from array of objects
var markData2 = { ... };
viewerControl.deserializeMarks([markData, markData2]);

PrizmDoc Viewer v13.17 683

©2021 My Company. All Rights Reserved.

destroy()

Closes the ViewerControl and cleans up its resources. After this action, a new viewer can be created
in its place.

Note: If the viewer was created using the jQuery plugin (PCCViewer.Viewer), use the
PCCViewer.Viewer.destroy method instead.

Example

var element = document.querySelector('#mydiv');
var viewerControl = new PCCViewer.ViewerControl(element,
options);

viewerControl.destroy();

disposePageText(pageNumber) → {PCCViewer.ViewerControl}

Disposes text for the specified page.

The text for any page requested programmatically by using the
PCCViewer.ViewerControl#requestPageText method is not automatically disposed, even when the
ViewerControl discardOutOfViewText parameter is set to true. You must use the disposePageText
method to dispose of the text when you no longer need it.

If the specified page is currently displayed when calling this method, the page text will not be disposed
immediately, but will be disposed when the page is scrolled out of view and no longer displayed.

Client search depends on the page text, so page text is not disposed after performing client search.

Parameters:

Name Type Description

pageNumber number Page text is disposed for this page number.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the pageNumber value is not a number.

Type
Error

PrizmDoc Viewer v13.17 684

©2021 My Company. All Rights Reserved.

If the pageNumber value is out of range.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.disposePageText(10);

documentHasText() → {PCCViewer.Promise}

Indicates whether or not any pages in the document have text. This method returns a promise, which
can resolve at an indefinite time. This promise will resolve at the first instance of finding text in the
document, but will not actively search for text if none is yet found. Unless this promise has resolved, the
user should assume that the document does not contain text.

For example, in a 100 page document, where only page 80 has text, this promise will not resolve until
the user views page 80. If the document were to have no text at all, the promise will not resolve until all
100 pages were viewed by the user.

The successful callback be passed only a boolean indicating whether the document has any text or not.

Returns:

a Promise object.

Type
PCCViewer.Promise

Example

var promise = viewerControl.documentHasText().then(
 function success(containsTextBool){
 alert('Document has text: ' + (containsTextBool ?
'Yes' : 'No'));
 },
 function fail(error){
 alert('Document has text: unknown due to error "'
+ error.message + '"');
 }
);

PrizmDoc Viewer v13.17 685

©2021 My Company. All Rights Reserved.

enterTextMarkEditingMode(mark) → {PCCViewer.ViewerControl}

Puts a displayed PCCViewer.Mark object of type TextInputSignature, TextAreaSignature, TextRedaction,
or TextAnnotation into editing mode. In editing mode, a text input or text box will be drawn for the
mark and the input will have focus. When in editing mode, the end user type to modify the text of the
mark.

All marks other than the specified mark will be taken out of text mark editing mode.

Note that if the mark is not on a page that is currently displayed, then this method may have no
perceived effect. The act of changing pages to bring the off screen page into view would take the focus
off of the mark that is in editing mode.

Parameters:

Name Type Description

mark PCCViewer.Mark | null
| undefined

A PCCViewer.Mark object that will be put in editing mode.

If a value of null or undefined is given, then all marks will be taken
out of text mark editing mode.

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
PCCViewer.Error

If mark is not a valid PCCViewer.Mark object or the mark provided is not currently on the
document.

Type
PCCViewer.Error

If mark is not of type TextInputSignature, TextAreaSignature, TextRedaction, or
TextAnnotation.

Type
PCCViewer.Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 686

©2021 My Company. All Rights Reserved.

See:

Example

// Add a mark
var myMark = viewerControl.addMark(4,
PCCViewer.Mark.Type.TextAnnotation)
 .setRectangle({
 x: 0,
 y: 600,
 width: 500,
 height: 100
 });

// Put the mark in editing mode and scroll to the mark.
viewerControl.enterTextMarkEditingMode(myMark);

fitContent(fitType) → {PCCViewer.ViewerControl}

Changes the scaling (zoom) of the document to fit the content in the viewer. How the content is fit in
the viewer is based on the specified by the values in the PCCViewer.FitType enumerable.

Parameters:

Name Type Description

fitType string Specifies how the content will be scaled to fit in the viewer.

PCCViewer.FitType for a list of possible FitType values and their
descriptions.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the value of fitType is unknown.

Type
Error

If the view mode is set to "EqualFitPages" or "EqualWidthPages", and the value of
fitType is "ActualSize". Instead, pass a value of 1 to the
PCCViewer.ViewerControl#setScaleFactor method to scale the first page to actual size.

Type
Error

PrizmDoc Viewer v13.17 687

©2021 My Company. All Rights Reserved.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// Explicitly specify the fit type
viewerControl.fitContent("FullWidth");

// or use the enumeration
viewerControl.fitContent(PCCViewer.FitType.FullWidth);

getActiveMarkupLayer() → {PCCViewer.MarkupLayer}

Gets the viewer control's active markup layer.

Returns:

The viewer control's active markup layer.

Type
PCCViewer.MarkupLayer

Example

var activeMarkupLayer =
viewerControl.getActiveMarkupLayer();

getAllMarks() → {Array.<PCCViewer.Mark>}

Gets all marks.

Returns:

An array of PCCViewer.Mark objects. Note: Returns an empty array if the viewer has not been initialized.

Type
Array.<PCCViewer.Mark>

Example

var allMarks = viewer.getAllMarks();

PrizmDoc Viewer v13.17 688

©2021 My Company. All Rights Reserved.

See:

getAtMaxScale() → {boolean}

Gets a value that indicates whether the viewer is currently at the maximum scale factor. As long as this
value is true, the ViewerControl do nothing if asked to zoom in any further.

This method determines the value each time, and will be affected by the following:

1. The viewer scale changes due to zoomIn, zoomOut, or fitContent.
2. The window resizes.
3. The div that holds the viewer control is resized.

PCCViewer.ViewerControl#atMaxScale

PCCViewer.EventType.ScaleChanged

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

A value that indicates whether the viewer is currently at maximum zoom.

Type
boolean

Examples

// Check for change after the viewer scale changes
viewerControl.on(PCCViewer.EventType.ScaleChanged,
function(ev){
 var atMax = viewer.getAtMaxScale();
}

// Check for change when the window resizes (using
jQuery)
$(window).resize(function() {
 var atMax = viewer.getAtMaxScale();
});

getAtMinScale() → {boolean}

Gets a value that indicates whether the viewer is currently at the minimum scale factor. As long as this
value is true, the ViewerControl do nothing if asked to zoom out any further.

This method determines the value each time, and will be affected by the following:

PrizmDoc Viewer v13.17 689

©2021 My Company. All Rights Reserved.

See:

1. The viewer scale changes due to zoomIn, zoomOut, or fitContent.
2. The window resizes.
3. The div that holds the viewer control is resized.

PCCViewer.ViewerControl#atMinScale

PCCViewer.EventType.ScaleChanged

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

A value that indicates whether the viewer is currently at minimum zoom.

Type
boolean

Examples

// Check for change after the viewer scale changes
viewerControl.on(PCCViewer.EventType.ScaleChanged,
function(ev){
 var atMax = viewer.getAtMinScale();
}

// Check for change when the window resizes (using
jQuery)
$(window).resize(function() {
 var atMax = viewer.getAtMinScale();
});

getCharacterIndex(sortableObject) → {Number}

Returns the index of the character at the location of the specified object. If there is no character at the
location, the index of the character before the location (based on the closest line of text) is returned.

Parameters:

Name Type Description

sortableObject PCCViewer.Mark |
PCCViewer.SearchResult |
Object

A mark or search result in a page, or an object
containing pageNumber, x, and y values.

PrizmDoc Viewer v13.17 690

©2021 My Company. All Rights Reserved.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If sortableObject is not a valid PCCViewer.Mark or PCCViewer.SearchResult, or if it is not an
Object with valid pageNumber, x, and y values. When specifying a pageNumber greater
than 1, this method requires that the PageCountReady event has been triggered, otherwise
an error is thrown.

Type
Error

Returns:

The text index at or before the position of the specified object.

Type
Number

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// get the sort index
if (theFirstMark) var firstMarkSortIndex =
viewerControl.getCharacterIndex(theFirstMark);

getConversationDOMFactory() → {function}

Gets the conversation DOM factory function. The default factory function is returned if a factory
function has not been set using the PCCViewer.ViewerControl#setConversationDOMFactory method.

Returns:

The function for creating a conversation DOM element.

Type
function

getCurrentMouseTool() → {string}

PrizmDoc Viewer v13.17 691

©2021 My Company. All Rights Reserved.

See:

See:

Gets the current mouse tool of the viewer.

PCCViewer.MouseTools.getMouseTool

Returns:

A value indicating the name of the current mouse tool.

Type
string

Example

// get the current mouse tool name
var mouseToolName = viewerControl.getCurrentMouseTool();

// get the actual MouseTool object
var mouseToolObject =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

getDownloadDocumentURL() → {string}

Gets the URL to download the original document.

The help section titled "Digital Rights Management Configuration" for
information on disabling document download.

Returns:

The URL for downloading the original document. This URL is relative to current page.

Type
string

Example

// get the URL
var documentURL = viewerControl.downloadDocument();

// download the document
window.location.href = documentURL;

getGamma() → {Number}

Gets the gamma factor for the document.

PrizmDoc Viewer v13.17 692

©2021 My Company. All Rights Reserved.

Returns:

The current gamma factor for the document.

Type
Number

Example

var gamma = viewerControl.getGamma();

getIsCommentsPanelOpen() → {boolean}

Returns a value (true or false) indicating if the comments panel is open.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

A value indicating if the comments panel is open.

Type
boolean

Example

var isCommentsPanelOpen =
viewerControl.getIsCommentsPanelOpen(); // true if
comments panel is open

getMarkById(markId) → {PCCViewer.Mark}

Gets the specified mark.

Parameters:

Name Type Description

markId number The ID of the mark to retrieve.

PrizmDoc Viewer v13.17 693

©2021 My Company. All Rights Reserved.

See:

Returns:

The mark that corresponds to the specified ID.

Type
PCCViewer.Mark

Example

var mark = viewer.getMarkById(1);

getMarkHandleMode() → {PCCViewer.MarkHandleMode}

Gets the mark handle mode.

Returns:

The mark handle mode.

Type
PCCViewer.MarkHandleMode

getMarksByType(markType) → {Array.<PCCViewer.Mark>}

Get marks by type.

Parameters:

Name Type Description

markType PCCViewer.Mark.Type
| string

The mark type being requested. Note: Returns an empty array if
the viewer has not been initialized.

PCCViewer.Mark.Type for a list of valid mark types.

Throws:

If the parameter markType is an invalid mark type.

Type
Error

Returns:

An array of PCCViewer.Mark objects of the requested type.

Type

PrizmDoc Viewer v13.17 694

©2021 My Company. All Rights Reserved.

Array.<PCCViewer.Mark>

Example

var marksByType = viewer.getMarksByType(markType);

getMarkupLayerCollection() → {PCCViewer.MarkupLayerCollection}

Gets the viewer control's markup layer collection.

Returns:

The viewer control's markup layer collection.

Type
PCCViewer.MarkupLayerCollection

Example

var markupLayerCollection =
viewerControl.getMarkupLayerCollection();

getMaxScaleFactor() → {number}

Gets the maximum scale limit.

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

Returns:

A number indicating the maximum limit at which the document can be scaled.

Type
number

Example

var maxScaleFactor = viewerControl.getMaxScaleFactor();
viewerControl.setScaleFactor(maxScaleFactor); // Zoom in

PrizmDoc Viewer v13.17 695

©2021 My Company. All Rights Reserved.

See:

to the maximum scale limit.

getMinScaleFactor() → {number}

Gets the minimum scale limit.

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

Returns:

A number indicating the minimum limit at which the document can be scaled.

Type
number

Example

var minScaleFactor = viewerControl.getMinScaleFactor();
viewerControl.setScaleFactor(minScaleFactor); // Zoom out
to the minimum scale limit.

getPageCount() → {number}

Gets the known page count of the current document.

This value is updated when the viewer gets the page count or estimated page count from the server.
Subscribe to the PCCViewer.EventType.PageCountReady and
PCCViewer.EventType.EstimatedPageCountReady events to be notified when the viewer gets the page
count from the server.

The initial value is 1, before any page count event.

PCCViewer.EventType for the event type "PageCountReady".

Returns:

The known page count.

Type
number

Example

PrizmDoc Viewer v13.17 696

©2021 My Company. All Rights Reserved.

See:

See:

// First, create the pccViewer.
var viewerControl =
$("#viewer").pccViewer(viewerOptions).viewerControl;

function pageCountReadyHandler(event) {
 // The page count has now been determined.
 var pageCount = viewer.getPageCount();
 alert("Number of pages = " + pageCount);

 // Now, unsubscribe from the event.
 viewerControl.off("PageCountReady",
pageCountReadyHandler);
}

// Subscribe to the PageCountReady event exposed by the
API
viewerControl.on("PageCountReady",
pageCountReadyHandler);

getPageLayout() → {PCCViewer.PageLayout}

Gets the page layout. This defines how the document pages will be arranged, based on the values of
the PCCViewer.PageLayout enumeration.

PCCViewer.PageLayout

Returns:

A value indicating the page layout.

Type
PCCViewer.PageLayout

Example

var pageLayout = viewerControl.getPageLayout();

getPageNumber() → {number}

Gets the current page number of the viewer. This is a 1-based value, so the first page of a document is
1.

PCCViewer.EventType.PageCountReady event

Returns:

PrizmDoc Viewer v13.17 697

©2021 My Company. All Rights Reserved.

The current page of the viewer.

Note: A value of 1 is returned before page count is available.

Type
number

Example

var currentPageNumber = viewerControl.getPageNumber();

getPageRotation(pageNumber) → {number}

gets the page rotation value for the specified page number.

Parameters:

Name Type Description

pageNumber number
| string

This is an optional parameter. A 1-based page number of the page. An
optional string representation of a valid number is also accepted as a
parameter. If this parameter is not provided, the implied pageNumber will be
the currentPage.

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the provided optional parameter pageNumber is less than 1 or greater than the value
returned by PCCViewer.ViewerControl#getPageCount.

Type
Error

If the provided optional parameter pageNumber is not a number or a string representation
of a number.

Type
Error

If the provided optional parameter pageNumber is not an integer page number.

Type
Error

PrizmDoc Viewer v13.17 698

©2021 My Company. All Rights Reserved.

See:

Returns:

The rotation amount in degrees clockwise.

Type
number

Example

// first create the pccViewer : Note: if the viewer
object has already been created, do not re-create it.
var viewerControl =
$("#viewer").pccViewer(viewerOptions).viewerControl;

var pageNumber = 2;
var rotationAngle =
viewerControl.getPageRotation(pageNumber);

getRedactionViewMode() → {PCCViewer.RedactionViewMode}

Gets the redaction view mode. This defines whether the redaction rectangles would show the
underlying document content text PCCViewer.RedactionViewMode enumerable values.

PCCViewer.RedactionViewMode

Returns:

A value indicating the redaction view mode.

Type
PCCViewer.RedactionViewMode

Example

var viewMode = viewerControl.getRedactionViewMode();

getSavedMarkupNames() → {PCCViewer.Promise}

Gets a list of all saved markups from the server for the current document.

If unable to retrieve markup list from server, then the returned PCCViewer.Promise object is rejected
with the reason set to a PCCViewer.Error object with its code property set to MarkupListFail.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set
to a PCCViewer.Error object with its code property set to AjaxUnsupported.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

PrizmDoc Viewer v13.17 699

©2021 My Company. All Rights Reserved.

See:

The PCCViewer.Promise~onFulfilled function gets passed an Array of Objects. Each object will have a
name property, which is a string representation of the name used to save the markup.

Returns:

A PCCViewer.Promise object.

Type
PCCViewer.Promise

Example

viewerControl.getSavedMarkupNames().then(
 function onSuccess(markupNameObjects) {
 var namesArray = [];
 for (var i = 0; i < markupNames.length; i++) {
 namesArray.push(markupNames[i].name);
 }
 alert(namesArray.join(', ');
 },
 function onFailure(error) {
 alert((error.message ? error.message : error));
 }
);

getScaleFactor() → {number}

Gets the scale factor of the viewer.

PCCViewer.EventType.ScaleChanged event

Returns:

A value indicating the scale factor to use in the viewer, with 1 being 100% zoom.

For "Document" and '"SinglePage"' view mode, the scale factor represents the amount that each page
in the document is scaled. For "EqualFitPages" view mode, the scale factor represents the amount
that the first page of the document is scaled.

Type
number

Example

var scaleFactor = viewerControl.getScaleFactor();

PrizmDoc Viewer v13.17 700

©2021 My Company. All Rights Reserved.

See:

getSearchRequest() → {PCCViewer.SearchRequest}

Gets the SearchRequest object from the last call to PCCViewer.ViewerControl#search.

Returns:

The SearchRequest from the last search, or null if a search has not been performed or if the search
has been cleared with PCCViewer.ViewerControl#clearSearch.

Type
PCCViewer.SearchRequest

Example

var searchRequestA = viewerControl.search("Foo");
var searchRequestB = viewerControl.getSearchRequest();
searchRequestA === searchRequestB; // true

getSelectedConversation() → {PCCViewer.Conversation}

Gets the selected conversation.

PCCViewer.ViewerControl#setSelectedConversation

Returns:

The selected conversation, or null if no conversation is currently selected.

Type
PCCViewer.Conversation

Example

var selectedConversation =
viewerControl.getSelectedConversation();

getSelectedMarks() → {Array.<PCCViewer.Mark>}

Obtains all the selected marks in the currently loaded document. If none of the marks are selected or if
the document does not contain any marks then the returned array will be empty.

Returns:

An array of selected PCCViewer.Mark objects.

Type

PrizmDoc Viewer v13.17 701

©2021 My Company. All Rights Reserved.

Array.<PCCViewer.Mark>

Example

var selectedMarks = viewerControl.getSelectedMarks();

if (selectedMarks.length) alert(selectedMarks.length + "
marks are currently selected");
else alert("No marks are currently selected");

getSelectedSearchResult() → {PCCViewer.SearchResult|null}

Gets the selected PCCViewer.SearchResult object.

Returns:

The PCCViewer.SearchResult object. Returns null if no search result is selected.

Type
PCCViewer.SearchResult | null

getSharpening() → {Number}

gets the sharpening factor for the document.

Returns:

the current sharpening factor for the document.

Type
Number

Example

var sharpening = viewerControl.getSharpening();

getSvgLineWidthMultiplier() → {Number}

Gets the current multiplier used to adjust SVG line widths in the document.

Returns:

The current svg line-width multiplier for the document.

PrizmDoc Viewer v13.17 702

©2021 My Company. All Rights Reserved.

See:

Type
Number

Example

var svgLineWidthMultiplier =
viewerControl.getSvgLineWidthMultiplier();

getViewMode() → {PCCViewer.ViewMode}

Gets the view mode. This defines how the document pages will be scaled, based on the values of the
PCCViewer.ViewMode enumerable values.

PCCViewer.ViewMode

Returns:

A value indicating the view mode.

Type
PCCViewer.ViewMode

Example

var viewMode = viewerControl.getViewMode();

hideMarks(marks) → {PCCViewer.ViewerControl}

Hides the specified marks.

Parameters:

Name Type Description

marks Array.<PCCViewer.Mark> An Array of objects of type PCCViewer.Mark.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If any of the marks passed in are not valid objects of the type PCCViewer.Mark.

Type

PrizmDoc Viewer v13.17 703

©2021 My Company. All Rights Reserved.

See:

Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// hides all selected marks
viewerControl.hideMarks(viewer.getSelectedMarks());

isPageTextReady(pageNumber) → {boolean}

Returns a value indicating if the ViewerControl has loaded text for a page from the server.

Several of the ViewerControl's methods require that the ViewerControl has loaded the text for the page.
These methods will not work if the text for the target page(s) is not loaded. This set of methods
includes:

PCCViewer.ViewerControl#getCharacterIndex
PCCViewer.Mark#setPosition

The ViewerControl may delay loading of text for a page, so it is not safe to assume that the
ViewerControl has text for a page when ViewerReady is triggered. However, if you have gotten page text
through the viewer, then it is safe to assume the viewer has text for the page. For example, if you get text
through a SearchResult generated by PCCViewer.ViewerControl#search or by calling
PCCViewer.ViewerControl#requestPageText, then the viewer will have loaded page text from the server.

Parameters:

Name Type Description

pageNumber number The method checks if page text is ready for this page number.

PCCViewer.ViewerControl#requestPageText

PCCViewer.ViewerControl#search

PCCViewer.EventType.PageTextReady

Throws:

If the pageNumber argument is less than 1 or greater than the page count of the document.

Type
Error

PrizmDoc Viewer v13.17 704

©2021 My Company. All Rights Reserved.

Returns:

A value indicating if the ViewerControl has loaded text for a page from the server.

Type
boolean

Example

if (!viewerControl.isPageTextReady(1)) {
 viewerControl.requestPageText(1).then(
 function(pageText) {
 highlightSomeText({
 startIndex: 0,
 length: pageText.length
 });
 }
);
} else {
 // Note that it's pretty silly to blindly highlight
text, you would almost always want to know
 // the text tht you are trying to highlight before
calling the API to set the position. But, this is just
 // an example to demonstrate when you don't *have* to
request the page text.
 highlightSomeText({startIndex: 0, length: 5});
}

// Note: an alternative to the if-else above, would be to
always call requestPageText, which will immediately
resolve
// if the viewer already has page text. Using this
approach, you don't need to call `isPageTextReady`.
// viewerControl.requestPageText(1).then(
// function(pageText) {
// highlightSomeText({
// startIndex: 0,
// length: pageText.length
// });
// }
//);

function highlightSomeText(position) {
 viewerControl.addMark(1, "HighlightAnnotation")
 .setPosition(position);
}

loadAttachments() → {PCCViewer.Promise}

Gets a list of all attachments of the document currently loaded on the viewer.

PrizmDoc Viewer v13.17 705

©2021 My Company. All Rights Reserved.

If unable to retrieve the attachment list from server, then the returned PCCViewer.Promise object is
rejected with the reason set to a PCCViewer.Error object with its code property set to
AttachmentListFail.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set
to a PCCViewer.Error object with its code property set to AjaxUnsupported.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

The PCCViewer.Promise~onFulfilled function gets passed an array of attachment objects.

Returns:

A PCCViewer.Promise object.

Type
PCCViewer.Promise

Example

viewerControl.loadAttachments().then(
 function onSuccess(attachments) {
 var fileNames = [];
 for (var i = 0; i < attachments.length; i++) {
 fileNames.push(attachments[i].name);
 }
 alert(fileNames.join(', ');
 },
 function onFailure(error) {
 alert((error.message ? error.message : error));
 }
);

loadMarkup(recordName, retainExistingMarksopt, markupLayeropt) →
{PCCViewer.Promise}

Loads the markup with the specified name from the server. This returns a PCCViewer.Promise object.

If the parameter recordName is invalid, then the PCCViewer.Promise object that is returned will be
rejected with the reason set to a PCCViewer.Error object with its code property set to
InvalidAnnotationRecord.

If the optional parameters retainExistingMarks or markupLayer are specified but invalid, then
the PCCViewer.Promise object that is returned will be rejected with the reason set to a
`PCCViewer.Error' object.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set
to a PCCViewer.Error object with its code property set to AjaxUnsupported.

Note: Any existing marks in the document are removed before marks are loaded.

PrizmDoc Viewer v13.17 706

©2021 My Company. All Rights Reserved.

See:

Note: This method triggers the following events: PCCViewer.EventType.MarkCreated,
PCCViewer.EventType.MarkChanged and PCCViewer.EventType.MarkChanged.

Parameters:

Name Type Attributes Default Description

recordName string Name of the annotation
record to be loaded.

retainExistingMarks boolean <optional> true If true, retains the existing
marks.

markupLayer PCCViewer.MarkupLayer <optional> If set to a valid markup layer,
the marks are added to the
specified markup layer. If
not set, the marks are added
to the currently active
markup layer. Otherwise,
clears the existing marks
before loading new marks.

PCCViewer.ViewerControl#getSavedMarkupNames

Returns:

a Promise object.

Type
PCCViewer.Promise

Example

viewerControl.loadMarkup("mymarkup").then(
function onResolved() {
 // update the UI, or whatever... because the markup
loaded successfully
},
function onRejected(error) {
 alert("loading failed! " + (error.message ?
error.message : error));
});

loadMarkupLayers(layerRecordIds) → {PCCViewer.Promise}

Load markup layer records from the server. This method loads one or more layers from the server
asynchronously, and returns a Promise to resolve the request.

The onFulfilled callback will receive an object containing PCCViewer.MarkupLayer objects
representing the loaded layers.

PrizmDoc Viewer v13.17 707

©2021 My Company. All Rights Reserved.

The onRejected callback will receive a PCCViewer.Error object defining why the load function failed.

Parameters:

Name Type Description

layerRecordIds string | Array.<string> A string or an array of layer record IDs.

Throws:

For markup that contains marks of type RectangleRedaction and
TextSelectionRedaction if the reasons property defined for them and
ViewerControlOptions.enableMultipleRedactionReasons property was set to false when
initializing ViewerControl.

Type
Error

Returns:

A Promise object.

Type
PCCViewer.Promise

Example

// load a layer

viewerControl.loadMarkupLayers('abc123').then(
 function onSuccess(layers){
 console.log('layer saved successfully',
layers[0].getId());
 },
 function onFailure(reason){
 console.log('layer failed to load:', reason.code,
reason.message);
 }
);

moveMarkBackward(mark) → {PCCViewer.ViewerControl}

Moves the specified mark one slot backward from its position in the internal z-order. When the marks
overlap, marks that are higher in this internal z-order are drawn over the marks that are lower.

Parameters:

PrizmDoc Viewer v13.17 708

©2021 My Company. All Rights Reserved.

Name Type Description

mark PCCViewer.Mark The mark being moved.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the mark is an invalid PCCViewer.Mark object or a template mark.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// move it backward
if (theFirstMark)
viewerControl.moveMarkBackward(theFirstMark);

moveMarkForward(mark) → {PCCViewer.ViewerControl}

Moves the specified mark one slot toward the top of the internal z-order. When the marks overlap,
marks that are higher in this internal z-order are drawn over the marks that are lower.

Parameters:

Name Type Description

mark PCCViewer.Mark The mark being moved.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

PrizmDoc Viewer v13.17 709

©2021 My Company. All Rights Reserved.

Type
Error

If the mark is an invalid PCCViewer.Mark object or a template mark.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// move it forward
if (theFirstMark)
viewerControl.moveMarkForward(theFirstMark);

moveMarkToBack(mark) → {PCCViewer.ViewerControl}

Moves the specified mark to the back. When the marks overlap, the marks that are higher in the internal
z-order on a page are drawn over the ones that are lower.

Parameters:

Name Type Description

mark PCCViewer.Mark The mark being moved.

Throws:

If PCCViewer.EventType.ViewerReady event has not fired prior to calling this method.

Type
Error

If the mark is an invalid PCCViewer.Mark object or a template mark.

Type
Error

PrizmDoc Viewer v13.17 710

©2021 My Company. All Rights Reserved.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// move it forward
if (theFirstMark)
viewerControl.moveMarkForward(theFirstMark);

moveMarkToFront(mark) → {PCCViewer.ViewerControl}

Moves the specified mark to the front or to the top of internal z-order on a page. When the marks
overlap, the marks with higher internal z-order are drawn over the ones that are lower.

Parameters:

Name Type Description

mark PCCViewer.Mark The mark being moved.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the mark is an invalid PCCViewer.Mark object or a template mark.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 711

©2021 My Company. All Rights Reserved.

See:

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// move it forward
if (theFirstMark)
viewerControl.moveMarkForward(theFirstMark);

off(eventType, handler) → {PCCViewer.ViewerControl}

Unsubscribe an event handler from a specified event type.

Typically, an event is unsubscribed when you no longer want further notification of the event.

Parameters:

Name Type Description

eventType string A string specifying the event type. See
PCCViewer.EventType for a list and description of all
supported events.

handler PCCViewer.Event~eventHandler A function that was attached previously to the
ViewerControl.

Note: This must be the same function object previously
passed to PCCViewer.ViewerControl#on. It cannot be
an different object that is functionally equivalent.

PCCViewer.ViewerControl#on

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// Our event handler declaration
function handler(event) {
 alert("An event was fired: " + event.getType());
}

// Subscribe
viewerControl
 .on("PageChanged", handler)
 .on("PageCountReady", handler);

PrizmDoc Viewer v13.17 712

©2021 My Company. All Rights Reserved.

// Un-subscribe
viewerControl
 .off("PageChanged", handler)
// Use string literals or the enum.
 .off(PCCViewer.EventType.PageCountReady, handler);
// Chain unsubscription.

on(eventType, handler) → {PCCViewer.ViewerControl}

Subscribe an event handler to an event of a specified type.

Parameters:

Name Type Description

eventType string A string that specifies the event type. This value is case-
insensitive. See PCCViewer.EventType for a list and
description of all supported events.

handler PCCViewer.Event~eventHandler A function that will be called whenever the event is
triggered.

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// Create the viewer and get the ViewerControl object.
var viewerControl =
$("#viewer").pccViewer(viewerOptions}).viewerControl;

// Our event handler declaration
function handler(event) {
 alert("An event was fired: " + event.getType());
}

viewerControl
 .on(PCCViewer.EventType.PageChanged, handler) //
Use the PCCViewer.EventType enum.
 .on(PCCViewer.EventType.PageDisplayed, handler) //
Chain event subscription.
 .on("PageLoadFailed", handler); //
Use string literals instead of the EventType enum.

PrizmDoc Viewer v13.17 713

©2021 My Company. All Rights Reserved.

openCommentsPanel() → {PCCViewer.ViewerControl}

Opens the comments panel.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the page layout is set to "Horizontal".

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.openCommentsPanel();

print(optionsopt) → {PCCViewer.PrintRequest}

Print the document associated with the PCCViewer.ViewerControl object. Note, the "print" method
will only work if the correct "printTemplate" value is passed to "ViewerControlOptions" while
initializing the "ViewerControl" instance. It is recommended that this value be set to the content of
the "printTemplate.html" file. If this value is set to an empty string (default), then printing will be
unavailable.

Parameters:

PrizmDoc Viewer v13.17 714

©2021 My Company. All Rights Reserved.

Name Type Attributes Description

options Object <optional> Provides instructions for what to print. The object may have the following properties:

Properties

Name Type Attributes Default Description

range string <optional> "all" A string representing the pages to p
are separated by commas, and rang
separated by a hyphen.

Sample value:
20"

Sample value:

orientation string <optional> "portrait" Describes the orientation of the prin

Possible values:
"landscape"

paperSize string <optional> "letter" Describes what size of paper this do
should be printed on.

margins string <optional> "default" Whether to respect the default brow
margins. This affects IE and Safari.

Possible values:
"default"

pages will be smaller,
entire page content c
printed page.
"none"

printed as an 8.5x11 in
The user is expected t
browser print margins

includeMarks boolean <optional> false Whether to print marks. Includes bo
annotations and redactions.

Possible values:
Note: this value will be ignor
PCCViewer.ViewerControl#ca
returns false

includeAnnotations boolean <optional> false Whether to print annotations.

Possible values:
Note: this value will be ignor
PCCViewer.ViewerControl#ca
returns false

PrizmDoc Viewer v13.17 715

©2021 My Company. All Rights Reserved.

3 4

See:

includeRedactions boolean <optional> false Whether to print redactions.

Possible values:
Note: this value will be ignor
PCCViewer.ViewerControl#ca
returns false

includeComments string <optional> "none" Location to print comments.

Possible values:
"followingPage"

"documentEnd"

includeReasons string <optional> "none" Location to print redaction reasons.

Possible values:
"followingPage"

"documentEnd"

redactionViewMode string <optional> "Normal" Whether to print document content
underneath solid rectangle redactio
selection text redactions marks.

Possible values:
"Normal"

text underneath redac
is not printed. The red
marks are opaque.
"Draft"

underneath rectangle
and text selection red
be visible in the printe
document.

Use PCCViewer.ViewerControl#validatePrintRange to validate a user
supplied print range before calling `print`.

Use PCCViewer.ViewerControl#canPrintMarks to determine if the browser
support printing annotations and redactions.

Throws:

If the page(s) are out of range.

Type
Error

Name Type Attributes Description

PrizmDoc Viewer v13.17 716

©2021 My Company. All Rights Reserved.

See:

Returns:

Type
PCCViewer.PrintRequest

Example

// Prints pages 1 and 3 of the document.
// Any annotations on those pages will also be printed if
supported by the browser.
viewerControl.print({
 range : "1, 3",
 includeMarks : true
});

refreshConversations(conversationsopt) → {PCCViewer.ViewerControl}

Forces a DOM refresh of a specified conversation or set of conversations, or all conversations known to
the ViewerControl.

Parameters:

Name Type Attributes Description

conversations PCCViewer.Conversation |
Array.
<PCCViewer.Conversation>

<optional> A single PCCViewer.Conversation
object, or an Array of conversation
objects. If this parameter is left
undefined, all conversations will be
refreshed.

PCCViewer.ViewerControl#setConversationDOMFactory

Throws:

If the conversations parameter is not undefined, a PCCViewer.Conversation
object, or an array of conversation objects.

Type
Error

If any of the PCCViewer.Conversation objects in the parameter are not conversations of
known marks.

Type
Error

PrizmDoc Viewer v13.17 717

©2021 My Company. All Rights Reserved.

See:

If during the refresh, any call to the DOM Factory does not return a valid HTMLElement or a
falsy value.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

requestDocumentConversion(optionsopt) → {PCCViewer.ConversionRequest}

Converts the document and provides an array of URLs to download each converted document. Note
that this method currently only supports converting to a single PDF file, so the output array will only
contain a single URL.

Parameters:

Name Type Attributes Description

options Object <optional> This optional parameter specifies conversion options to be used for
converting the format of the document.

Properties

Name Type Attributes Description

filename string <optional> Sets the value of the Content-
Disposition filename in the header
of the response from the URL to
download the document. If not set,
then the converted document will
be downloaded with a default
filename.

PCCViewer.ConversionRequest for more details on interacting with the
conversion process.

Returns:

A result ConversionRequest for this task.

Type
PCCViewer.ConversionRequest

PrizmDoc Viewer v13.17 718

©2021 My Company. All Rights Reserved.

Example

function onSuccessfulConversion(convertedurl) {
 alert("convertedURL = " + convertedurl);
 console.log(convertedurl);
}
function onFailedConversion(error) {
 alert("conversion process failed, error:" +
(error.message ? error.message : error));
}

// A ConversionRequest object is created by and returned
from the call to the convertDocument method
var conversionRequest = viewerControl.convertDocument();
conversionRequest.then(onSuccessfulConversion,
onFailedConversion);

// Register some events
conversionRequest

.on(PCCViewer.ConversionRequest.EventType.ConversionCompleted,

 function(ev) {
 alert("Document conversion completed.");
 })

.on(PCCViewer.ConversionRequest.EventType.ConversionProgress,

 function(event) {
 alert("Conversion progress: " + event.percent +
"%");
 })

.on(PCCViewer.ConversionRequest.EventType.ConversionFailed,

 function(event) {
 alert("Document conversion failed.");
 });

 // Also, methods on the conversionRequest object can be
used

 // Get the options used to convert the document.
 var optionsUsed = conversionRequest.getOptions();

 // If the process is still incomplete, cancel can be
used to stop queries to the server.
 if(conversionRequest.getProgress() >= 0 &&
conversionRequest.getProgress() < 100) {
 conversionRequest.cancel();
 }

PrizmDoc Viewer v13.17 719

©2021 My Company. All Rights Reserved.

3 4

3 4

requestDocumentHyperlinks(pageNumber)

Requests the DocumentHyperlinks of the specified page.

The DocumentHyperlinks will be made available via the returned PCCViewer.Promise object. The
PCCViewer.Promise~onFulfilled function will be called with an array of DocumentHyperlinks that are
contained on the page. If there are no DocumentHyperlinks on the page, then the returned array will be
empty.

If the pageNumber parameter is invalid at the time the method is called, or the page does not exist in
the document, then the returned PCCViewer.Promise object is rejected with the reason set to a
PCCViewer.Error object with its code property set to Error.

Parameters:

Name Type Description

pageNumber number DocumentHyperlinks are requested for this page number.

Example

// use
PCCViewer.ViewerControl#requestDocumentHyperlinks(pageNumber)

var promise =
viewerControl.requestDocumentHyperlinks(10);

promise.then(
 function (documentHyperlinks) {
 // Do something with the array of
DocumentHyperlink objects.
 // In this example we iterate over.
 documentHyperlinks.forEach(function(dh) {
 // Alert the href of each hyperlink.
 // Note: don't actually do that because it
could be really annoying!
 alert("Found another DocumentHyperlink " +
dh.getHref());
 });
 },
 function (error) {
 alert("Something went wrong " + (error.message ?
error.message : error));
 }
);

requestMarkupLayerNames(metadata) → {PCCViewer.Promise}

PrizmDoc Viewer v13.17 720

©2021 My Company. All Rights Reserved.

3 4

Gets a list of all saved markups layer records from the server for the current document. This method
utilizes an asynchronous server request to fetch the data, and returns a Promise to resolve the request.

The onFulfilled callback will receive an object representing the annotationLayerRecords
persisted on the server.

The onRejected callback will receive a PCCViewer.Error object defining why the save function failed.

The PCCViewer.Promise~onFulfilled function gets passed an Array of Objects. Each object will have
1) a name property, which is a string representation of the name used to save the markup layer record
and 2) a layerRecordId property which is the string representation the uniquely identifies the record
on the server.

Parameters:

Name Type Description

metadata Object An optional JSON object that will be passed to the web tier where it can be used
for tasks like user identification. The JSON object will be transformed and then
passed as GET parameter(s). The metadata JSON object must be flat and only
contain values that are strings, numbers, or booleans.

Returns:

A PCCViewer.Promise object.

Type
PCCViewer.Promise

Example

viewerControl.requestMarkupLayerNames().then(
 function onSuccess(annotationLayerRecords) {
 var annotationLayerRecordsArray = [];
 for (var i = 0; i <
annotationLayerRecords.length; i++) {

annotationLayerRecordsArray.push(annotationLayerRecords[i].name);

 }
 alert(annotationLayerRecordsArray.join(', '));
 },
 function onFailure(error) {
 alert(error.message ? error.message : error);
 }
);

requestPageAttributes() → {PCCViewer.Promise}

Requests attributes for the specified page.

PrizmDoc Viewer v13.17 721

©2021 My Company. All Rights Reserved.

If the pageNumber parameter is invalid at the time the method is called, or the page does not exist in
the document, then the returned PCCViewer.Promise object is rejected with the reason set to a
PCCViewer.Error object with its code property set to RequestPageAttributesFailed.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

The PCCViewer.Promise~onFulfilled function will receive and Object with properties width and
height, representing the reported width and height of each page.

Returns:

a Promise object.

Type
PCCViewer.Promise

Example

var promise =
viewerControl.requestPageAttributes(10).then(
 function(pageAttributes) {
 alert('Page 10 attributes: width: ' +
pageAttributes.width + ', height: ' +
pageAttributes.height);
 },
 function(error) {
 alert('Page attributes retrieval for page 10
failed: ' + (error.message ? error.message : error));
 }
);

requestPageText(pageNumber) → {PCCViewer.Promise}

Requests the specified text page.

If the pageNumber parameter is invalid at the time the method is called, or the page does not exist in
the document, then the returned PCCViewer.Promise object is rejected with the reason set to a
PCCViewer.Error object with its code property set to TextExtractionFailed.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

The PCCViewer.Promise~onFulfilled function will receive and string value, representing the text found
on that page. If the page has no text, this will be an empty string.

Parameters:

Name Type Description

pageNumber number Page text is requested for this page number.

PrizmDoc Viewer v13.17 722

©2021 My Company. All Rights Reserved.

See:

Returns:

a Promise object.

Type
PCCViewer.Promise

Example

var promise = viewerControl.requestPageText(10).then(
 function(pageText) {
 alert('Text from page 10: ' + pageText);
 },
 function(error) {
 alert('Text retrieval for page 10 failed: ' +
(error.message ? error.message : error));
 }
);

requestRevisions() → {PCCViewer.RevisionsRequest}

Requests the revisions for a given document comparison.

Revisions request completes asynchronously. The returned PCCViewer.RevisionsRequest object provides
events for revisions retrieval progress and members to access retrieved revisions.

PCCViewer.RevisionsRequest

PCCViewer.Revision

Returns:

An object that represents the revisions request. This object allows the calling code to subscribe to
revisions retrieval progress events and access retrieved revisions.

Type
PCCViewer.RevisionsRequest

Example

// Request revisions with default options:
var revisionsRequest = viewerControl.requestRevisions();

// Subscribe to the PartialRevisionsAvailable event to
get revisions as they become available.
revisionsRequest.on('PartialRevisionsAvailable',
function(_event) {
 // Get the newly available revisions:
 var newRevisions = _event.partialRevisions;

PrizmDoc Viewer v13.17 723

©2021 My Company. All Rights Reserved.

});

rotateDocument(degreesClockwise) → {PCCViewer.ViewerControl}

Rotates all pages in the document by the specified degrees clockwise, relative to each page's current
orientation.

Parameters:

Name Type Description

degreesClockwise number Degrees clockwise to rotate each page.

Valid values are multiples of 90: ..., -270, -180, -90, 0, 90, 180, 270,
...

Throws:

If value of degreesClockwise is not valid. The Error object will contain property
message with details of the error.

Type
Error

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.rotateDocument(90); // Rotates 90
degrees clockwise
viewerControl.rotateDocument(-90); // Rotates 90
degrees counter-clockwise
viewerControl.rotateDocument(180); // Rotates 180
degrees
viewerControl.rotateDocument(540); // Also, rotates 180
degrees
viewerControl.rotateDocument(100); // Throws!

PrizmDoc Viewer v13.17 724

©2021 My Company. All Rights Reserved.

rotatePage(degreesClockwise) → {PCCViewer.ViewerControl}

Rotates the current page by the specified degrees clockwise, relative to the page's current orientation.

Parameters:

Name Type Description

degreesClockwise number Degrees clockwise to rotate the page.

Valid values are multiples of 90: ..., -270, -180, -90, 0, 90, 180, 270,
...

Throws:

If value of degreesClockwise is not valid. The Error object will contain property
message with details of the error.

Type
Error

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.rotatePage(90); // Rotates 90 degrees
clockwise
viewerControl.rotatePage(-90); // Rotates 90 degrees
counter-clockwise
viewerControl.rotatePage(180); // Rotates 180 degrees
viewerControl.rotatePage(540); // Also, rotates 180
degrees
viewerControl.rotatePage(100); // Throws!

saveMarkup(recordName, optionsopt) → {PCCViewer.Promise}

Saves all markups in the document to the server as a record with a specified name.

PrizmDoc Viewer v13.17 725

©2021 My Company. All Rights Reserved.

3 4

If the parameter recordName is not a string, then the PCCViewer.Promise object that is returned
will be rejected with the reason set to a PCCViewer.Error object with its code property set to
InvalidArgument.

If the parameter recordName contains invalid characters in the name, then the PCCViewer.Promise
object that is returned will be rejected with the reason set to a PCCViewer.Error object with its code
property set to InvalidCharactersFilename.

If a server error is encountered, then the returned PCCViewer.Promise object is rejected with the
reason set to a PCCViewer.Error object with its code property set to Error.

If AJAX is not supported, then the returned PCCViewer.Promise object is rejected with the reason set
to a PCCViewer.Error object with its code property set to AjaxUnsupported.

The PCCViewer.Promise~onFulfilled function will receive the recordName string as its only argument.

Note: This method will overwrite any previous markup stored with the same name. To prevent
duplicates, check to see if the name already exists by using
PCCViewer.ViewerControl#getSavedMarkupNames.

Parameters:

Name Type Attributes Description

recordName string Name of the annotation record. The markup is
saved to an XML file using a filename that
includes a unique ID for the document being
viewed and the provided annotation record
name, so valid filename characters are
required. When later viewing the document,
the saved markup can be loaded by passing
the record name to the
PCCViewer.ViewerControl#loadMarkup
method.

options PCCViewer.ViewerControl~SaveMarkupOptions <optional> This optional parameter specifies options for
the markup types to be saved. The
PCCViewer.ViewerControl~SaveMarkupOptions
details the options object.

Throws:

If ViewerControlOptions.enableMultipleRedactionReasons property was set to true when
initializing ViewerControl.

Type
Error

Returns:

a Promise object, on success returns the given record name after the record is saved.

Type

PrizmDoc Viewer v13.17 726

©2021 My Company. All Rights Reserved.

PCCViewer.Promise

Example

// The following example will save all annotations and
redaction mark types. It will not save signature mark
types.
viewerControl.saveMarkup('cool name').then(
 function success(name) {
 alert('Markup was saved as "' + name + '"');
 },
 function fail(error) {
 alert('Markup was not saved. ' + (error.message ?
error.message : error));
 }
);

// The following will save signature mark types only.
viewerControl.saveMarkup('cool name', {
 includeAnnotations: false,
 includeRedactions: false,
 includeSignatures: true
}).then(
 function success(name) {
 alert('Markup was saved as "' + name + '"');
 },
 function fail(error) {
 alert('Markup was not saved. ' + (error.message ?
error.message : error));
 }
);

saveMarkupLayer(id) → {PCCViewer.Promise}

Save a markup layer record to the server. This method saves a single layer to the server asynchronously,
and returns a Promise to resolve the request.

The onFulfilled callback will receive an object containing the layerRecordId of the saved layer.

The onRejected callback will receive a PCCViewer.Error object defining why the save function failed.

Parameters:

Name Type Description

id String The ID of the layer, as returned by layer.getId().

Returns:

A Promise object.

PrizmDoc Viewer v13.17 727

©2021 My Company. All Rights Reserved.

Type
PCCViewer.Promise

Example

// save the current active layer
var layer = viewerControl.getActiveMarkupLayer();

viewerControl.saveMarkupLayer(layer.getId()).then(
 function onSuccess(layerInfo){
 console.log('layer saved successfully',
layerInfo.layerRecordId);
 },
 function onFailure(reason){
 console.log('layer failed to save:', reason.code,
reason.message);
 }
);

scrollBy(offsetX, offsetY) → {PCCViewer.ViewerControl}

Scrolls by specified offset.

Parameters:

Name Type Description

offsetX number integer that contains value to scroll horizontally. Negative value will scroll to the
left.

offsetY number integer that contains value to scroll vertically. Negative value will scroll to the top.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If target is not an Object with valid offsetX and offsetY values.

Type
Error

Returns:

The ViewerControl object on which this method was called.

PrizmDoc Viewer v13.17 728

©2021 My Company. All Rights Reserved.

Type
PCCViewer.ViewerControl

Example

// scroll by specified offset
viewerControl.scrollBy(100, 100);

scrollTo(target) → {PCCViewer.ViewerControl}

Scrolls to the specified object.

Parameters:

Name Type Description

target PCCViewer.Mark |
PCCViewer.Conversation |
PCCViewer.SearchResult | Object

The mark, conversation, search result, or an object
(that contains pageNumber, x, and y values) to scroll
to.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If target is not a valid PCCViewer.Mark, PCCViewer.Conversation, or PCCViewer.SearchResult,
or if it is not an Object with valid pageNumber, x, and y values.

Type
Error

If target is a PCCViewer.Mark, PCCViewer.Conversation, or PCCViewer.SearchResult unknown
to the viewer control. When specifying a pageNumber greater than 1, this method requires
that the PageCountReady event has been triggered, otherwise an error is thrown.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 729

©2021 My Company. All Rights Reserved.

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// scroll to the mark
viewerControl.scrollTo(theFirstMark);

scrollToAsync(target) → {PCCViewer.Promise}

Scrolls to the specified object.

The returned PCCViewer.Promise object will resolve if the page list has completed all scrolling and
the page containing the target is displayed.

The returned PCCViewer.Promise object is rejected with the reason set to a PCCViewer.Error
object if:

The specified target is not a valid PCCViewer.Mark, PCCViewer.Conversation, or
PCCViewer.SearchResult, or if it is not an Object with valid pageNumber, x, and y values. When
specifying a pageNumber greater than 1, this method requires that the PageCountReady event
has been triggered, otherwise the promise is rejected.
The specified target is a PCCViewer.Mark, PCCViewer.Conversation, or PCCViewer.SearchResult
unknown to the viewer control.
The PCCViewer.ViewerControl#scrollTo or PCCViewer.ViewerControl#scrollToAsync method is
called before the promise is resolved.

Parameters:

Name Type Description

target PCCViewer.Mark |
PCCViewer.Conversation |
PCCViewer.SearchResult | Object

The mark, conversation, search result, or an object
(that contains pageNumber, x, and y values) to scroll
to.

Returns:

A Promise object.

Type
PCCViewer.Promise

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// scroll to the mark
var promise =
viewerControl.scrollToAsync(theFirstMark).then(

PrizmDoc Viewer v13.17 730

©2021 My Company. All Rights Reserved.

See:

 function() {
 // after the mark has been scrolled to, select
the mark
 viewerControl.selectMarks([theFirstMark]);
 },
 function(error) {
 alert('Scrolling failed: ' + (error.message ?
error.message : error));
 }
);

search(searchQuery) → {PCCViewer.SearchRequest}

Searches the text of the document for the given searchQuery.

This query can be a single search term or a hash specifying one or more terms and options. If only a
single search term (string) is supplied, then default options are used.

Search completes asynchronously. The returned PCCViewer.SearchRequest object, provides events for
search progress and members to access search results.

Parameters:

Name Type Description

searchQuery string |
PCCViewer.ViewerControl~SearchQuery

A value specifying the search query. The
value specifies a single search term (string)
or an object specifying multiple search terms
and options.

PCCViewer.SearchRequest

PCCViewer.SearchResult

Returns:

An object that represents the search request. This object allows the calling code to subscribe to search
progress events and access search results.

Type
PCCViewer.SearchRequest

Examples

// Search on a single term with default options
var searchRequest = viewerControl.search("Hello");

// Subscribe to the PartialSearchResultsAvailable event
to get search results as they become available.
searchRequest.on('PartialSearchResultsAvailable',
function(_event) {

PrizmDoc Viewer v13.17 731

©2021 My Company. All Rights Reserved.

 // Get the newly available search results.
 var newResults = _event.partialSearchResults;
});

// Search on multiple terms and specify options
var searchQuery = {
 searchTerms: [{
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
 },
 {
 searchTerm: "Accusoft"
 }]
};

var requestObject = viewerControl.search(searchQuery);

//subscribe to the search request
requestObject.on('PartialSearchResultsAvailable',
function(_event) {
 var newResults = [];
 //Retrieve results
 newResults = _event.partialSearchResults;
});

selectEditorText() → {PCCViewer.ViewerControl}

Selects the editable text in a mark's text editor

Throws:

If there is no active text mark editor.

Type
Error

If the active mark is not a TextInputSignature Mark.

Type
Error

If the PCCViewer.EventType.ViewerReady event has not fired prior to calling this method.

Type

PrizmDoc Viewer v13.17 732

©2021 My Company. All Rights Reserved.

3 4

Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

var viewerControl =
viewerControl.enterTextMarkEditingMode(textAnnotation).selectEditorText();

selectMarks(marks) → {PCCViewer.ViewerControl}

Selects the marks provided in the Array parameter.

Note: This method ignores any Mark objects with the interaction mode set to
PCCViewer.Mark.InteractionMode.SelectionDisabled.

Parameters:

Name Type Description

marks Array.
<PCCViewer.Mark>

An array of PCCViewer.Mark objects that exist in the document and
need to be selected.

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

If any of the mark objects are not valid objects, the id of the mark provided does not match
the id of mark loaded in the viewer, or the mark provided was not previously added to the
document pages.

Type
Error

Returns:

The ViewerControl object on which this method was called.

PrizmDoc Viewer v13.17 733

©2021 My Company. All Rights Reserved.

See:

Type
PCCViewer.ViewerControl

Example

// get all of the marks
var allMarks = viewerControl.getAllMarks();

// select all of them
viewerControl.selectMarks(allMarks);

serializeMarks(marks) → {PCCViewer.Promise}

Serializes any amount of Marks passed into the method.

This serialization needs to happen asynchronously, so the method will return a Promise, which wil
resolve once all marks have been serialized, or get rejected if any error occurs in the process.

A successfully resolved Promise will receive an Array as its only argument, which will contain a plain
Object representation of each mark that was passed into the method. These objects can be used with
PCCViewer.ViewerControl#deserializeMarks in order to recreate the same marks at a later time.

Parameters:

Name Type Description

marks PCCViewer.Mark | Array.<PCCViewer.Mark> A single mark or array of marks to be serialized.

PCCViewer.ViewerControl#deserializeMarks

Returns:

A promise object.

Type
PCCViewer.Promise

Example

// get all selected marks, so we can serialize then
var marksToUse = viewerControl.getSelectedMarks();

viewerControl.serializeMarks(marksToUse).then(
 function success(markObjects) {
 // markObjects is an array of plain objects
 // they can be converted to a JSON string
 var markStr = JSON.stringify(markObjects);
 },
 function fail(reason) {

PrizmDoc Viewer v13.17 734

©2021 My Company. All Rights Reserved.

See:

 alert('could not serialize marks: ' + reason);
 }
);

serverSearch(searchQuery) → {PCCViewer.SearchRequest}

Searches the text of the document for the given searchQuery. The search is performed server-side.
This is efficient for larger documents, but for smaller documents it is more efficient to use the
PCCViewer.ViewerControl#clientSearch method instead.

This query can be a single search term or a hash specifying one or more terms and options. If only a
single search term (string) is supplied, then default options are used.

Search completes asynchronously. The returned PCCViewer.SearchRequest object, provides events for
search progress and members to access search results.

Parameters:

Name Type Description

searchQuery string |
PCCViewer.ViewerControl~SearchQuery

A value specifying the search query. The
value specifies a single search term (string)
or an object specifying multiple search terms
and options.

PCCViewer.SearchRequest

PCCViewer.SearchResult

Returns:

An object that represents the search request. This object allows the calling code to subscribe to search
progress events and access search results.

Type
PCCViewer.SearchRequest

Examples

// Search on a single term with default options
var searchRequest = viewerControl.serverSearch("Hello");

// Subscribe to the PartialSearchResultsAvailable event
to get search results as they become available.
searchRequest.on('PartialSearchResultsAvailable',
function(_event) {
 // Get the newly available search results.
 var newResults = _event.partialSearchResults;
});

// Search on multiple terms and specify options

PrizmDoc Viewer v13.17 735

©2021 My Company. All Rights Reserved.

var searchQuery = {
 searchTerms: [{
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
 },
 {
 searchTerm: "Accusoft"
 }]
};

var requestObject =
viewerControl.serverSearch(searchQuery);

//subscribe to the search request
requestObject.on('PartialSearchResultsAvailable',
function(_event) {
 var newResults = [];
 //Retrieve results
 newResults = _event.partialSearchResults;
});

setActiveMarkupLayer(A)

Sets the viewer control's active markup layer.

Parameters:

Name Type Description

A PCCViewer.MarkupLayer markup layer.

Throws:

If markupLayer is not a valid PCCViewer.MarkupLayer.

Type
Error

If markupLayer is a PCCViewer.MarkupLayer unknown to the viewer control.

Type
Error

Example

PrizmDoc Viewer v13.17 736

©2021 My Company. All Rights Reserved.

viewerControl.loadMarkupLayers('abc123').then(
 function onSuccess(layers){
 var activeMarkupLayer =
viewerControl.setActiveMarkupLayer(layers[0]);
 },
 function onFailure(reason){
 console.log('layer failed to load:', reason.code,
reason.message);
 }
);

setConversationDOMFactory(factoryFunction) → {PCCViewer.ViewerControl}

Sets the conversation DOM factory function.

Parameters:

Name Type Description

factoryFunction function This function returns a DOM element that is injected in the viewer
control UI, which should show information about the conversation. The
viewer control will use this function to obtain a new conversation DOM
element whenever:

a comment is added
a comment is removed
a comment is modified
a conversation is selected
a conversation is deselected
the PCCViewer.ViewerControl#refreshConversations method is
called

If this function returns a falsy value, then the conversation will not be
shown in the viewer control UI. If this function returns a value that is
not a DOM element and not falsy, then the viewer control will throw an
exception when attempting to create a conversation DOM element.

This function has three parameters, in this order:

conversation {PCCViewer.Conversation} - The
Conversation in which to generate a DOM element.
state {Object} - An object that indicates the state of the
conversation. This object has an isSelected boolean property.
existingDOM {HTMLElement | undefined} - The DOM Element
returned from the last call to this factory for the given
conversation. It is acceptable to return this same element from
the factory function if the DOM does not need to be replaced
(for example, if it only needs modification or does not require
any modification). This parameter may have a value of
undefined if the factory function has never been called for this
conversation or the previous call did not return a DOM element.

PrizmDoc Viewer v13.17 737

©2021 My Company. All Rights Reserved.

See: PCCViewer.ViewerControl#setSelectedConversation

Throws:

If the factoryFunction parameter is not a Function.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

var conversationFactoryFunction = function(conversation,
state, existingDOM) {
 var conversationDiv = document.createElement('div');
// Create a conversation DOM element.

 // Set the style of the conversation DOM element.
 conversationDiv.style.position = 'absolute';
 if (state.isSelected) { // Set a different background
if the conversation is selected.
 conversationDiv.style.backgroundColor = 'white';
 } else {
 conversationDiv.style.backgroundColor =
'lightgray';
 }
 conversationDiv.style.left = '10px';
 conversationDiv.style.right = '0';
 conversationDiv.style.textAlign = 'left';

 // For each comment in the conversation, create a
comment DOM element.
 var comments = conversation.getComments();
 for (var i = 0; i < comments.length; i++) {
 var commentDiv = document.createElement('div');

 // Set the style of the comment DOM element.
 commentDiv.style.position = 'relative';
 commentDiv.style.padding = '5px';
 commentDiv.style.border = '1px solid gray';
 if (i > 0) {
 commentDiv.style.borderTop = 'none';

PrizmDoc Viewer v13.17 738

©2021 My Company. All Rights Reserved.

3 4

See:

 }

commentDiv.appendChild(document.createTextNode(comments[i].getText()));
// Add the comment text to the comment DOM element.
 conversationDiv.appendChild(commentDiv); // Add
the comment DOM element to the conversation DOM element.
 }

 return conversationDiv; // Return the conversation
DOM element.
 };

viewerControl.setConversationDOMFactory(conversationFactoryFunction);

setCurrentMouseTool(name) → {PCCViewer.ViewerControl}

Sets the current mouse tool of the viewer by name.

See the help section titled "Custom Mouse Tools" for a list of the existing default mouse tools in the
viewer.

Parameters:

Name Type Description

name string The name used when creating the mouse tool. This value is case-insensitive.

PCCViewer.MouseTools.createMouseTool

Throws:

If PCCViewer.EventType.ViewerReady event has not fired prior to calling this method.

Type
Error

If the parameter name is invalid or is an unknown mouseTool type, see,
PCCViewer.MouseTool.Type.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type

PrizmDoc Viewer v13.17 739

©2021 My Company. All Rights Reserved.

See:

PCCViewer.ViewerControl

setGamma(gammaFactor) → {PCCViewer.ViewerControl}

Sets the gamma factor for the document. Values from 1 to 10 will darken the document. Values from 0
to 1 will effectively lighten it. Note: This setting only affects viewing and is not persisted when printing
or burning.

Parameters:

Name Type Description

gammaFactor number The gamma factor to set the Gamma for the document to.

Throws:

If the gamma factor is not a valid number between 0 and 10 inclusive.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setGamma(5); // Darkens content by a factor
of 5
viewerControl.setGamma(0.5) // Lightens content by a
factor of 0.5

setMarkHandleMode(markHandleMode) → {PCCViewer.ViewerControl}

Sets the mark handle mode.

Parameters:

Name Type Description

markHandleMode PCCViewer.MarkHandleMode Display mark handles using this mode.

PCCViewer.ViewerControl#setMarkHandleMode

PrizmDoc Viewer v13.17 740

©2021 My Company. All Rights Reserved.

3 4

See:

Throws:

If the value of markHandleMode is unknown.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setMarkHandleMode(PCCViewer.MarkHandleMode.HideCornerHandlesWhe

setPageLayout(pageLayout) → {PCCViewer.ViewerControl}

Sets the layout of the pages.

This property defines the placement or arrangement of the pages in the viewer. The default page layout
is "Vertical", in which the pages are displayed as a single vertical column and a vertical scroll bar is
displayed to bring into view the pages that are not in view. The "Horizontal" option displays the
pages as a single horizontal row and has a horizontal scroll bar to bring into view the pages that are not
in the view.

Comments are only supported when using vertical page layout. If the comments panel is open, setting
the page layout to horizontal will close the comments panel.

Parameters:

Name Type Description

pageLayout PCCViewer.PageLayout Display pages using this layout.

PCCViewer.PageLayout

Throws:

If the pageLayout value is unknown.

Type
Error

Returns:

PrizmDoc Viewer v13.17 741

©2021 My Company. All Rights Reserved.

3 4

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setPageLayout(PCCViewer.PageLayout.Horizontal);

setPageNumber(pageNumber) → {PCCViewer.ViewerControl}

Sets the current page of the viewer to the specified page number.

Parameters:

Name Type Description

pageNumber number |
string

The 1-based page number of the page. A string representation of a valid
number is also accepted as a parameter.

Throws:

If the parameter pageNumber is less than 1 or greater than the value returned by
PCCViewer.ViewerControl#getPageCount.

Type
Error

If the parameter pageNumber is not a number or a string representation of a number.

Type
Error

If the parameter pageNumber is not an integer page number.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 742

©2021 My Company. All Rights Reserved.

See:

Example

// first create the pccViewer : Note: if the viewer
object has already been created, do not re-create it.
var viewerControl =
$("#viewer").pccViewer(viewerOptions).viewerControl;

var pageNumberSet = 2;
function pageChangedHandler(event) {
 var pageNumber = viewer.getPageNumber();
 if(pageNumber === pageNumberSet) {
 //now unsubscribe the event Note: do not
unsubscribe if future notifications are required.
 viewerControl.off("PageChanged",
pageChangedHandler);
 alert("Viewer was navigated to the desired page
successfully");
 }
}
// Subscribe to PageChanged event exposed by the API
viewerControl.on("PageChanged", pageChangedHandler);
viewerControl.setPageNumber(pageNumberSet);

setRedactionViewMode(redactionViewMode) → {PCCViewer.ViewerControl}

Sets the redaction view mode.

When set to "Draft" mode, this property will make visible the document content text underneath for
the rectangle redaction and the text selection marks. In this mode, the redaction reasons will not be
visible.

Setting the view mode to "Normal" will make the redaction rectangle marks and the text selection
redactions opaque. In this mode, if the marks contain the redaction reasons then they will be visible.

Parameters:

Name Type Description

redactionViewMode PCCViewer.RedactionViewMode Displays redaction marks showing/hiding
underneath document content text.

PCCViewer.RedactionViewMode

Throws:

If the redactionViewMode value is not one of the supported values. See
PCCViewer.ViewerControl~ViewerControlOptions for mode details on the redactionViewMode
initialization parameter.

Type
Error

PrizmDoc Viewer v13.17 743

©2021 My Company. All Rights Reserved.

3 4

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// show all the redaction rectangles and redaction text
selection marks showing underlying document text content.
viewerControl.setRedactionViewMode(PCCViewer.RedactionViewMode.Draft);

setScaleFactor(scaleFactor) → {PCCViewer.ViewerControl}

Sets the scale factor of the viewer.

Note: The viewer has minimum and maximum scale limits. The limits depend on the size of the pages.
check PCCViewer.ViewerControl#getMinScaleFactor and PCCViewer.ViewerControl#getMaxScaleFactor
to determine the minimum and maximum scale.

Parameters:

Name Type Description

scaleFactor number A value indicating the scale factor to use in the viewer, with 1 being 100%
zoom.

Throws:

If the scaleFactor value is out of range.

Type
Error

If the PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 744

©2021 My Company. All Rights Reserved.

3 4

See:

Example

viewerControl.setScaleFactor(.5); // Zoom the document to
50% of its actual size.

setSelectedConversation(conversation) → {PCCViewer.ViewerControl}

Sets the selected conversation.

Parameters:

Name Type Description

conversation PCCViewer.Conversation The conversation to select.

PCCViewer.ViewerControl#getSelectedConversation

Throws:

If PCCViewer.EventType.ViewerReady event was not fired prior to using this property.

Type
Error

If the conversation parameter is not an instance of PCCViewer.Conversation.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// get the first selected Mark object
var theFirstMark = viewerControl.getSelectedMarks()[0];

// select the conversation of the Mark
viewerControl.setSelectedConversation(theFirstMark.getConversation());

PrizmDoc Viewer v13.17 745

©2021 My Company. All Rights Reserved.

See:

setSelectedSearchResult(searchResult, scrollToopt) → {PCCViewer.ViewerControl}

Selects the specified search result and optionally navigates to the page of the search result.

If a value of null is passed in for the searchResult parameter, then any currently selected result will
be cleared/deselected.

Parameters:

Name Type Attributes Default Description

searchResult PCCViewer.SearchResult
| null

The search result object from the
results object. If a value of null is
passed, then no search results will be
selected.

scrollTo boolean <optional> false If true, the viewer will navigate to the
page with the search result. If the
value of searchResult is null,
then this argument is ignored.

PCCViewer.ViewerControl#clearSearch

PCCViewer.ViewerControl#clearSelectedSearchResult

PCCViewer.ViewerControl#getSearchRequest

Throws:

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If the searchResult parameter is not an instance of PCCViewer.SearchResult or null.

Type
Error

If the searchResult is not part of the currently known PCCViewer.SearchRequest, which is
always the case if there is no current PCCViewer.SearchRequest object known to the viewer.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

PrizmDoc Viewer v13.17 746

©2021 My Company. All Rights Reserved.

Example

var searchRequest = viewerControl.search('Accusoft');

// add events to the search request
searchRequest.on("SearchCompleted", function(){
 // get the search results
 results = searchRequest.getResults();

 // set the result to the first
 viewerControl.setSelectedSearchResult(results[0],
true);
});

setSharpening(sharpeningFactor) → {PCCViewer.ViewerControl}

Sets the sharpening factor for the document. Note: This setting only affects viewing and is not persisted
when printing or burning.

Parameters:

Name Type Description

sharpeningFactor number The sharpening factor to set the Sharpening for the document to.

Throws:

If the sharpening factor is not a valid integer between 0 and 100 inclusive.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setSharpening(60);

setSvgLineWidthMultiplier(lineWidthMultiplier) → {PCCViewer.ViewerControl}

Numeric value which all SVG line width values should be multipled by. Must be greater than 0 and must

PrizmDoc Viewer v13.17 747

©2021 My Company. All Rights Reserved.

not be greater than 100. To make lines twice as thick as they originally were, use a value of 2. To make
lines half as thick as they originally were, use a value of 0.5, etc. To reset lines to their original thickness,
use a value of 1. Note: This setting only affects viewing and is not persisted when printing or burning.

Parameters:

Name Type Description

lineWidthMultiplier number The line width multiplier for svg lines to set for the document.

Throws:

If amount is not greater than zero or is greater than 100

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setSvgLineWidthMultiplier(50);

setViewMode(viewMode) → {PCCViewer.ViewerControl}

Sets the view mode.

When set to "Document" or "EqualFitPages", this property only has an effect on documents with
different sized pages. Setting the view mode to "Document" maintains the relative size of each page
when displaying a document. For example, if page 2 is smaller than page 1, it will appear smaller.
Setting the view mode to "EqualFitPages" scales each page so that their width is the same. For
example, if page 2 is smaller than page 1, it will be scaled larger so that its width is equal to the width of
page 1.

Setting the view mode to "SinglePage" structures the viewer so that only a single page is shown at a
time. Each page is scaled to fit within a view box, which is the initial size of the viewer and increases in
size when zooming in (and decreases in size when zooming out). After the viewer initializes, the view
mode may not be changed to or from SinglePage view mode (or an exception will occur).

Parameters:

Name Type Description

viewMode PCCViewer.ViewMode Display pages using this mode.

PrizmDoc Viewer v13.17 748

©2021 My Company. All Rights Reserved.

3 4

See: PCCViewer.ViewMode

Throws:

If the viewMode value is unknown.

Type
Error

If the PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If setting the value to "SinglePage". This value must be set during initialization time. See
PCCViewer.ViewerControl~ViewerControlOptions for mode details on the viewMode
initialization parameter.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.setViewMode(PCCViewer.ViewMode.EqualFitPages);
// Scale each page so that their width is the same.

showMarks(marks) → {PCCViewer.ViewerControl}

Shows the specified marks.

Parameters:

Name Type Description

marks Array.<PCCViewer.Mark> An Array of objects of type PCCViewer.Mark.

Throws:

PrizmDoc Viewer v13.17 749

©2021 My Company. All Rights Reserved.

If PCCViewer.EventType.ViewerReady event was not fired prior to using this method.

Type
Error

If any of the marks passed in are not valid objects of the type PCCViewer.Mark.

Type
Error

Returns:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

// shows all selected marks
viewerControl.showMarks(viewer.getSelectedMarks());

validatePrintRange(range) → {boolean}

Determines whether the range string is a valid page range to be used in
PCCViewer.ViewerControl#print.

Parameters:

Name Type Description

range string A string containing page numbers or ranges. See PCCViewer.ViewerControl#print.

Returns:

A value indicating whether the specified print range is valid.

Type
boolean

Example

viewerControl.validatePrintRange("1, 3-5"); // Returns
true if there are at least 5 pages in the document.

validateSearch(searchQuery) → {Object}

PrizmDoc Viewer v13.17 750

©2021 My Company. All Rights Reserved.

Validates each of the search terms in the searchQuery object. The validation process checks for valid
custom regular expressions. This method is used by the default UI to filter out 'bad' pre-defined search
terms.

Parameters:

Name Type Description

searchQuery string |
PCCViewer.ViewerControl~SearchQuery

A string or a SearchQuery object that
requires validation. See
PCCViewer.ViewerControl#search.

Returns:

Returns an object with two summary properties and an array of objects that indicate whether each
search term is valid. The array will be the same length as the array searchQuery.searchTerms. Objects
contain the following properties:

errorsExist {boolean} True if any validation errors exist. False if not.
summaryMsg {string} (optional) A catch all message for cases where the search terms could not
be reached for validation. This might occur if the searchQuery object is badly formed with
improper key names or the viewer sends in an invalid object type (say boolean)
array of objects:

isValid {boolean} Indicates if the search term of the matching index was valid.
message {string} Provides a human readable message indicating the reason the search
term was invalid.

Type
Object

Example

var searchQuery = {
 searchTerms: [
 {
 searchTerm: '(?<=(category=))[a-z-]+', //
invalid regex
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: false,
 endsWith: false,
 exactPhrase: false,
 matchCase: true,
 matchWholeWord: false,
 wildcard: false
 }
 }
]

PrizmDoc Viewer v13.17 751

©2021 My Company. All Rights Reserved.

See:

}

viewerControl.validateSearch(searchQuery)

// returns
{
 errorsExist: true,
 searchTerms: [
 {
 isValid: false,
 message: "Search term must be a string
containing either plain text or a valid regular
expression."
 }
]
}

zoomIn(zoomFactor) → {PCCViewer.ViewerControl}

Zoom in on the document by the specified zoomFactor.

Note: The viewer has minimum and maximum scale limits. zoomIn will only change the viewer's scale
up to, but not past, the maximum scale limit. zoomIn does not give an indication if the actual scale
change was less than the requested zoom factor because the limit was reached. Instead, check
PCCViewer.ViewerControl#atMaxScale to determine if the viewer is at max scale.

Parameters:

Name Type Description

zoomFactor number Zoom in by this factor. Valid values are between 1.01 and 20

PCCViewer.ViewerControl#getAtMaxScale

PCCViewer.EventType.ScaleChanged

Throws:

If the zoomFactor value is invalid.

Type
Error

If the PCCViewer.EventType.ViewerReady event was not fired prior to calling this method.

Type
Error

Returns:

PrizmDoc Viewer v13.17 752

©2021 My Company. All Rights Reserved.

See:

The ViewerControl object on which this method was called.

Type
PCCViewer.ViewerControl

Example

viewerControl.zoomIn(1.5); // Zoom in by 1.5x, or to
the maximum scale.
viewerControl.zoomIn(5); // Zoom in by 5x, or to the
maximum scale.

viewerControl.zoomIn(100); // Throws!
viewerControl.zoomIn(1); // Throws!

zoomOut(zoomFactor) → {PCCViewer.ViewerControl}

Zoom out on the document by the specified zoomFactor.

Note: The viewer has minimum and maximum scale limits. zoomOut will only change the viewer's scale
down to, but not past, the minimum scale limit. zoomOut does not give an indication if the actual scale
change was less than the requested zoom factor because the limit was reached. Instead, check
PCCViewer.ViewerControl#atMinScale to determine if the viewer is at minimum scale.

Parameters:

Name Type Description

zoomFactor number Zoom out by this factor. Valid values are between 1.01 and 20.

PCCViewer.ViewerControl#getAtMinScale

PCCViewer.EventType.ScaleChanged

Throws:

If the zoomFactor value is invalid.

Type
Error

If the PCCViewer.EventType.ViewerReady event has not fired prior to calling this method.

Type
Error

Returns:

The ViewerControl object on which this method was called.

PrizmDoc Viewer v13.17 753

©2021 My Company. All Rights Reserved.

Type
PCCViewer.ViewerControl

Example

viewerControl.zoomOut(1.5); // Zoom out by 1.5x, or to
the minimum scale.
viewerControl.zoomOut(5); // Zoom out by 5x, or to
the minimum scale.

viewerControl.zoomOut(100); // Throws!
viewerControl.zoomOut(1); // Throws!

Type Definitions
ProximitySearchTerm

This class will hold all the necessary details to perform a proximity search. It will be used in the
PCCViewer.ViewerControl~SearchQuery object that is passed to the PCCViewer.ViewerControl#search
method.

Type:

Object

Properties:

Name Attributes Description

type : string This property is used by the API in order to
determine that this search term is a proximity
search term. The user will have to set the
value to proximity in order for the term to
be used by the proximity search algorithm.

distance : number Number of intermediate words between the
search terms.

terms : Array.
<PCCViewer.ViewerControl~SearchTerm>

An array of search terms.

contextPadding : number <optional>
Default: 25

The maximum number of leading and trailing
character in the context string
(PCCViewer.SearchResult#getContext) that is
given for a search result.

highlightColor : string <optional> The highlight color of the search results
matching this search term
(PCCViewer.SearchResult#getHighlightColor).

If not defined, then a random color will be

PrizmDoc Viewer v13.17 754

©2021 My Company. All Rights Reserved.

3 4

chosen.

Example

// An example proximity search term object. Notice how
you can specify any number of search terms with their own
individual options.
 var proximitySearchTerm = {
 type: "proximity",
 distance: 3,
 highlightColor: "#f73131",
 contextPadding: 30,
 terms: [{
 searchTerm: "influenza"
 },{
 searchTerm: "infection",
 matchingOptions: {
 matchWholeWord: true
 }
 },{
 searchTerm: "group",
 matchingOptions: {
 matchCase: false
 }
 }]
};
// The proximity search term is used in a search query
object.
searchRequest.on('SearchCompleted', function(){
 console.log();
});
// The proximity search term is used in a search query
object.
// There can be many search term objects and proximity
search term objects in a search query object.
var searchQuery = {
 searchTerms: [proximitySearchTerm]
};
// Execute the search
var searchRequest = viewerControl.search(searchQuery);

SaveMarkupOptions

The PCCViewer.saveMarkup API method takes a second optional parameter. This parameter is in the
form of an object and provides options for saving marks to the server.

Type:

Name Attributes Description

PrizmDoc Viewer v13.17 755

©2021 My Company. All Rights Reserved.

Object

Properties:

Name Attributes Description

includeAnnotations :
boolean

<optional>
Default:
true

Indicates whether annotation mark types should be
saved.

includeSignatures :
boolean

<optional>
Default:
false

Indicates whether signature mark types should be
saved.

includeRedactions :
boolean

<optional>
Default:
true

Indicates whether redaction mark types should be
saved.

SearchMatchingOptions

This object is used to specify search options. It will be used in a PCCViewer.ViewerControl~SearchTerm
object.

Type:

Object

Properties:

Name Attributes Description

endsWith :
boolean

<optional>
Default:
false

Match a phrase that ends with the search term. The matched phrase
will be the shortest phrase that starts on a word boundary and ends
with the matched phrase.

beginsWith :
boolean

<optional>
Default:
false

Match a phrase that starts with the search term. The matched phrase
will be the shortest phrase that starts with the matched phrase and
ends on a word boundary.

If this value is true, then the following options are ignored:

endsWith

exactPhrase :
boolean

<optional>
Default:
true

Indicates whether the entire searchTerm is treated as a single
phrase or if it is split on white space and individual words are
matched based on the search options.

If this value is true, then the following option is not supported:

wildcard

matchCase :
boolean

<optional>
Default:

Indicates whether matching is case sensitive.

PrizmDoc Viewer v13.17 756

©2021 My Company. All Rights Reserved.

false

matchWholeWord
: boolean

<optional>
Default:
false

Match a phrase that starts and ends on word boundaries.

If this value is true, then the following options are ignored:

wildcard

endsWith

beginsWith

wildcard :
boolean

<optional>
Default:
false

A value that indicates whether the search term includes wild cards.

Supported wildcard characters, which may not be escaped, are:

'*' - match zero or more non-whitespace characters
'?' - match one character

If this value is true, then the following options are ignored:

endsWith

beginsWith

Example

// A simple matching options object
var myMatchingOptions = {
 beginsWith: true,
};

// The matching options object is used in a search term
object
var searchTerm = {
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: myMatchingOptions
};

// The search term object is used in the search query
object
var searchQuery = {
 searchTerms: [searchTerm]
};

SearchQuery

This object is used to specify one or more search terms and options for the
PCCViewer.ViewerControl#search method.

Name Attributes Description

PrizmDoc Viewer v13.17 757

©2021 My Company. All Rights Reserved.

3 4

Type:

Object

Properties:

Name Description

searchTerms : Array.
<(PCCViewer.ViewerControl~SearchTerm|PCCViewer.ViewerControl~ProximitySearchTerm)>

An array of
search
terms.

Example

// An example search query object with one search term
var searchQuery = {
 searchTerms: [{
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
 }]
};

SearchTerm

This object is used to specify one search term and its options. It will be used in the
PCCViewer.ViewerControl~SearchQuery object that is passed to the PCCViewer.ViewerControl#search
method.

Type:

Object

Properties:

Name Attributes Description

searchTerm : string A string value to match against. This may be
treated as a string literal, a string with wild cards, or
a regular expression. See searchTermIsRegex
and
PCCViewer.ViewerControl~SearchMatchingOptions

contextPadding : number <optional>
Default: 25

The maximum number of leading and trailing
character in the context string
(PCCViewer.SearchResult#getContext
for a search result.

PrizmDoc Viewer v13.17 758

©2021 My Company. All Rights Reserved.

3 4

highlightColor : string <optional> The highlight color of the search results matching
this search term
(PCCViewer.SearchResult#getHighlightColor

If not defined, then a color will be chosen. A
different color will be chosen for each search term,
and if matchingOptions.exactPhrase ===
false, then a different color will be chosen for
each word in the search term.

matchingOptions :
PCCViewer.ViewerControl~SearchMatchingOptions

<optional> Options that specify how the search term will be
matched.

searchTermIsRegex : boolean <optional>
Default:
false

Indicates if the search term is treated as a regular
expression.

If this value is true, then the following matching
options can be used:

matchingOptions.matchCase

Note that it is invalid to set the other matching
options for a regular expression search. Doing so
may make search behave in unexpected ways.

Example

// An example search term object
var searchTerm = {
 searchTerm: "sub",
 contextPadding: 25,
 highlightColor: '#B22222',
 matchingOptions: {
 beginsWith: true,
 }
};

// The search term is used in a search query object.
// There can be many search term objects in a search
query object.
var searchQuery = {
 searchTerms: [searchTerm]
};

ViewerControlOptions

These options are available and processed directly by the ViewerControl. When using the jQuery Plugin,
external:jQuery.fn#pccViewer, these options can be passed in along with external:jQuery.fn~Options,
and they will be passed into ViewerControl.

Name Attributes Description

PrizmDoc Viewer v13.17 759

©2021 My Company. All Rights Reserved.

Type:

Object

Properties:

Name Attributes Description

documentID : string REQUIRED The ID of the document to load.

imageHandlerUrl : string REQUIRED The end point of the web tier
services that support the viewer.

language : Object <optional> Specifies the language to use for the text in
the ViewerControl.

The options here are a subset of the
external:jQuery.fn~LanguageOptions
These values are used directly by the
ViewerControl, and are passed in by the
jQuery Plugin, external:jQuery.fn#pccViewer
When creating a custom UI using
ViewerControl directly, these options will need
to be passed in during initialization. If they
language element is not present with the
following properties, ViewerControl will use
the English language defaults.

Properties

pageLoadFailed : string
Default: "Page Load Failed"

Text to use for "Page Load Failed"

pageLoadFailedRetry
<optional>
Default: "Retry"

Text to use for "Retry"

viewMode : string <optional>
Default: "Document"

The mode used to view documents containing
different sized pages. See the
PCCViewer.ViewMode enumeration for details
on each view mode.

pageLayout : string <optional>
Default: "Vertical"

The layout used to arrange pages in the
viewer. See the PCCViewer.PageLayout
enumeration for details on each page layout.

pageRotation : number <optional>
Default: 0

The amount in degrees clockwise to rotate
each page. Valid values are multiples of 90: ...,
-270, -180, -90, 0, 90, 180, 270

resourcePath : string <optional> The location of the images within the viewer.

PrizmDoc Viewer v13.17 760

©2021 My Company. All Rights Reserved.

Default: "img" This is the folder that holds the
ArtMarkHandles.png and EditTextMark.png
files. This path should be relative to the page
that the viewer is embedded on.

printTemplate : string <optional>
Default: ""

A text representation of a full web page used
for printing purposes. It is recommended that
this value be set to the content of the file
"printTemplate.html". If this value is set to an
empty string (default), then printing will be
unavailable.

template.print : string <optional>
Default: ""

This is an alias for printTemplate
printTemplate is not available in the
options object, the control will look for this
property instead. This property matches the
value as it is used in the jQuery plugin options
(external:jQuery.fn~Options).

encryption : boolean <optional>
Default: false

Specifies whether the viewer should use
encryption. See the help topic "Enabling
Content Encryption" for more details.

serviceResponseTimeout :
number

<optional>
Default: 60000

Indicates the response timeout interval for all
services to the server. A value of zero indicates
the default browser value will be used.

debug : boolean <optional>
Default: false

Indicates whether the viewer should log its
actions.

RedactionViewMode : string <optional>
Default: "Normal"

The redaction view mode can be used to view
document content text underneath the
opaque rectangle redaction marks and the
text selection redaction marks. See the
PCCViewer.RedactionViewMode
for details on redaction view modes.

markHandleMode : string <optional>
Default:
"HideSideHandlesWhenClose"

The mark handle mode. See the
PCCViewer.MarkHandleMode enumeration for
details on each mark handle mode.

enableMultipleRedactionReasons
: boolean

<optional>
Default: false

Specifies whether multiple redaction reasons
are enabled. Set this property value to true in
order to use PCCViewer.Mark#reasons

discardOutOfViewText : boolean <optional>
Default: false

Specifies whether text on pages that are not
displayed is discarded from memory. Note
that it is necessary to use the
PCCViewer.ViewerControl#requestPageText
method to request a text page before using
any API that requires the text of a page that is
not currently displayed.

searchMethodType : string <optional> The type of search that will be used by the

Name Attributes Description

PrizmDoc Viewer v13.17 761

©2021 My Company. All Rights Reserved.

3 4

Default: "auto" PCCViewer.ViewerControl#search
Note that client search will be used if server
search is unavailable (this is the case when
using viewing packages). Possible values are:

"server" - Use the
PCCViewer.ViewerControl#serverSearch
API internally.
"client" - Use the
PCCViewer.ViewerControl#clientSearch
API internally.
"auto" - Viewer Control will use
PCCViewer.ViewerControl#serverSearch
when the page count is above the
value set in the
searchMethodPageCountThreshold
option. Viewer Control will use
PCCViewer.ViewerControl#clientSearch
otherwise.

searchMethodPageCountThreshold
: number

<optional>
Default: 80

The maximum number of pages a document
can have for client-side search. This value is
used when searchMethodType is set to "auto".
Must be greater than 1.

viewerAssetsPath : number <optional>
Default: "viewer-assets"

The path to the viewer-assets folder, which is
used in the print template. The text
{{viewerAssetsPath}} in your print template will
be replaced by the value specified for this
option.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

Name Attributes Description

PCCViewer. Data
This object provides some helper methods that allow you to set and get data on any object.

Methods
getData(key) → {string|object}

Mixin: Data

PrizmDoc Viewer v13.17 762

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

Note: If a hash is returned, this will be a new object each time it is called. Adding new properties to the
returned hash will not add data to the object.

Note: The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.Data#setData

PCCViewer.Data#getDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

// The key "Author" is set the value "Mark".
item.setData("Author", "Mark");

// The key "Note" is set the value "This is really
important!".
item.setData("Note", "This is really important!");

item.getData("Author"); // returns "Mark"
item.getData(); // returns {"Author":"Mark",
"Note":"This is really important!"}
item.getData("FooBar"); // returns undefined

getDataKeys() → {Array.<string>}

PrizmDoc Viewer v13.17 763

©2021 My Company. All Rights Reserved.

See:

See:

Gets an array of data keys known to this object.

PCCViewer.Data#getData

PCCViewer.Data#setData

Returns:

Returns an array of data keys known to this object. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

// Returns an empty array before key-value pairs are
stored.
item.getDataKeys(); // returns []

// Returns a list of all keys.
item.setData("Author", "Mark");
item.setData("Note", "This is really important!");
item.getDataKeys(); // returns ["Author", "Note"]

setData(key, value) → {object}

Sets the data value for the given key.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.Data#getData

PrizmDoc Viewer v13.17 764

©2021 My Company. All Rights Reserved.

PCCViewer.Data#getDataKeys

Returns:

The object on which the method was called.

Type
object

Example

// Get data returns undefined before the key is set.
item.getData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
item.setData("Author", "Mark");
item.getData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value "Clark".
item.setData("Author", "Clark");
item.getData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
item.setData("Author", undefined);
item.getData("Author"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
item.setData("FooBar", null); // throws
item.setData("FooBar", 1); // throws
item.setData("FooBar", true); // throws
item.setData("FooBar", {}); // throws
item.setData("FooBar", []); // throws

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PCCViewer. SessionData
This object provides some helper methods that allow you to set and get data on any object. In practice,
any data saved using these methods will not be saved, it is purely for use during runtime.

Mixin: SessionData

PrizmDoc Viewer v13.17 765

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Methods
getSessionData(key) → {string|object}

Gets the data value for the given key, or gets a hash containing all key values, if a key was not provided.

Note: While this is similar to PCCViewer.Data#getData, the data stored in the session will not persist when
the page is reloaded, it is used for runtime operations.

Note: If a hash is returned, this will be a new object each time it is called. Adding new properties to the
returned hash will not add data to the object.

Note: The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

Name Type Description

key string The key for which to get the data value.

PCCViewer.SessionData#setSessionData

PCCViewer.SessionData#getSessionDataKeys

Throws:

If the key argument is null or otherwise not a string.

Type
Error

Returns:

If a key argument was provided, it returns the associated value.
If a key argument was provided, but a value has not been associated with the key, then it returns
undefined.
If a key was not provided, it returns a hash object containing all key-value pairs.

Type
string | object

Example

// The key "Author" is set the value "Mark".
item.setSessionData("Author", "Mark");

// The key "Note" is set the value "This is really
important!".
item.setSessionData("Note", "This is really important!");

item.getSessionData("Author"); // returns "Mark"

PrizmDoc Viewer v13.17 766

©2021 My Company. All Rights Reserved.

See:

item.getSessionData(); // returns {"Author":"Mark",
"Note":"This is really important!"}
item.getSessionData("FooBar"); // returns undefined

getSessionDataKeys() → {Array.<string>}

Gets an array of session data keys known to this object.

Note: While this is similar to PCCViewer.Data#getDataKeys, the data stored in the session will not persist
when the page is reloaded, it is used for runtime operations.

PCCViewer.SessionData#getSessionData

PCCViewer.SessionData#setSessionData

Returns:

Returns an array of data keys known to this object. If no data is stored, then an empty array will be
returned.

Type
Array.<string>

Example

// Returns an empty array before key-value pairs are
stored.
item.getSessionDataKeys(); // returns []

// Returns a list of all keys.
item.setSessionData("Author", "Mark");
item.setSessionData("Note", "This is really important!");
item.getSessionDataKeys(); // returns ["Author", "Note"]

setSessionData(key, value) → {object}

Sets the data value for the given key.

Note: While this is similar to PCCViewer.Data#setData, the data stored in the session will not persist when
the page is reloaded, it is used for runtime operations.

Notes:

Overwrites any data value already associated with the given key.
There is no artificial limit imposed on the number of key-value pairs that are stored.
If limits on the number of key-value pairs are required, they should be enforced by calling code.
Setting the value as undefined results in no information for the key being persisted to the server.
The returned data is not mutated or sanitized, which could lead to a security vulnerability if not
sanitized properly before use.

Parameters:

PrizmDoc Viewer v13.17 767

©2021 My Company. All Rights Reserved.

See:

Name Type Description

key string The key for which to set the data value.

value string This is the value to set for the key.

This must be a string or undefined.
The maximum length of the string is not limited by this function.

PCCViewer.SessionData#getSessionData

PCCViewer.SessionData#getSessionDataKeys

Returns:

The object on which the method was called.

Type
object

Example

// Get data returns undefined before the key is set.
item.getSessionData("Author"); // returns undefined

// The key "Author" is set the value "Mark".
item.setSessionData("Author", "Mark");
item.getSessionData("Author"); // returns "Mark"

// The key "Author" is overwritten with the value "Clark".
item.setSessionData("Author", "Clark");
item.getSessionData("Author"); // returns "Clark"

// The key "Author" is unset, by setting the value to
undefined.
item.setSessionData("Author", undefined);
item.getSessionData("Author"); // returns undefined

// The value can only be set to a string or undefined.
// All other data types throw.
item.setSessionData("FooBar", null); // throws
item.setSessionData("FooBar", 1); // throws
item.setSessionData("FooBar", true); // throws
item.setSessionData("FooBar", {}); // throws
item.setSessionData("FooBar", []); // throws

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 768

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

PCCViewer. Ajax
This object provides some helper methods that allow you to make and filter Ajax requests.

Members
headers :string

Gets or sets the headers that will be defined with every AJAX request Viewer Control makes.

This is an ECMA 5 property that is defined only in browsers supporting ECMA 5. This property is not available
in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter and setter
methods.

Type:

string

PCCViewer.Ajax#getHeaders

PCCViewer.Ajax#setHeaders

Example

// get
var headers = PCCViewer.Ajax.headers;

// set
PCCViewer.Ajax.headers = { 'My-Secret-Header':
'mysecretkey' };

overrideMethod :string

Gets or sets the overrideMethod that will be defined with every AJAX request Viewer Control makes.

This is an ECMA 5 property that is defined only in browsers supporting ECMA 5. This property is not available
in the older browsers like IE8. For the greatest browser compatibility, use the corresponding getter and setter
methods.

Type:

string

PCCViewer.Ajax#getOverrideMethod

PCCViewer.Ajax#setOverrideMethod

Namespace: Ajax

PrizmDoc Viewer v13.17 769

©2021 My Company. All Rights Reserved.

See:

Example

// get
var overrideMethod = PCCViewer.Ajax.overrideMethod;

// set
PCCViewer.Ajax.overrideMethod = function(options) {
 options.headers['My-Secret-Header'] = 'mysecretkey';
};

Methods
getHeaders() → {Object}

Gets the headers object that will be sent with every request.

Note: Any header returned here will be sent with the request as long as the specific request doesn't use
that same header with a different value. If you're expecting the header to exist on all requests, it should
use a unique key that is not used by Accusoft. Certain mandatory headers required by every request will
not be returned from this method. See PCCViewer.Ajax#setHeaders for this list of inaccessible headers.

PCCViewer.Ajax#setHeaders

Returns:

A copy of the headers object set with PCCViewer.Ajax#setHeaders.

Type
Object

Example

// The default headers are set for every request
PCCViewer.Ajax.setHeaders({
 'My-Secret-Header': 'mysecretkey',
 'Authorization': 'Token asdf1234'
});

// Retrieve the headers that have previously been set
PCCViewer.Ajax.getHeaders(); // returns { 'My-Secret-
Header': 'mysecretkey', 'Authorization': 'Token asdf1234' }

getOverrideMethod() → {function}

Gets the override method that will be called with every request.

Note: The function that is returned with this object is passed by reference and is the same one set with
setOverrideMethod. Use caution when interacting with it.

PrizmDoc Viewer v13.17 770

©2021 My Company. All Rights Reserved.

See:

See:

PCCViewer.Ajax#setOverrideMethod

Returns:

The function defined with PCCViewer.Ajax#setOverrideMethod.

Type
function

Example

// A function is set to add a header to every request
PCCViewer.Ajax.setOverrideMethod(function(options) {
 options.headers['My-Secret-Header'] = 'mysecretkey';
});

// Retrieve the override method that was previously set
PCCViewer.Ajax.getOverrideMethod(); // returns function

setHeaders(headers) → {Object}

Sets the headers object that will be sent with every request.

Notes:

Overwrites any headers already set except the mandatory headers listed below.
The mandatory headers are: Accusoft-Gid, Accusoft-Parent-Name, Accusoft-Parent-Pid, and
Accusoft-Parent-Taskid.
Setting the headers as undefined will result in no additional headers being sent with every
request. The headers that the request requires will still be present, including the listed mandatory
headers.

Parameters:

Name Type Description

headers Object An object containing the headers we will send with every request.

This must be an object or undefined.

PCCViewer.Ajax#getHeaders

Throws:

If headers is not an object or undefined.

Type
Error

PrizmDoc Viewer v13.17 771

©2021 My Company. All Rights Reserved.

If headers attempts to overwrite a mandatory header. See the Notes section for more
information.

Type
Error

Returns:

The PCCViewer.Ajax object.

Type
Object

Example

// getHeaders() returns an empty object if setHeaders() has
not been called
PCCViewer.Ajax.getHeaders(); // returns {}

// After calling setHeaders() with an object, getHeaders()
will return a copy of that object
PCCViewer.Ajax.setHeaders({ 'My-Secret-Header',
'mysecretkey' });
PCCViewer.Ajax.getHeaders(); // returns { 'My-Secret-
Header', 'mysecretkey' }

// After calling setHeaders() without any arguments,
getHeaders() will return an empty object
PCCViewer.Ajax.setHeaders();
PCCViewer.Ajax.getHeaders(); // returns {}

// The value can only be set to an object or undefined.
// All other data types throw.
PCCViewer.Ajax.setHeaders(null); // throws
PCCViewer.Ajax.setHeaders(1); // throws
PCCViewer.Ajax.setHeaders(true); // throws
PCCViewer.Ajax.setHeaders('b'); // throws
PCCViewer.Ajax.setHeaders([]); // throws

setOverrideMethod(method) → {Object}

Sets the override method that will be called with every request.

Notes:

Overwrites any method already set.
Setting the method as undefined will result in no override taking place. The request will proceed as
usual

PrizmDoc Viewer v13.17 772

©2021 My Company. All Rights Reserved.

See:

Parameters:

Name Type Description

method PCCViewer.Ajax~OverrideMethod A function that will be called with every request that allows
you to override or modify the request.

This must be a function or undefined.

PCCViewer.Ajax#getOverrideMethod

PCCViewer.Ajax~OverrideMethod

Throws:

If method is not a function or undefined.

Type
Error

Returns:

The PCCViewer.Ajax object.

Type
Object

Example

// getOverrideMethod() returns undefined if
setOverrideMethod() has not been called
PCCViewer.Ajax.getOverrideMethod(); // returns undefined

// After calling setOverrideMethod() with a function,
getOverrideMethod() will return the function by reference
PCCViewer.Ajax.setOverrideMethod(function(options) {
options.url = 'http://accusoft.com/'; });
PCCViewer.Ajax.getOverrideMethod(); // returns function

// After calling setOverrideMethod() without any arguments,
getOverrideMethod() will return undefined
PCCViewer.Ajax.setOverrideMethod();
PCCViewer.Ajax.getOverrideMethod(); // returns undefined

// The value can only be set to a function or undefined.
// All other data types throw.
PCCViewer.Ajax.setOverrideMethod(null); // throws
PCCViewer.Ajax.setOverrideMethod(1); // throws
PCCViewer.Ajax.setOverrideMethod(true); // throws

PrizmDoc Viewer v13.17 773

©2021 My Company. All Rights Reserved.

3 4

See:

PCCViewer.Ajax.setOverrideMethod('b'); // throws
PCCViewer.Ajax.setOverrideMethod([]); // throws

Type Definitions
OverrideMethod(options) → {Promise|Undefined}

The function that you define with PCCViewer.Ajax#setOverrideMethod should follow this format

Parameters:

Name Type Description

options Object
Properties

Name Type Attributes Default Description

url String

method String <optional> "GET"

headers Object <optional> {}

body String <optional> null

timeout Number <optional> null

mimeType String <optional> null
The mime type used for the response, overriding what
the server sends. See: https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest#overrideMimeType()

PCCViewer.Ajax#setOverrideMethod

Returns:

Optionally returns a then-able object (Promise) to prevent default execution from continuing.

Type
Promise | Undefined

Example

// This method can modify properties of the original
request
PCCViewer.Ajax.setOverrideMethod(function(options) {
 options.url = 'http://accusoft.com/';
});

PrizmDoc Viewer v13.17 774

©2021 My Company. All Rights Reserved.

// This method can prevent default execution from
continuing
PCCViewer.Ajax.setOverrideMethod(function(options) {
 var deferred = $.Deferred();

 $.ajax({
 url: options.url,
 method: options.method,
 headers: options.headers,
 data: options.body,
 mimeType: options.mimeType,
 timeout: options.timeout,
 }).then(
 function(data, textStatus, jqXHR) {
 deferred.resolve(new PCCViewer.AjaxResponse({
 status: jqXHR.status,
 statusText: textStatus,
 headers: {
 'Fake-Header': 'thisisnotreal'
 },
 responseText: jqXHR.responseText,
 }));
 },
 function(jqXHR, textStatus, errorThrown) {
 deferred.reject({
 error: new PCCViewer.Error('Error',
errorThrown),
 response: new PCCViewer.AjaxResponse({
 status: jqXHR.status,
 statusText: textStatus,
 headers: {
 'Fake-Header': 'thisisnotreal'
 },
 responseText: jqXHR.responseText,
 }),
 });
 }
);

 return deferred.promise();
});

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Namespace: Language

PrizmDoc Viewer v13.17 775

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

PCCViewer. Language
A global object that defines the language data used by the PrizmDoc Viewing Client.

Example

// The PCCViewer.Language object can be initialized from a
hash.
PCCViewer.Language.initializeData({
 "addComment": "Add Comment",
 "advancedSearch": "Advanced Search Options",
 "annotateLabel": "Annotate"
 // ...
});

// Later, we can get any data by key.
var myValue = PCCViewer.Language.getValue("annotateLabel");

Methods
getData() → {Object}

Returns the hash representing the language data.

Returns:

The hash representing the language data.

Type
Object

getValue(key) → {String|Object}

Gets the value from the Language data object with the given key or returns the key.

This method evaluates dots (‘.’) in the key, looking for a child object if a dot is seen. This method provides
a convenience over directly accessing the data object because it will return the key instead of returning
undefined or throwing in cases where an object is not defined.

Parameters:

Name Type Description

key string Look up language data for this key. The key is a string, which uses dot notation to specify
sub-keys.

PrizmDoc Viewer v13.17 776

©2021 My Company. All Rights Reserved.

Throws:

If language data is undefined.

Type
Error

Returns:

Type
String | Object

Example

var myValue;

// Look up language data by a string key
myValue = PCCViewer.Language.getValue("annotateLabel");

// Look up language data using a key with dot notation.
myValue = PCCViewer.Language.getValue("printDialog.title");

initializeData(languageData)

Sets the language data from a hash.

Parameters:

Name Type Description

languageData object A hash representing the language data.

Example

// The PCCViewer.Language object can be initialized from a
hash.
PCCViewer.Language.initializeData({
 "addComment": "Add Comment",
 "advancedSearch": "Advanced Search Options",
 "annotateLabel": "Annotate"
 // ...
});

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 777

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

PCCViewer. MouseTools
The PCCViewer.MouseTools object allows you to create and get named mouse tools. This object
encapsulates a collection of named mouse tools that are available to all viewer instances (globally). A
mouse tool can be added to this collection using the PCCViewer.MouseTools.createMouseTool method,
and a mouse tool in this collection can be accessed using the PCCViewer.MouseTools.getMouseTool
method.

Methods
(static) createMouseTool(name, type) → {PCCViewer.MouseTool}

Create a new named mouse tool of a specific type.

If the new name matches the name of an existing mouse tool of the same type, then all properties
of the existing tool will be overwritten with the defaults. Subsequent calls to
.getMouseTool(name) will return the tool with the new properties.
If the new name already exists, but the type does not match, and error will be thrown.

Parameters:

Name Type Description

name string The name of the new mouse tool. This value is case-insensitive for comparison against
existing mouse tools of the same name.

Note: The case you provide will be persisted in the name property of the object that is
returned, so it is best to pick a consistent naming scheme.

type string The type of the new mouse tool.

PCCViewer.MouseTool.Type for a list of possible mouse tool types.

Throws:

If calling this function using an existing name when the type does not match the already existing one.

Type
Error

Returns:

The MouseTool object that was created.

Type
PCCViewer.MouseTool

Namespace: MouseTools

PrizmDoc Viewer v13.17 778

©2021 My Company. All Rights Reserved.

3 4

Example

// Create a new mouse tool with the name
"MyLineAnnotationMouseTool"
var myMouseTool =
PCCViewer.MouseTools.createMouseTool("MyLineAnnotationMouseTool",
"LineAnnotation");

// Configure the mouse tool or the template mark of the
mouse tool
myMouseTool.getTemplateMark().setOpacity(127);

// set the ViewerControl to use the mouse tool
viewerControl.setCurrentMouseTool("MyLineAnnotationMouseTool");

(static) getMouseTool(name) → {PCCViewer.MouseTool|undefined}

Gets a named mouse tool.

Parameters:

Name Type Description

name string The name of the MouseTool to get. This value is case-insensitive.

Returns:

The MouseTool object with the specified name, or undefined, if a MouseTool with the specified name
does not exist.

Type
PCCViewer.MouseTool | undefined

Example

var mouseToolName = "FooMouseTool";

// get the mouse tool
var mouseTool =
PCCViewer.MouseTools.getMouseTool(mouseToolName);

// check that the named mouse tool actually exists
if (mouseTool) {
 // do something with the MouseTool, you can do
different things based on the type of the tool
 switch (mouseTool.getType()) {

PrizmDoc Viewer v13.17 779

©2021 My Company. All Rights Reserved.

 case PCCViewer.MouseTool.Type.LineAnnotation:
 ...
 break;
 default:
 ...
 }
}

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

See:

PCCViewer. Signatures
An instance of PCCViewer.ObservableCollection. This object is a common management utility used to keep
track of the currently known signatures.

PCCViewer.ObservableCollection for methods and events available on this
collection.

Members
(inner) FreehandSignature

A plain object convention describing a freehand drawn signature.

Properties:

Name Attributes Description

type : string Describes the type of data in this signature. For FreehandSignature,
this value will always be path.

path : string The path data of the signature.

width : number The absolute width of the path data.

height : number The absolute height of the path data.

category : string
| undefined

<optional> The category of this signature. See signatureCategories in
external:jQuery.fn~Options for more information.

(inner) TextSignature

A plain object convention describing a text based signature.

Properties:

Namespace: Signatures

PrizmDoc Viewer v13.17 780

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Name Attributes Description

type : string Describes the type of data in this signature. For TextSignature, this
value will always be text.

text : string The text contents of the signature.

category : string
| undefined

<optional> The category of this signature. See signatureCategories in
external:jQuery.fn~Options for more information.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

PCCViewer. Util
This object provides some common helper functions.

Methods
(static) calculateNonOverlappingSelections(selections, backgroundColor) →
{Array.<selection>}

This method takes several selection objects -- ranges of start indices and lengths -- and determines if and
split overlapping ranges into separate selections objects. It will also interpret the new color in the
overlapping regions using PCCViewer.Util.layerColors. The non-overlapping selections from this function
should be used when highlighting text inside marks to ensure the best display. See
PCCViewer.Mark#highlightText.

Parameters:

Namespace: Util

PrizmDoc Viewer v13.17 781

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

Name Type Description

selections Array.
<Object>
| Object

An array of objects or a single object that defines a highlight.

Each object has the following properties:

startIndex {number} - required
The start index of the selection, in a 0-based index of string
characters.
The valid range is startIndex >= 0.

length {number} - required
The length of the selection, in characters.
The valid range is length > 0.

color {string} - required
Specifies the Hexadecimal color for the selection.
Valid values are any 7-character string representing a color.
The first letter must be a "#" symbol and the other six
characters must be hexadecimal digits representing the
red, green, and blue portions of the color.

opacity {number} - required
Specifies the opacity of the selection.
Valid values are from 0 to 255 (inclusive).

backgroundColor string A valid 7-character Hexadecimal color string. The first letter must be a "#"
symbol and the other six characters must be hexadecimal digits
representing the red, green, and blue portions of the color.

PCCViewer.Mark#highlightText

PCCViewer.Util.layerColors

Throws:

If any of the selection objects have an invalid startIndex number, or the value is undefined.

Type
Error

If any of the selection objects have an invalid length number, or the value is undefined.

Type
Error

If any of the selection objects have an invalid color Hex string, or the value is undefined.

Type
Error

If any of the selection objects have an invalid opacity number, or the value is undefined.

PrizmDoc Viewer v13.17 782

©2021 My Company. All Rights Reserved.

Type
Error

If the backgroundColor argument is not a valid Hex string, or the value is undefined.

Type
Error

Returns:

A collection of non-overlapping selection objects, representing the same selections that were passed into
the function.

Type
Array.<selection>

(static) convertPageRangeToArray(range, optionsopt) → {Array.<number>}

Converts the supplied page range to an array, where each element in the array is a page number. The
returned array will be sorted ascending by page number and will not contain duplicates.

Parameters:

Name Type Attributes Description

range string A string specifying page numbers or ranges.

Valid values are any string using this format (specified using EBNF):

range = "all" | pageRange;
pageRange = pageNumber, [",", range]
 | subRange, [",", range];
pageNumber = naturalNumber;
subRange = pageNumber, "-", pageNumber;

For example: "all", "1,2,3", and "1, 5-10" are all valid ranges.

options object <optional> An object specifying validation options.

Properties

Name Type Attributes Default Description

lowerLimit number <optional> 1 the lower
limit
(inclusive)
of the valid
range.

upperLsimit number <optional> Number.MAX_VALUE the upper

PrizmDoc Viewer v13.17 783

©2021 My Company. All Rights Reserved.

3 4

See:

limit
(inclusive)
of the valid
range.

allowEmpty boolean <optional> false Indicates
that an
empty
range
string is
valid.

PCCViewer.Util.validatePageRange

Throws:

If pageRange does not conform to the supported format.

Type
Error

If pageRange specifies a range that is not within the bounds of options.lowerLimit and
options.upperLimit.

Type
Error

Returns:

An array containing an element for each page number specified in the range.

Type
Array.<number>

Example

PCCViewer.Util.convertPageRangeToArray("1, 3-5"); //
returns [1, 3, 4, 5]

PCCViewer.Util.convertPageRangeToArray("1, 3-5", {
 lowerLimit: 1,
 upperLimit: 6
}); // returns [1, 3, 4, 5]

PCCViewer.Util.convertPageRangeToArray("1, 3-100", {

Name Type Attributes Description

PrizmDoc Viewer v13.17 784

©2021 My Company. All Rights Reserved.

 lowerLimit: 1,
 upperLimit: 6
}); // throws because the range goes beyond the upper limit

(static) layerColors(colors, backgroundColor) → {string}

This method takes an ordered list of colored layers, and calculates the flat color resulting from stacking all
the layers.

Note: this stacking order calculation uses the W3C specification for simple alpha compositing, and is
therefore not a complete color mixing solution. Instead, it calculates RGB color composition to browser
specification.

Parameters:

Name Type Description

colors Array.
<Object>
| Object

An array of objects or a single object that defines a color layer. Note that
the first element in the array will be the topmost layer in the stacking
order, and the last element will be the bottom-most layer.

Each object has the following properties:

color {string} - required
Specifies the Hexadecimal color for the highlight.
Valid values are any 7-character string representing a color.
The first letter must be a "#" symbol and the other six
characters must be hexadecimal digits representing the
red, green, and blue portions of the color.

opacity {number} - required
Specifies the opacity of the highlight.
Valid values are from 0 to 255 (inclusive).

backgroundColor string A valid 7-character Hexadecimal color string. The first letter must be a "#"
symbol and the other six characters must be hexadecimal digits
representing the red, green, and blue portions of the color.

Throws:

If any of the color objects have an invalid color Hex string, or the value is undefined.

Type
Error

If any of the color objects have an invalid opacity number, or the value is undefined.

Type
Error

If the backgroundColor argument is not a valid Hex string, or the value is undefined.

PrizmDoc Viewer v13.17 785

©2021 My Company. All Rights Reserved.

Type
Error

Returns:

The resulting flat color produced by stacking all of the layers on top of the background color. This value
will be a 7-character Hexadecimal color.

Type
string

(static) save(filename, stringValue)

Triggers file saving functionality with data generated on the client side. This method handles browser-
specific differences in file generation. As such, it may have slightly different behavior in the various
browsers. The end result provides a common interface for triggering a file save.

Parameters:

Name Type Description

filename string The desired name of the output file. This will be used as the name or suggested
name in browsers that support it.

stringValue string The data, in string format, to be written to the file.

(static) validatePageRange(range, optionsopt) → {boolean}

Determines whether the range string is a valid page range of the format supported by the viewer. It will
optionally validate that the range is within a specified set of limits.

Parameters:

Name Type Attributes Description

range string A string specifying page numbers or ranges.

Valid values are any string using this format (specified using EBNF):

range = "all" | pageRange;
pageRange = pageNumber, [",", range]
 | subRange, [",", range];
pageNumber = naturalNumber;
subRange = pageNumber, "-", pageNumber;

For example: "all", "1,2,3", and "1, 5-10" are all valid ranges.

options object <optional> An object specifying validation options.

Properties

PrizmDoc Viewer v13.17 786

©2021 My Company. All Rights Reserved.

3 4

See:

Name Type Attributes Default Description

lowerLimit number <optional> 1 the lower
limit
(inclusive)
of the valid
range.

upperLsimit number <optional> Number.MAX_VALUE the upper
limit
(inclusive)
of the valid
range.

allowEmpty boolean <optional> false Indicates
that an
empty
range
string is
valid.

PCCViewer.Util.convertPageRangeToArray

Returns:

A value indicating whether the specified page range is valid.

Type
boolean

Example

PCCViewer.Util.validatePageRange("1, 3-5", {
 lowerLimit: 1,
 upperLimit: 6
}); // returns true

PCCViewer.Util.validatePageRange("1, 3-5, 100", {
 lowerLimit: 1,
 upperLimit: 6
}); // returns false

PCCViewer.Util.validatePageRange("this is not a valid
range", {
 lowerLimit: 1,
 upperLimit: 6
}); // returns false

Name Type Attributes Description

PrizmDoc Viewer v13.17 787

©2021 My Company. All Rights Reserved.

PCCViewer.Util.validatePageRange("3", {
 lowerLimit: 1,
 upperLimit: myViewerControl.getPageCount() // assuming
myViewerControl is a PCCViewer.ViewerControl
}); // returns true if the document has at least 3 pages

PCCViewer.Util.validatePageRange(""); // returns false

PCCViewer.Util.validatePageRange("", {
 allowEmpty: true
}); // returns true

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:11 GMT-0400 (Eastern Daylight Time)

MarkSchema
The following data structures will be used for serializing and deserializing marks into a JSON format. This
documentation represents the Object Schema for all marks. To ease these, properties that are present in
each mark are documented under the name Mark, and properties related to each individual mark are
documented using that mark's type.

Some other generic types relevant to all, or multiple, marks are documented as PageData, Comment,
Conversation, Rectangle, Point, and LineGroup.

Type Definitions
EllipseAnnotation

The EllipseAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

borderColor : String A 6-character hexadecimal color string, including the # sign.

borderThickness : Number The thickness of the border in pixels.

Namespace: MarkSchema

PrizmDoc Viewer v13.17 788

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Implements:

Implements:

fillColor : String A 6-character hexadecimal color string, including the # sign.

opacity : Number The opacity of the mark, from 0 to 255.

MarkSchema~Mark

FreehandAnnotation

The FreehandAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

color : String A 6-character hexadecimal color string, including the # sign.

opacity : Number The opacity of the mark, from 0 to 255.

path : String An SVG-style path, using M, L, and C commands.

thickness : Number The thickness of the border in pixels.

MarkSchema~Mark

FreehandSignature

The FreehandSignature object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

color : String A 6-character hexadecimal color string, including the # sign.

horizontalAlignment : String A value from PCCViewer.Mark.HorizontalAlignment.

path : String An SVG-style path, using M, L, and C commands.

Name Description

PrizmDoc Viewer v13.17 789

©2021 My Company. All Rights Reserved.

Implements:

Implements:

Implements:

thickness : Number The thickness of the border in pixels.

MarkSchema~Mark

HighlightAnnotation

The HighlightAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

fillColor : String A 6-character hexadecimal color string, including the #
sign.

startIndex : Number The character index of the start of the selection.

selectedText : String The selected text.

textLength : Number The length of the selected text.

lineGroups : Array.
<MarkSchema~LineGroup>

The individual line rectangles that make up the
selection.

MarkSchema~Mark

ImageStampAnnotation

The ImageStampAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

imageDataUrl : String.<base64> The base64 encoded image data.

imageId : String The ID associated with the image.

MarkSchema~Mark

Name Description

PrizmDoc Viewer v13.17 790

©2021 My Company. All Rights Reserved.

Implements:

Implements:

ImageStampRedaction

The ImageStampRedaction object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

imageDataUrl : String.<base64> The base64 encoded image data.

imageId : String The ID associated with the image.

MarkSchema~Mark

LineAnnotation

The LineAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

pageData : MarkSchema~PageData The size of the page that the mark is on.

endPoint : MarkSchema~Point The end of the line.

startPoint : MarkSchema~Point The start of the line.

color : String A 6-character hexadecimal color string, including the # sign.

endHeadType : String A value from PCCViewer.Mark.LineHeadType.

opacity : Number The opacity of the mark, from 0 to 255.

thickness : Number The thickness of the line in pixels.

MarkSchema~Mark

PolylineAnnotation

The PolylineAnnotation object.

PrizmDoc Viewer v13.17 791

©2021 My Company. All Rights Reserved.

Implements:

Implements:

Type:

MarkSchema~Mark

Properties:

Name Description

pageData : MarkSchema~PageData The size of the page that the mark is on.

points : Array.<MarkSchema~Point> The array of points making up the line.

color : String A 6-character hexadecimal color string, including the # sign.

opacity : Number The opacity of the mark, from 0 to 255.

thickness : Number The thickness of the line in pixels.

MarkSchema~Mark

RectangleAnnotation

The RectangleAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

borderColor : String A 6-character hexadecimal color string, including the # sign.

borderThickness : Number The thickness of the border in pixels.

fillColor : String A 6-character hexadecimal color string, including the # sign.

opacity : Number The opacity of the mark, from 0 to 255.

MarkSchema~Mark

RectangleRedaction

The RectangleRedaction object.

Type:

MarkSchema~Mark

Properties:

PrizmDoc Viewer v13.17 792

©2021 My Company. All Rights Reserved.

Implements:

Implements:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

borderColor : String A 6-character hexadecimal color string, including the # sign.

borderThickness : Number The thickness of the border in pixels.

fillColor : String A 6-character hexadecimal color string, including the # sign.

fontColor : String A 6-character hexadecimal color string, including the # sign.

reason : String The redaction reason for this redaction mark.

reasons : Array.<String> The redaction reasons for this redaction mark.

MarkSchema~Mark

StampAnnotation

The StampAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

color : String A 6-character hexadecimal color string, including the # sign.

label : String The text to display inside the stamp.

MarkSchema~Mark

StampRedaction

The StampRedaction object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

PrizmDoc Viewer v13.17 793

©2021 My Company. All Rights Reserved.

Implements:

Implements:

pageData : MarkSchema~PageData The size of the page that the mark is on.

label : String The text to display inside the stamp.

MarkSchema~Mark

StrikethroughAnnotation

The StrikethroughAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

color : String A 6-character hexadecimal color string, including the #
sign.

thickness : Number The thickness of the line in pixels.

textLength : Number The length of the selected text.

startIndex : Number The character index of the start of the selection.

selectedText : String The selected text.

lineGroups : Array.
<MarkSchema~LineGroup>

The individual line rectangles that make up the
selection.

MarkSchema~Mark

TextAnnotation

The TextAnnotation object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

borderColor : String A 6-character hexadecimal color string, including the # sign.

borderThickness : Number The thickness of the border in pixels.

Name Description

PrizmDoc Viewer v13.17 794

©2021 My Company. All Rights Reserved.

Implements:

Implements:

fillColor : String A 6-character hexadecimal color string, including the # sign.

fontColor : String A 6-character hexadecimal color string, including the # sign.

fontName : String The name of the font to use for the mark.

fontSize : Number The size of the font, in pixels.

fontStyle : Array.<String> An array of values any from PCCViewer.Mark.FontStyles.

maxLength : Number The maximum number of characters allowed.

horizontalAlignment : String A value from PCCViewer.Mark.HorizontalAlignment.

text : String The text of the mark.

opacity : Number The opacity of the mark, from 0 to 255.

MarkSchema~Mark

TextAreaSignature

The TextAreaSignature object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

fontColor : String A 6-character hexadecimal color string, including the # sign.

fontName : String The name of the font to use for the mark.

fontStyle : Array.<String> An array of values any from PCCViewer.Mark.FontStyles.

horizontalAlignment : String A value from PCCViewer.Mark.HorizontalAlignment.

maxFontSize : Number The maximum size of the font, in pixels.

maxLength : Number The maximum number of characters allowed.

text : String The text of the mark.

MarkSchema~Mark

TextHyperlinkAnnotation

The TextHyperlinkAnnotation object.

Name Description

PrizmDoc Viewer v13.17 795

©2021 My Company. All Rights Reserved.

Implements:

Implements:

Type:

MarkSchema~Mark

Properties:

Name Description

fillColor : String A 6-character hexadecimal color string, including the #
sign.

textLength : Number The length of the selected text.

startIndex : Number The character index of the start of the selection.

selectedText : String The selected text.

lineGroups : Array.
<MarkSchema~LineGroup>

The individual line rectangles that make up the
selection.

href : String The URL that the link points to.

MarkSchema~Mark

TextInputSignature

The TextInputSignature object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle :
MarkSchema~Rectangle

The position of the mark on the page.

pageData :
MarkSchema~PageData

The size of the page that the mark is on.

mask : MarkSchema~Mask An input mask that will be displayed in the mark to assist the user from
inputting undesirable characters.

fontColor : String A 6-character hexadecimal color string, including the # sign.

fontName : String The name of the font to use for the mark.

maxLength : Number The maximum number of characters allowed.

text : String The text of the mark.

horizontalAlignment :
String

A value from PCCViewer.Mark.HorizontalAlignment.

MarkSchema~Mark

PrizmDoc Viewer v13.17 796

©2021 My Company. All Rights Reserved.

Implements:

Implements:

TextRedaction

The TextRedaction object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

fontColor : String A 6-character hexadecimal color string, including the # sign.

fontName : String The name of the font to use for the mark.

fontSize : Number The size of the font, in pixels.

maxLength : Number The maximum number of characters allowed.

horizontalAlignment : String A value from PCCViewer.Mark.HorizontalAlignment.

text : String The text of the mark.

MarkSchema~Mark

TextSelectionRedaction

The TextSelectionRedaction object.

Type:

MarkSchema~Mark

Properties:

Name Description

lineGroups : Array.
<MarkSchema~LineGroup>

The individual line rectangles that make up the
selection.

reason : String The redaction reason for this redaction mark.

reasons : Array.<String> The redaction reasons for this redaction mark.

selectedText : String The selected text.

startIndex : Number The character index of the start of the selection.

textLength : Number The length of the selected text.

MarkSchema~Mark

PrizmDoc Viewer v13.17 797

©2021 My Company. All Rights Reserved.

Implements:

Implements:

TextSignature

The TextSignature object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

color : String A 6-character hexadecimal color string, including the # sign.

fontName : String The name of the font to use for the mark.

horizontalAlignment : String A value from PCCViewer.Mark.HorizontalAlignment.

text : String The text of the mark.

MarkSchema~Mark

TransparentRectangleRedaction

The TransparentRectangleRedaction object.

Type:

MarkSchema~Mark

Properties:

Name Description

rectangle : MarkSchema~Rectangle The position of the mark on the page.

pageData : MarkSchema~PageData The size of the page that the mark is on.

MarkSchema~Mark

Comment

A mark comment.

Type:

Object

PrizmDoc Viewer v13.17 798

©2021 My Company. All Rights Reserved.

Properties:

Name Description

data : Object.<key, string> A property bag of user-defined values.

creationDateTime : String An ISO string of the created time.

text : String The text of the comment.

Conversation

A collection of comments related to a mark.

Type:

Object

Properties:

Name Description

comments : Array.<MarkSchema~Comment> The comments associated with the conversation.

data : Object.<key, string> A property bag of user-defined values.

LineGroup

A collection of line groups.

Type:

Object

Properties:

Name Description

pageNumber : Number The page number of the line group.

pageData : MarkSchema~PageData The page size of the page where that particular line group
appears.

startIndex : Number The character index of the start of this group.

length : Number The length of characters in this group.

lines : Array.
<MarkSchema~Rectangle>

One or more rectangles that appear on the page, as part of the
selection.

Mark

All marks will have the following properties.

PrizmDoc Viewer v13.17 799

©2021 My Company. All Rights Reserved.

Properties:

Name Description

uid : String A global unique ID for this mark, to identify it across the
system.

type : String A value from PCCViewer.Mark.Type denoting the mark
type.

pageNumber : Number The page that the mark is located on.

creationDateTime : String An ISO string of the created time.

modificationDateTime : String An ISO string of the last modified time.

interactionMode : String A value from PCCViewer.Mark.InteractionMode.

data : Object.<string, string> A property bag of user-defined values.

conversation :
MarkSchema~Conversation

The conversation object.

Mask

An object defining the mask for this mark.

Type:

Object

Properties:

Name Description

value :
String

The string representation of the mask. The user input will look like this string once they
have finished their input. Each character in this string that does not have a translation
will be represented to the user literally.

translations
: Object

The translations to use for the given mask value. The key represents a character present
in the mask value, and the value is a regular expression which validates the acceptable
user input for that character.

PageData

An object providing metadata about the page at the time that the mark was saved.

Type:

Object

Properties:

PrizmDoc Viewer v13.17 800

©2021 My Company. All Rights Reserved.

Name Description

width : Number The width of the page at the time the mark was saved.

height : Number The height of the page at the time the mark was saved.

Point

A point, defining the coordinates from the top-left of the page in pixels.

Type:

Object

Properties:

Name Description

x : Number The distance from the left edge of the page.

y : Number The distance from the top edge of the page.

Rectangle

A rectangle or bounding rectangle, defining the top-left corner relative to the top-left of the page, as well
as the width and height, in pixels.

Type:

Object

Properties:

Name Description

x : Number The left side of the rectangle, relative to the left page edge.

y : Number The top of the rectangle, relative to the top page edge.

width : Number The width of the bounding rectangle.

height : Number The height of the bounding rectangle.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

Namespace: MarkupLayerSchema

PrizmDoc Viewer v13.17 801

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

MarkupLayerSchema
The following data structures will be used for serializing and deserializing markup layers into a JSON format.
This documentation represents the Object Schema for markup layers.

Properties:
Name Description

name : string The name of the markup layer.

originalXmlName
: string

The name of the web tier XML record from which the marks of this layer were originally
stored.

data : string A property bag of user-defined values.

marks : Array An array of MarkSchema~Mark objects. Note that comments on marks in this layer are
stored in this comments array and not stored under the particular mark.

comments :
Array

An array of MarkupLayerSchema~Comment objects for marks in this layer and in other
layers. Note that comments on marks in this layer are stored in this comments array
and not stored under the particular mark in the marks array.

Type Definitions
Comment

A mark comment.

Type:

Object

Properties:

Name Description

markUid : string The global unique ID for the mark the comment is under.

data : Object.<key, string> A property bag of user-defined values.

creationDateTime : String An ISO string of the created time.

text : String The text of the comment.

Documentation generated by JSDoc 3.3.3 on Thu Apr 22 2021 12:32:10 GMT-0400 (Eastern Daylight Time)

E-Signature Controls

PrizmDoc Viewer v13.17 802

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Overview
This section contains the following information:

External: jQuery.fn
Class: ESigner
Class: TemplateDesigner
Module: button-set
Module: checkbox-collection
Module: data-persist
Module: date-picker
Module: download-signed-form-trigger
Module: download-signed-form
Module: dropdown
Module: event-store
Module: field-edit
Module: field-list
Module: fill-checklist
Module: fill-form-controller
Module: fill-main-toolbar
Module: fill-progress
Module: form-controller
Module: form-extraction
Module: form-summary
Module: form-tools
Module: global-settings-menu
Module: global-settings-trigger
Module: keyboard-controller
Module: multiple-selection
Module: notification
Module: page-navigation
Module: profile-manager
Module: state-store
Module: svg-icons
Module: template-io
Module: template-manager
Module: template-name-header
Module: text-input
Module: zoom-fit

See:

External: jQuery.fn

jQuery.fn
The jQuery plugin namespace.

jQuery Plugins

External: jQuery.fn

PrizmDoc Viewer v13.17 803

©2021 My Company. All Rights Reserved.

http://learn.jquery.com/plugins/

Members

(inner) configParameters

Properties:

Name Type Attributes Default Description

documentID string The
viewingSessionId

to use in
ViewerControl.

This value is always
required.

templateDocumentId string <optional> This parameter will
be used when
creating a template
in order to associate
the template form
with a document.
When opening a
form, the value of
this parameter will be
used to identify the
document associated
with the
formDefinition.

This value is
required by the
TemplateDesigner.

formDefinitionId string <optional> The
formDefinitionId

to be used when
opening a form.
Specifying this value
in the
TemplateDesigner
will cause it to open
the specific form for
edition, while leaving
the value out will
cause it to create a
new form.

This value is
required by the
ESigner.

formRoleId string <optional> The formRoleId to
be used when

PrizmDoc Viewer v13.17 804

©2021 My Company. All Rights Reserved.

opening a form.
Specifying this value
in the ESigner will
cause it to only
create fields assigned
to the given form
role.

signatureDateFormat external:"jQuery.fn"~DateFormat <optional> "MM/DD/YYYY" Specifies the date
format that is stored
when saving a
template. When the
e-signer loads a
template, it displays
date signatures using
the date format
stored in the
template.

language object Specifies the
language to use for
the text in the viewer.
Use this option to
localize the viewer.

This property should
be set to the
contents of the file
"viewer-
assets/languages/en-
US.json". Both the e-
signer and the
template-designer
ship with their own
version of the
language file. Each
viewer has a different
set of language
strings in the
language file.

This value is always
required.

imageHandlerUrl string <optional> "../pcc.ashx" The end point of the
web tier services that
support the viewer.

onViewerCreation function <optional> This function is
available for both the
ESigner and the
TemplateDesigner, it
will trigger when the

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 805

©2021 My Company. All Rights Reserved.

3 4

viewer's DOM is
ready to use. You can
use one parameter
inside this function, it
will be an ESigner or
a TemplateDesigner
object depending on
which viewing client
you are using.

(inner) DateFormat :String

The format to use when displaying a date. The table below outlines the supported date format tokens and
provides example output.

Token Output

Month M 1 2 ... 11 12

MM 01 02 ... 11 12

Day D 1 2 ... 30 31

DD 01 02 ... 30 31

Year YY 70 71 ... 29 30

YYYY 1970 1971 ... 2029 2030

Hour H 0 1 ... 22 23

HH 00 01 ... 22 23

h 1 2 ... 11 12

hh 01 02 ... 11 12

Minute m 0 1 ... 58 59

mm 00 01 ... 58 59

AM/PM A AM PM

a am pm

Type:

String

Methods

pccESigner(options)

A jQuery plugin to initialize a new ESigner viewer.

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 806

©2021 My Company. All Rights Reserved.

See:

See:

Parameters:

Name Type Description

options external:"jQuery.fn"~configParameters The configuration options used to initialize the viewer.

ESigner for an example.

pccTemplateDesigner(options)

A jQuery plugin to initialize a new TemplateDesigner viewer.

Parameters:

Name Type Description

options external:"jQuery.fn"~configParameters The configuration options used to initialize the viewer.

TemplateDesigner for an example.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Class: ESigner

(protected) ESigner()
(protected) new ESigner()

The e-signer viewer constructor.

Requires:

module:event-store
module:state-store
module:page-navigation
module:zoom-fit
module:template-io
module:fill-form-controller
module:template-name-header
module:svg-icons
module:data-persist

Class: ESigner

PrizmDoc Viewer v13.17 807

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

module:profile-manager
module:fill-main-toolbar
module:fill-checklist
module:fill-progress
module:download-signed-form-trigger
module:download-signed-form
module:date-picker
module:keyboard-controller
module:notification
module:text-input
module:dropdown
module:button-set
module:checkbox-collection

Example

var viewer = $('#pcc-viewer').pccESigner(options);

Requires

module:event-store
module:state-store
module:page-navigation
module:zoom-fit
module:template-io
module:fill-form-controller
module:template-name-header
module:svg-icons
module:data-persist
module:profile-manager
module:fill-main-toolbar
module:fill-checklist
module:fill-progress
module:download-signed-form-trigger
module:download-signed-form
module:date-picker
module:keyboard-controller
module:notification
module:text-input
module:dropdown
module:button-set
module:checkbox-collection

Members

checklist :module:fill-checklist

Type:

module:fill-checklist

dataPersist :module:data-persist

PrizmDoc Viewer v13.17 808

©2021 My Company. All Rights Reserved.

Type:

module:data-persist

datePicker :module:date-picker

Type:

module:date-picker

downloadSignedForm :module:download-signed-form

Type:

module:download-signed-form

downloadSignedFormTrigger :module:download-signed-form-trigger

Type:

module:download-signed-form-trigger

eventStore :module:event-store

Type:

module:event-store

fillProgress :module:fill-progress

Type:

module:fill-progress

formController :module:form-controller

Type:

module:form-controller

formSummary :module:form-summary

Type:

module:form-summary

PrizmDoc Viewer v13.17 809

©2021 My Company. All Rights Reserved.

keyboardController :module:keyboard-controller

Type:

module:keyboard-controller

mainToolBar :module:fill-main-toolbar

Type:

module:fill-main-toolbar

notification :module:notification

Type:

module:notification

pageNavigation :module:page-navigation

Type:

module:page-navigation

profileManager :module:profile-manager

Type:

module:profile-manager

stateStore :module:state-store

Type:

module:state-store

templateIO :module:template-io

Type:

module:template-io

templateNameHeader :module:template-name-header

PrizmDoc Viewer v13.17 810

©2021 My Company. All Rights Reserved.

Type:

module:template-name-header

zoomFit :module:zoom-fit

Type:

module:zoom-fit

Methods

destroy()

Destroys the viewer and all modules, and returns the parent DOM element to its original state.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Class: TemplateDesigner

(protected) TemplateDesigner()
(protected) new TemplateDesigner()

The template designer viewer constructor.

Requires:

module:event-store
module:state-store
module:form-tools
module:page-navigation
module:zoom-fit
module:form-controller
module:field-list
module:field-edit
module:multiple-selection
module:notification
module:template-io
module:template-manager
module:svg-icons

Class: TemplateDesigner

PrizmDoc Viewer v13.17 811

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

module:text-input
module:dropdown
module:button-set
module:checkbox-collection
module:keyboard-controller

Example

var viewer = $('#pcc-viewer').pccTemplateDesigner(options);

Requires

module:event-store
module:state-store
module:form-tools
module:page-navigation
module:zoom-fit
module:form-controller
module:field-list
module:field-edit
module:multiple-selection
module:notification
module:template-io
module:template-manager
module:svg-icons
module:text-input
module:dropdown
module:button-set
module:checkbox-collection
module:keyboard-controller

Members

eventStore :module:event-store

Type:

module:event-store

fieldEdit :module:field-edit

Type:

module:field-edit

fieldList :module:field-list

Type:

module:field-list

PrizmDoc Viewer v13.17 812

©2021 My Company. All Rights Reserved.

formController :module:form-controller

Type:

module:form-controller

formExtraction :module:form-extraction

Type:

module:form-extraction

formTools :module:form-tools

Type:

module:form-tools

globalSettingsMenu :module:global-settings-menu

Type:

module:global-settings-menu

globalSettingsTrigger :module:global-settings-trigger

Type:

module:global-settings-trigger

keyboardController :module:keyboard-controller

Type:

module:keyboard-controller

multipleSelection :module:multiple-selection

Type:

module:multiple-selection

notification :module:notification

Type:

PrizmDoc Viewer v13.17 813

©2021 My Company. All Rights Reserved.

module:notification

pageNavigation :module:page-navigation

Type:

module:page-navigation

stateStore :module:state-store

Type:

module:state-store

templateIO :module:template-io

Type:

module:template-io

templateManager :module:template-manager

Type:

module:template-manager

zoomFit :module:zoom-fit

Type:

module:zoom-fit

Methods

destroy()

Destroys the viewer and all modules, and returns the parent DOM element to its original state.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: button-set

PrizmDoc Viewer v13.17 814

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Module: button-set

A set of UI buttons that interact as one group. The Button Set supports two modes: toggling the buttons
between the on and off state, as well as toggling through an arbitrary list of ordered values.

In the on/off mode, each button will be turned to on when clicked. When one button is selected, it turns all
other buttons that are in the on state to off.

In the arbitrary toggle mode, each button will cycle through its own toggle values. When one button is
selected, it will remove the active toggle value from any other button that currently has one. Those buttons
will be reset, and begin the cycle at the first toggle value the next time they are clicked.

Examples

<!-- In this example, the buttons toggle on and off -->

<!--The following HTML includes a couple button set
components with the same data-pcc-name
so that they are included in the same set. An element is
specified as a button set by setting
the data-pcc-component attribute to "buttonset".-->
<button data-pcc-component="buttonset"
 data-pcc-name="mousetools"
 data-pcc-value="SignatureTemplate"
 class="pcc-button">

 <label>Signature</label>
</button>
<button data-pcc-component="buttonset"
 data-pcc-name="mousetools"
 data-pcc-value="InitialsTemplate"
 class="pcc-button">

 <label>Initials</label>
</button>

<!-- In this example, the buttons toggle among arbitrary
values -->
<button data-pcc-component="buttonset"
 data-pcc-name="mousetools"
 data-pcc-value="SignatureTemplate"
 data-pcc-toggle="on,sticky"
 class="pcc-button">

 <label>Signature</label>
</button>

// Require the button set module.
var ButtonSet = require('../elements/button-set.js');

PrizmDoc Viewer v13.17 815

©2021 My Company. All Rights Reserved.

var mySet;

// Pass each button set element to the button set module to
initialize each button.
// parent is the element that contains the button set
elements.
$(parent).find('[data-pcc-
component="buttonset"]').each(function() {
 // ButtonSet will return the entire set of buttons that
have been added
 // using the same 'data-pcc-name' value
 mySet = ButtonSet(this);
});

mySet.on('change', function(ev, data) {
 // data about the buttonset
 console.log(data);
});

(require("button-set"))(el) → {HTMLElement}

Parses and initializes a button set.

Parameters:

Name Type Description

el HTMLElement The parent element in which to parse for the button set component.

Returns:

The parsed button set element.

Type
HTMLElement

Members

(static) pccElements :Object

The button elements in the button set.

Type:

Object

off :module:event-store~off

PrizmDoc Viewer v13.17 816

©2021 My Company. All Rights Reserved.

Removes an event handler from the button set.

Type:

module:event-store~off

on :module:event-store~on

Registers an event handler on the button set.

Type:

module:event-store~on

Methods

destroy()

Destroys the button set component.

value(val) → {Object}

Gets or sets the value of the button set. The values are specified in the HTML for each button using the
data-pcc-value attribute.

Parameters:

Name Type Description

val string The value of the button to make active.

Returns:

The button set element if a value is passed. Otherwise, the current value is returned.

Type
Object

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: checkbox-collection

Module: checkbox-collection

PrizmDoc Viewer v13.17 817

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

A set of UI checkboxes that interact as one group.

Examples

<!--The following HTML includes a checkbox collection
component containing a single checkbox.
An element is specified as a checkbox collection by setting
the data-pcc-component attribute
to "checkboxcollection".-->
<span data-pcc-component="checkboxcollection"
 data-pcc-name="required"
 data-pcc-value="required"
 data-pcc-label="Required"
 class="pcc-margin">

// Require the checkbox collection module.
var CheckboxCollection = require('../elements/checkbox-
collection.js');

// Pass each checkbox collection element to the checkbox
collection module to initialize each checkbox.
// parent is the element that contains the checkbox
collection element.
$(parent).find('[data-pcc-
component="checkboxcollection"]').each(function() {
 CheckboxCollection(this);
});

(require("checkbox-collection"))(el) → {HTMLElement}

Parses and initializes a checkbox collection.

Parameters:

Name Type Description

el HTMLElement The parent element in which to parse for the checkbox collection component.

Returns:

The parsed checkbox collection element.

Type
HTMLElement

Members

PrizmDoc Viewer v13.17 818

©2021 My Company. All Rights Reserved.

(static) pccElements :Object

The checkbox elements in the checkbox collection.

Type:

Object

off :module:event-store~off

Removes an event handler from the checkbox collection.

Type:

module:event-store~off

on :module:event-store~on

Registers an event handler on the checkbox collection.

Type:

module:event-store~on

Methods

destroy()

Destroys the checkbox collection component.

value(val) → {Object}

Gets or sets the values of the checkbox collection. The values are specified in the HTML for each checkbox
using the data-pcc-value attribute.

Parameters:

Name Type Description

val Array An array of values to check the corresponding checkbox elements.

Returns:

The checkbox collection element if a value is passed. Otherwise, an array of the values that correspond to
the currently checked checkboxes is returned.

Type
Object

PrizmDoc Viewer v13.17 819

©2021 My Company. All Rights Reserved.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: data-persist

Provides the ability to store state data in the browser's local storage.

Note: this module is an example of a persistence module. It presents potential security concerns, in
that it may allow users to store sensitive information in non-secure browser storage. Please make sure
this module fits your security model before using it in production.

(require("data-persist"))(viewer)

Created the data persistence module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Listens to Events:

module:event-store#event:PersistSignatures

Example

var DataPersist = require('data-persist.js');

// a generic Viewer constructor
var myDataPersist = DataPersist(viewer);

Methods

destroy()

Destroys the module.

Module: data-persist

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 820

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc
https://github.com/jsdoc3/jsdoc

Module: date-picker

Provides a date picker UI.

Listens to Events:

module:event-store#event:CreateDate

module:event-store#event:FormatDate

module:event-store#event:StateModified for "FocusField" state.

Example

var DatePicker = require('date-picker.js');

// a generic Viewer constructor
var myDatePicker = DatePicker(this, {
 dateFormat: 'MM/DD/YYYY'
});

(require("date-picker"))(viewer, options)

Created the template name header module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options abject.

Properties

Name Type Description

dateFormat external:"jQuery.fn"~DateFormat The format string to use when
providing the selected date.

Methods

destroy()

Destroys the module.

Module: date-picker

PrizmDoc Viewer v13.17 821

©2021 My Company. All Rights Reserved.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: download-signed-form-trigger

Triggers the event for downloading a signed form.

This UI of this module is a button that the user can click to start burning the fields into the form and then
download the burned document. This button will be disabled until the user has filled all of the required
fields on the document.

Fires:

module:event-store#event:StartBurningForm - This event is fired to indicate that the user wants to
begin burning the document and download the burned document.

Listens to Events:

module:event-store#event:StateModified for "FieldList" state.

Example

var DownloadSignedFormTrigger = require('download-signed-
form-trigger.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myDownloadSignedFormTrigger =
DownloadSignedFormTrigger(this, {
 elem:
document.getElementById('myDownloadSignedFormTrigger')
 });
}

(require("download-signed-form-trigger"))(viewer, options)

Creates the download signed form trigger UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Module: download-signed-form-trigger

PrizmDoc Viewer v13.17 822

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Name Type Description

Module: download-signed-form

Manages downloading a signed form.

This UI of this module is a modal dialog box that shows the signature burn-in status, allows the user to
cancel the burning and download, and allows the user to download the signed form.

(require("download-signed-form"))(viewer, options)

Creates the download signed form module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Listens to Events:

module:event-store#event:BurnForm - The download signed form dialog will be displayed when

Module: download-signed-form

PrizmDoc Viewer v13.17 823

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

this event is triggered.

module:event-store#event:DisplayForm - Gets the form name from this event.

Example

var DownloadSignedForm = require('download-signed-
form.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myDownloadSignedForm = DownloadSignedForm(this, {
 elem:
document.getElementById('myDownloadSignedForm')
 });
}

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: dropdown

A dropdown menu.

Examples

<!--The following HTML includes a dropdown component. An
element is specified
as a dropdown by setting the data-pcc-component attribute
to "dropdown".
The dropdown options must be included as children elements,
where the
data-pcc-value attribute is used to specify the value of
each option.-->
<div class="pcc-select" data-pcc-component="dropdown" data-
pcc-name="font" data-pcc-default="Arial">
 <div data-pcc-value="Arial">Arial</div>

Module: dropdown

PrizmDoc Viewer v13.17 824

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

 <div data-pcc-value="Comic Sans">Comic Sans</div>
 <div data-pcc-value="Courier">Courier</div>
 <div data-pcc-value="Courier New">Courier New</div>
 <div data-pcc-value="Geneva">Geneva</div>
 <div data-pcc-value="Georgia">Georgia</div>
 <div data-pcc-value="Helvetica">Helvetica</div>
 <div data-pcc-value="Times">Times</div>
 <div data-pcc-value="Times New Roman">Times New
Roman</div>
 <div data-pcc-value="Verdana">Verdana</div>
</div>

// Require the dropdown module.
var Dropdown = require('../elements/dropdown.js');

// Pass each dropdown element to the dropdown module to
initialize each dropdown.
// parent is the element that contains the dropdown
element.
$(parent).find('[data-pcc-
component="dropdown"]').each(function() {
 Dropdown(this);
});

(require("dropdown"))(el) → {HTMLElement}

Parses and initializes a dropdown component.

Parameters:

Name Type Description

el HTMLElement The parent element in which to parse for the dropdown component.

Returns:

The parsed dropdown element.

Type
HTMLElement

Members

off :module:event-store~off

Removes an event handler from the dropdown.

Type:

PrizmDoc Viewer v13.17 825

©2021 My Company. All Rights Reserved.

module:event-store~off

on :module:event-store~on

Registers an event handler on the dropdown.

Type:

module:event-store~on

Methods

addOption(val, styleopt) → {Object}

Adds an option to the list of values in the dropdown.

Parameters:

Name Type Attributes Description

val string The value of the dropdown option.

style string <optional> The style of the dropdown option.

Returns:

The dropdown element.

Type
Object

destroy()

Destroys the dropdown component.

value(val) → {Object}

Gets or sets the value of the dropdown. The values are specified in the HTML for each dropdown option
using the data-pcc-value attribute.

Parameters:

Name Type Description

val string The value of the dropdown option to select.

Returns:

PrizmDoc Viewer v13.17 826

©2021 My Company. All Rights Reserved.

The dropdown element if a value is passed. Otherwise, the currently selected value is returned.

Type
Object

valueList() → {Array}

Gets an array of the values of the dropdown options.

Returns:

An array of the values of the dropdown options.

Type
Array

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: event-store

An event API. This event store is used internally by the viewer, and should not need to be initialized
outside of that usage.

Example

var EventStore = require('event-store.js');

// a generic Viewer constructor
function Viewer(opts) {
 // other modules will expect this to be present
 this.eventStore = EventStore(this);
}

Events

AccessGlobalSettings

Indicates that the user needs to access the global settings dialog for modifying the various global settings
available for the templates.

Module: event-store

PrizmDoc Viewer v13.17 827

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

See:

See:

See:

module:event-store~eventCallback

AlignFields

Triggers alignment of the given fields.

Properties:

Name Type Description

alignment string The plane and direction of the alignment operation.

markIds Array An array of Mark IDs to align.

module:event-store~eventCallback

Example

viewer.eventStore.trigger('AlignFields', {
 alignment: 'horizontal-left',
 markIds: viewer.viewerControl.getSelectedMarks()
});

BurnForm

Indicates that the user wants to burn the signatures to the form.

module:event-store~eventCallback

CreateDate

Triggers a user request to select a date.

Properties:

Name Type Attributes Description

position Object The position to locate the UI, relative to a rectangle on the window.

Properties

Name Type Description

x number The x-axis location.

y number The y-axis location.

width number The width of the rectangle.

height number The height of the rectangle.

PrizmDoc Viewer v13.17 828

©2021 My Company. All Rights Reserved.

See:

See:

See:

onDone string <optional> An event name to trigger, in the style of module:event-
store~onDoneCallback. It should provide a date string as the event's
data attribute.

module:event-store~eventCallback

module:event-store~onDoneCallback

CreateSignature

Triggers a user request to apply a signature to a field.

Properties:

Name Type Attributes Description

category string <optional> The field type that this signature belongs to. If undefined, no
category will be assigned. Known values for this are signature
and initials.

signatureType string <optional> The type of signature being created, as represented by the target
mark. Possible values are FreehandSignature and
TextSignature. When this value is not defined, a good
experience would be to allow the user to choose.

onDone string <optional> An event name to trigger, in the style of module:event-
store~onDoneCallback. It should provide a signature object as the
data attribute with the data returned from
PCCViewer.SignatureControl, or undefined to signal that
the user cancelled the action.

module:event-store~eventCallback

module:event-store~onDoneCallback

DeleteFields

Triggers deletion of the given fields.

Properties:

Name Type Description

markIds Array An array of Mark IDs to delete.

module:event-store~eventCallback

Example

Name Type Attributes Description

PrizmDoc Viewer v13.17 829

©2021 My Company. All Rights Reserved.

See:

See:

See:

viewer.eventStore.trigger('DeleteFields', {
 markIds: [1, 2, 3]
});

DeselectAllTemplateFields

Indicates that all previously selected fields are now deselected.

module:event-store~eventCallback

DisplayForm

Indicates that a module:state-store~FormDefinition is available for displaying on the document.

Properties:

Name Type Description

formDefinition module:state-
store~FormDefinition

Provides the form definition as the data
parameter.

module:event-store~eventCallback

Example

viewer.eventStore.on('DisplayForm', function(ev,
formDefinition) {
 // logic to convert the form data to visible marks on
the document
 createMarksForFormData(formDefinition.formData);
});

DuplicateFields

Triggers duplication of the given fields.

Properties:

Name Type Description

markIds Array An array of Mark IDs to duplicate.

module:event-store~eventCallback

Example

PrizmDoc Viewer v13.17 830

©2021 My Company. All Rights Reserved.

See:

See:

See:

viewer.eventStore.trigger('DuplicateFields', {
 markIds: [1, 2, 3]
});

FocusChecklistItem

Indicates that an item in the checklist has been focused.

Properties:

Name Type Attributes Description

markId string <optional> The ID of the mark that corresponds to the focused checklist item.

module:event-store~eventCallback

FormatDate

Triggers a request to format a given date using the default format.

Properties:

Name Type Attributes Description

data Date The Date object to convert to the signatureDateFormat. This format can be
defined in the form definition. If signatureDateFormat is not defined,
MM/DD/YYYY is used.

onDone string <optional> An event name to trigger, in the style of module:event-
store~onDoneCallback. It should provide a date string as the event's data
attribute.

module:state-store~FieldList

external:"jQuery.fn"~DateFormat

module:event-store~eventCallback

module:event-store~onDoneCallback

FormCopied

Indicates that the current form has successfully been copied.

module:event-store~eventCallback

FormLoaded

Indicates that a form has been loaded from the server.

PrizmDoc Viewer v13.17 831

©2021 My Company. All Rights Reserved.

See:

See:

See:

module:event-store~eventCallback

KeyCombinationsTriggered

Indicates that the user pressed the keyboard key combinations.

Properties:

Name Type Description

state string This should always be defined as the string "KeyCombinationsTriggered".

stateValue Object An object containing data about the key combination.

Properties

Name Type Description

keyCombinations string A string property containing keyboard
keyCombinations that were pressed by the user.

module:event-store~eventCallback

module:event-store#event:RegisterKeyCombinations

ManageSignatures

Triggers a user request to manage signatures in a list.

Properties:

Name Type Attributes Description

category string <optional> The field type that this signature belongs to. When defined,
only the signatures belonging to that category should be
displayed. If undefined, all known signatures should be
displayed. Known values for this are signature and
initials.

selectedSignature Object <optional> An object, consisting of the signature data (as returned by
PCCViewer.SignatureControl), defining the signature
that the user has selected. Unless the user changes the
signature, this data should be returned in the onDone event
as the signature data.

onDone string <optional> An event name to trigger, in the style of module:event-
store~onDoneCallback. It should provide a signature object
as the data attribute with the data returned from
PCCViewer.SignatureControl, or undefined to signal
that the user has removed the selected signature.

module:event-store~eventCallback

PrizmDoc Viewer v13.17 832

©2021 My Company. All Rights Reserved.

See:

See:

module:event-store~onDoneCallback

MatchSizeFields

Triggers changing width or height depending on direction (horizontal/vertical) of all selected fields to
match that dimension of a field, selected first.

Properties:

Name Type Description

markIds Array An array of Mark IDs to apply the change to.

direction string Determines which dimension (width or height) to change.

module:event-store~eventCallback

Example

viewer.eventStore.trigger('MatchSizeFields', {
 markIds: [1, 2, 3],
 direction: 'vertical'
});

ModifyMultipleTemplateFields

Indicates that multiple template fields need to be modified.

Properties:

Name Type Description

markIds array An array of currently selected Mark IDs.

module:event-store~eventCallback

ModifyState

Indicates that a module or external code would like to modify a known state value. Generally, a module
should not listen to this event. It is handled by StateStore, which will in turn fire module:event-
store#event:StateModified, to notify all other modules that a new state value is available.

Properties:

Name Type Attributes Default Description

state string The name of the state being modified.

stateValue * The new value of the state.

PrizmDoc Viewer v13.17 833

©2021 My Company. All Rights Reserved.

See:

See:

See:

operation string <optional> "extend" Specifies how the modification should occur. By default, any
modification will extend the current state, merging any
additional values from stateValue into the current state
that is stored in the State Store. You can also specify
"replace" as the operation value, causing the old state to
be discarded, and the exact value of stateValue to
become the current state.

module:state-store

module:event-store#event:StateModified

module:event-store~eventCallback

ModifyTemplateField

Indicates that a template field needs to be modified.

Properties:

Name Type Description

markId string The ID of the mark that corresponds to the template field.

module:event-store~eventCallback

Notify

Triggers a notification.

Properties:

Name Type Attributes Default Description

type String The type of notification, either "error" or "success".

message String The message of the notification.

displayTime Number <optional> 0 The amount of time (in milliseconds) to display the
notification. If a positive number is not specified, then the
notification is displayed until the user closes it.

module:event-store~eventCallback

Example

viewer.eventStore.trigger('Notify', {
 type: 'error',
 message: 'An error occurred.'

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 834

©2021 My Company. All Rights Reserved.

See:

See:

See:

See:

});

PersistSignatures

Triggers a manual save of the signatures. It will save all signatures currently in the
PCCViewer.Signatures collection.

module:event-store~eventCallback

RegisterKeyCombinations

Requests registration of a new keyboard key combination.

Properties:

Name Type Description

state string This should always be defined as the string "KeyCombinations".

stateValue Object An object containing data about the key combination.

Properties

Name Type Description

keyCombinations string Keyboard key combinations when pressed would
trigger KeyCombinationsTriggered event.

module:event-store~eventCallback

module:event-store#event:KeyCombinationsTriggered

SaveTemplate

Indicates that the user needs to save the form template in its current state.

module:event-store~eventCallback

SaveTemplateCopy

Indicates that the user needs to save a new copy of the form template in its current state. This event is
implemented to convert the viewer into using the newly created copy when the copying is complete.

module:event-store~eventCallback

SelectTemplateField

Indicates that a template field needs to be selected.

PrizmDoc Viewer v13.17 835

©2021 My Company. All Rights Reserved.

See:

See:

See:

Properties:

Name Type Description

markId string The ID of the mark that corresponds to the template field.

module:event-store~eventCallback

StateModified

Indicates that a state value has been modified. This event should only be fired by the StateStore module. It
has the following data properties:

Properties:

Name Type Description

state string The name of the state that was modified.

stateValue * The current value of the state that was modified.

module:state-store

module:event-store#event:ModifyState

module:event-store~eventCallback

Example

viewer.eventStore.on('StateModified', function(ev, data){
 if (data.state !== 'MyStateKey') { return; }

 // handle the state change here
});

TemplateSaved

Indicates that a template successfully saved.

module:event-store~eventCallback

Example

viewer.eventStore.trigger('TemplateSaved');

TemplateSaveFailed

Indicates that a template failed to save.

PrizmDoc Viewer v13.17 836

©2021 My Company. All Rights Reserved.

See:

See:

module:event-store~eventCallback

Example

viewer.eventStore.trigger('TemplateSaveFailed');

ToggleChecklist

Triggers the checklist to toggle open or closed.

module:event-store~eventCallback

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: field-edit

Provides UI showing the settings of a form field and allowing the user to edit the form field.

Fires:

module:event-store#event:ModifyState

module:event-store#event:DeleteFields

module:event-store#event:DuplicateFields

Listens to Events:

module:event-store#event:ModifyTemplateField

module:event-store#event:ModifyMultipleTemplateFields

module:event-store#event:DeselectAllTemplateFields

Example

var FieldEdit = require('field-edit.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFieldEdit = FieldEdit(this, {

Module: field-edit

PrizmDoc Viewer v13.17 837

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

 elem: document.getElementById('myFieldEdit')
 });
}

(require("field-edit"))(viewer, options)

Creates the field editing UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: field-list

Manages a list of fields and allows drag and drop reordering.

Fires:

module:event-store#event:SelectTemplateField

Listens to Events:

module:event-store#event:StateModified for "FieldList" state.

Example

var FieldList = require('field-list.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFieldList = FieldList(this, {

Module: field-list

PrizmDoc Viewer v13.17 838

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

 elem: document.getElementById('myFieldList')
 });
}

(require("field-list"))(viewer, options)

Creates the field list UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: fill-checklist

Displays a list of fields to be completed in the form. As fields are completed, the icon in the checklist item
will be updated to reflect the completed state.

Fires:

module:event-store#event:ToggleChecklist

module:event-store#event:FocusChecklistItem

Listens to Events:

Module: fill-checklist

PrizmDoc Viewer v13.17 839

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

module:event-store#event:StateModified

Example

var FillChecklist = require('fill-checklist.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFillChecklist = FillChecklist(this, {
 elem: document.getElementById('myChecklist')
 });
}

(require("fill-checklist"))(viewer, options)

Creates the checklist UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: fill-form-controller

Controls the form. It handles various tasks such as creation of marks, how marks are visually represented,
keyboard controls, and field focus management.

Module: fill-form-controller

PrizmDoc Viewer v13.17 840

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

(require("fill-form-controller"))(viewer)

Creates the form controller module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Fires:

module:event-store#event:ModifyState

module:event-store#event:FormLoaded

module:event-store#event:RegisterKeyCombinations

module:event-store#event:CreateDate

module:event-store#event:ManageSignatures

module:event-store#event:CreateSignature

module:event-store#event:Notify

module:event-store#event:FormatDate

Listens to Events:

module:event-store#event:DisplayForm

module:event-store#event:StateModified

module:event-store#event:FocusChecklistItem

module:event-store#event:KeyCombinationsTriggered

module:event-store#event:BurnForm

Example

var FillFormController = require('fill-form-
controller.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFillFormController = FillFormController(this);
}

Methods

destroy()

PrizmDoc Viewer v13.17 841

©2021 My Company. All Rights Reserved.

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: fill-main-toolbar

Manages the form's main toolbar.

Fires:

module:event-store#event:ModifyState

Listens to Events:

module:event-store#event:ToggleChecklist

Example

var FillMainToolbar = require('fill-main-toolbar.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFillMainToolbar = FillMainToolbar(this, {
 elem: document.getElementById('myFillMainToolbar')
 });
}

(require("fill-main-toolbar"))(viewer, options)

Creates the main toolbar module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Module: fill-main-toolbar

PrizmDoc Viewer v13.17 842

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Name Type Description

Module: fill-progress

Shows the progress of how many fields have been filled and how many are remaining. If there are required
fields, a progress bar indicates the progress of required fields that have been filled. If there are optional
fields, text below the progress bar indicates how many optional fields are left.

Listens to Events:

module:event-store#event:StateModified for "FieldList" state.

Example

var FillProgress = require('fill-progress.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFillProgress = FillProgress(this, {
 elem: document.getElementById('myFillProgress')
 });
}

(require("fill-progress"))(viewer, options)

Creates the fill progress UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Module: fill-progress

PrizmDoc Viewer v13.17 843

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Name Type Description

Module: form-controller

This module interfaces with ViewerControl in order to display the fields being created, as well as
update field positioning data. It is in charge of translating between FieldList field objects and
ViewerControl mark objects whenever necessary.

Fires:

module:event-store#event:ModifyState

module:event-store#event:FormLoaded

module:event-store#event:ModifyTemplateField

module:event-store#event:ModifyMultipleTemplateFields

module:event-store#event:DeselectAllTemplateFields

Listens to Events:

module:event-store#event:StateModified for the "FieldList" state.

module:event-store#event:DisplayForm

module:event-store#event:AlignFields

module:event-store#event:DeleteFields

Module: form-controller

PrizmDoc Viewer v13.17 844

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

module:event-store#event:DuplicateFields

module:event-store#event:MatchSizeFields

module:event-store#event:ModifyMultipleTemplateFields

module:event-store#event:SelectTemplateField

module:event-store#event:FormLoaded

module:event-store#event:FormCopied

module:event-store#event:SaveTemplate

module:event-store#event:SaveTemplateCopy

Example

var FormController = require('form-controller.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFormController = FormController(this);
}

(require("form-controller"))(viewer)

Creates the form controller module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: form-extraction

Module: form-extraction

PrizmDoc Viewer v13.17 845

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Performs detection and extraction of form data (such as PDF AcroForm fields) in the document.

When viewer is ready, this module sends a request to determine if the document in a viewing session has
acroforms or may contain raster forms. If so, the module provides a modal dialog to cancel or attempt
form extraction. The process to get results of the extraction can be cancelled once started. Users are
notified of successful conversion and unsupported field types with appropriate popup messages. Errors,
occurring during form extraction, are displayed in the same modal dialog, which starts the conversion.

Fires:

module:event-store#event:DisplayForm

module:event-store#event:Notify

module:event-store#event:ModifyState

Example

var FormExtraction = require('form-extraction.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFormExtraction = FormExtraction(this, {
 elem: document.getElementById('formExtraction')
 });
}

(require("form-extraction"))(viewerObj, options)

Creates the form extraction module.

Parameters:

Name Type Description

viewerObj Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 846

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Module: form-summary

This module interfaces with the FieldList state to create a new state. The module will merge groups with fields
into a central form summary that can be used by other modules to show the status of the form and the
fields/groups that it consists of.

Fires:

module:event-store#event:ModifyState

Listens to Events:

module:event-store#event:StateModified for the "FieldList" state.

Example

var FormSummary = require('form-summary.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFormSummary = FormSummary(this);
}

(require("form-summary"))(viewer)

Creates the form summary module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Methods

destroy()

Destroys the module.

Module: form-summary

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 847

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Module: form-tools

Manages the form tools. Selecting a tool determines how the mouse interacts with the document. For
example, selecting the Pan tool allows the user to scroll the document by clicking on it and dragging the
mouse. Selecting the Signature tool allows the user to use the mouse to create a signature field. After a
signature field is added, the Pan tool is automatically selected. The user can click a field tool twice to put it
into "sticky" state so that the tool remains selected after adding a field.

Example

var FormTools = require('form-tools.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myFormTools = FormTools(this, {
 elem: document.getElementById('myFormTools')
 });
}

(require("form-tools"))(viewer, options)

Creates the form tools UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Module: form-tools

PrizmDoc Viewer v13.17 848

©2021 My Company. All Rights Reserved.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: global-settings-menu

Manages global template settings.

Fires:

module:event-store#event:ModifyState for "GlobalSettings" and "FieldList" state

Listens to Events:

module:event-store#event:AccessGlobalSettings

Example

var GlobalSettingsMenu = require('global-settings-
menu.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myGlobalSettingsMenu = GlobaSettingsMenu(this, {
 elem:
document.getElementById('myGlobalSettingsMenu')
 });
}

(require("global-settings-menu"))(viewer, options)

Creates the global settings menu module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Module: global-settings-menu

PrizmDoc Viewer v13.17 849

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: global-settings-trigger

triggers .

Example

var GlobalSettingsTrigger = require('global-settings-
trigger.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myGlobalSettings = GlobalSettingsTrigger(this, {
 elem: document.getElementById('myGlobalSettings')
 });
}

(require("global-settings-trigger"))(viewer, options)

Creates the global settings trigger UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options abject.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Module: global-settings-trigger

PrizmDoc Viewer v13.17 850

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: keyboard-controller

Controls the keyboard keys. This module uses jQuery.hotkeys plugin. If desired it can be replaced with any
other keyboard interface code without affecting the keyboard consumer modules.

Fires:

module:event-store#event:KeyCombinationsTriggered

Listens to Events:

module:event-store#event:RegisterKeyCombinations for "KeyCombinations" state

Example

var KeyboardController = require('keyboard-controller.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myKeyboardController = KeyboardController(this);
}

(require("keyboard-controller"))(viewer)

Creates the keyboard controller module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Methods

Module: keyboard-controller

PrizmDoc Viewer v13.17 851

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc
https://github.com/jeresig/jquery.hotkeys

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: multiple-selection

Provides UI showing bulk actions to be completed on a selection of more than one field.

Fires:

module:event-store#event:AlignFields

module:event-store#event:DeleteFields

module:event-store#event:DuplicateFields

module:event-store#event:MatchSizeFields

Listens to Events:

module:event-store#event:ModifyTemplateField

module:event-store#event:DeselectAllTemplateFields

module:event-store#event:ModifyMultipleTemplateFields

Example

var MultipleSelection = require('multiple-selection.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myMultipleSelection = MultipleSelection(this, {
 elem:
document.getElementById('myMultipleSelection')
 });
}

(require("multiple-selection"))(viewer, options)

Creates the multiple selection UI module.

Module: multiple-selection

PrizmDoc Viewer v13.17 852

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: notification

Displays a notification.

Listens to Events:

module:event-store#event:Notify

Example

var Notification = require('notification.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myNotification = Notification(this, {
 elem: document.getElementById('myNotification')
 });
}

Module: notification

PrizmDoc Viewer v13.17 853

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

(require("notification"))(viewer, options)

Creates the notification UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: page-navigation

Navigates pages.

(require("page-navigation"))(viewer, options)

Creates the page navigation UI module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Module: page-navigation

PrizmDoc Viewer v13.17 854

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Example

var PageNavigation = require('page-navigation.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myPageNav = PageNavigation(this, {
 elem: document.getElementById('myPageNav')
 });
}

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Name Type Description

Module: profile-manager

Provides the ability to create and manage signatures.

(require("profile-manager"))(viewer, options)

Created the profile manager module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options abject.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Module: profile-manager

PrizmDoc Viewer v13.17 855

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Listens to Events:

module:event-store#event:CreateSignature

module:event-store#event:ManageSignatures

Example

var ProfileManager = require('profile-manager.js');

// a generic Viewer constructor
var myProfileManager = ProfileManager(this, {
 elem: document.getElementById('myProfileManager')
});

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: state-store

The state store can keep track of any JSON-style data object for other modules to access and use.

The state store is used as centralized data storage for all modules, especially when concerning data that is
shared among 2 or more modules. When individual modules need to update specific data, modifications
through the state store ensure that other modules that need to be aware of the latest available data can
do so without specific input from the module changing it.

The state store can store any number of states, as defined by a data string. See module:event-
store#event:ModifyState. It is able to associate any data object with that particular state, although it is
optimized to store key-value Objects.

(require("state-store"))(viewer)

Creates and initializes the state store.

Parameters:

Module: state-store

PrizmDoc Viewer v13.17 856

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Name Type Description

viewer Core The core viewer to which the module will attach.

Fires:

module:event-store#event:StateModified

Listens to Events:

module:event-store#event:ModifyState

Example

var StateStore = require('state-store.js');

// a generic Viewer constructor
function Viewer(opts) {
 // other modules will expect this to be present
 this.stateStore = StateStore(this);
}

Members

(inner) FieldList

The known set of fields and metadata on the form.

Properties:

Name Type Attributes Default Description

templateDocumentId string The unique id used to determine which document belongs to the form. The
loaded if this value is not defined.

formName string <optional> "" The display name of the form.

formDefinitionId string <optional> The unique id to use to save the form to the server.

formRoles Object <optional> A hash object used to store and access the metadata for each role in the fo
hash object is the formRoleId of the form role.

Properties

Name Type Description

formRoleId string The id of the form role.

displayName string A friendly name for the form role.

fieldColor string The color to use for any field to which the form ro
pound sign followed by a 6 character hexadecima

sortIndex number A number representing the sorting order of the fo

PrizmDoc Viewer v13.17 857

©2021 My Company. All Rights Reserved.

groups Object <optional> A hash object used to store and access the metadata for each group in the
hash object is the groupId of the group.

Properties

Name Type Attributes Description

groupId string The id of the group.

displayName string A friendly name for the group.

type string The data type of the group. Possible

checkbox

data Object Data associated with the group.

Properties

Name Type

multiple boolean

readOnly boolean <optional> Indicates whether this group is read
the form.

required boolean <optional> Indicates whether this group is requ
form.

formRoleId string <optional> The form role id associated with the

fieldList Object A hash object used to store and access the metadata for each field in the fo
hash object is the markId of the viewer mark.

Properties

Name Type Attributes Description

markId number The viewer mark associate

fieldId string A unique id for that field.

displayName string A friendly name for the fie

template string The data type of the field.

required boolean Indicates whether this field
completing the form.

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 858

©2021 My Company. All Rights Reserved.

readOnly boolean Indicates whether this field
completing the form.

horizontalAlignment string Indicates the horizontal A
within the field Possible va

sortIndex number A number representing th
field, when displaying an o

pageNumber number The page number where t

pageData Object Represents metadata abo
time when the field rectan
updated.

Properties

Name

width

height

rectangle Object The location of the field o

Properties

Name

x

y

width

height

fontName string <optional> The font name to use for
DateTemplate

fontColor string <optional> The font color to use for
DateTemplate

followed by a 6 character
code.

multiline boolean <optional> Indicates whether or not t
This property is only used
fields.

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 859

©2021 My Company. All Rights Reserved.

characterLimit number <optional> The amount of characters
in a TextTemplate
greater than or equal to 0
maximum number of char
text field when completing
indicating that there is no

formRoleId string <optional> The id of the form role ass

groupId string <optional> The id of the group that c

defaultValue string |
Object

<optional> The default value of the fi
the form is loaded. If it is a
value should be a string. I
it should be an ISO forma
2016-11-16T18:23:08.030Z
dictated by the
globalSettings.signatureD
it is a CheckboxTemplate,
"checked". If it is a signatu
object with the following p

Properties

Name

type

value

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 860

©2021 My Company. All Rights Reserved.

fontName

value string |
Object

<optional> The value of the field. This
in the ESigner
not been filled out. If it is
value should be a string. I
it should be an ISO forma
2016-11-16T18:23:08.030Z
dictated by the
globalSettings.signatureD
it is a CheckboxTemplate,
"checked". If it is a signatu
object with the following p

Properties

Name

type

value

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 861

©2021 My Company. All Rights Reserved.

3 4

fontName

globalSettings Object Settings that apply globally to the template.

Properties

Name Type

signatureDateFormat external:"jQuery.fn"~DateFormat

Example

var fieldList = viewer.stateStore.getState('FieldList');

(inner) FormDefinition

Defines the schema of the template form that is saved to the server, including all of the metadata required
to load and recreate the form.

Properties:

Name Type Attributes Default Description

templateDocumentId string The unique id used to determine which document
belongs to the form. The form cannot be loaded if
this value is not defined.

formName string <optional> "" The display name of the form.

formDefinitionId string <optional> The unique id to use to save the form to the
server.

formRoles Array <optional> The data here is similar to the formRoles

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 862

©2021 My Company. All Rights Reserved.

property of module:state-store~FieldList, but
represented as an array to be saved to the server.
This array will be used to rebuild the formRoles
object when a FormDefinition is loaded into
the viewer.

groups Array <optional> The data here is similar to the groups property of
module:state-store~FieldList, but represented as
an array to be saved to the server. This array will
be used to rebuild the groups object when a
FormDefinition is loaded into the viewer.

formData Array The data here is similar to the fieldList
property of module:state-store~FieldList, but
represented as an array to be saved to the server.
This array will be used to rebuild the FieldList
object when a FormDefinition is loaded into
the viewer. As such, some properties of
FieldList.fieldList are excluded when
generating the FormDefinition.formData.
These exclusions are markId and sortIndex.

globalSettings Object An instance of the module:state-
store~GlobalSettings object used for this form.

(inner) PageData

Defines the set of currently known pages -- ones that have loaded at least once in the viewer -- and their
sizes. It is a hash object, using the page number as the object key, and the following properties as the
object value.

Properties:

Name Type Description

width number The width of the page.

height number The height of the page.

Methods

destroy()

Destroys the instance of the State Store.

getState(key) → {*|undefined}

Gets the current state.

Name Type Attributes Default Description

PrizmDoc Viewer v13.17 863

©2021 My Company. All Rights Reserved.

Parameters:

Name Type Description

key string The name of the state value being retrieved.

Returns:

The state value associated with the specified key or undefined if the state value does not exist.

Type
* | undefined

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: svg-icons

This module appends the icons to the document body. If this module is initialized twice, the icons are not
appended since they only need to be appended once.

Members

(inner) moduleApi

Properties:

Name Type Description

destroy function Destroys the module.

Methods

init() → {module:svg-icons~moduleApi}

Initializes the module. This method will insert the SVG icon sprite into the body of the page. This sprite can
be shared between multiple instances of the viewer embedded on the same page.

Returns:

Module: svg-icons

PrizmDoc Viewer v13.17 864

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

The module API object.

Type
module:svg-icons~moduleApi

parseIcons(dom)

Parses icons. For any HTML template that contains icons, this method must be called with the HTML
template passed as the parameter. Note that the init method must be called before calling parseIcons.

Parameters:

Name Type Description

dom HTMLElement A parent DOM element, or jQuery-wrapped element, that contains the icons that
need to be parsed.

(inner) module:svg-icons#updateIcon Parses a single icon.(elem)

Parameters:

Name Type Description

elem HTMLElement The icon that needs to be parsed.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: template-io

Manages the saving and loading of template files.

Fires:

module:event-store#event:ModifyState

module:event-store#event:DisplayForm

module:event-store#event:FormCopied

module:event-store#event:TemplateSaved

module:event-store#event:TemplateSaveFailed

Module: template-io

PrizmDoc Viewer v13.17 865

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Listens to Events:

module:event-store#event:SaveTemplate

module:event-store#event:SaveTemplateCopy

Example

var TemplateIO = require('template-io.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myTemplateIO = TemplateIO(this);
}

(require("template-io"))(viewer)

Creates the template IO module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: template-manager

Provides a UI to name and save templates.

(require("template-manager"))(viewer, options)

Creates the template manager module.

Parameters:

Module: template-manager

PrizmDoc Viewer v13.17 866

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Fires:

module:event-store#event:ModifyState

module:event-store#event:SaveTemplate

module:event-store#event:Notify

Listens to Events:

module:event-store#event:FormLoaded

module:event-store#event:FormCopied

module:event-store#event:TemplateSaved

module:event-store#event:TemplateSaveFailed

Example

var TemplateManager = require('template-manager.js');

// a generic Viewer constructor
function Viewer(opts) {
 var myTemplateManager = TemplateManager(this, {
 elem: document.getElementById('myTemplateManager')
 });
}

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 867

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Module: template-name-header

Provides the ability to display the currently loaded template name as a header.

Listens to Events:

module:event-store#event:DisplayForm

Example

var TemplateNameHeader = require('template-name-
header.js');

// a generic Viewer constructor
 var myTemplateNameHeader = TemplateNameHeader(this, {
 elem: document.getElementById('myTemplateHeader')
 });

(require("template-name-header"))(viewer, options)

Created the template name header module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options abject.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Module: template-name-header

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

PrizmDoc Viewer v13.17 868

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Module: text-input

A text input.

Examples

<!--The following HTML includes a text input component.
An element is specified as a text input by setting the
data-pcc-component attribute
to "textinput".-->
<div data-pcc-component="textinput" data-pcc-
name="displayName" class="pcc-textbox"></div>

// Require the text input module.
var TextInput = require('../elements/text-input.js');

// Pass each text input element to the text input module to
initialize each text input.
// parent is the element that contains the text input
element.
$(parent).find('[data-pcc-
component="textinput"]').each(function() {
 TextInput(this);
});

(require("text-input"))(el) → {HTMLElement}

Parses and initalizes a text input.

Parameters:

Name Type Description

el HTMLElement The parent element in which to parse for the text input component.

Returns:

The parsed text input element.

Type
HTMLElement

Module: text-input

PrizmDoc Viewer v13.17 869

©2021 My Company. All Rights Reserved.

Members

off :module:event-store~off

Removes an event handler from the text input.

Type:

module:event-store~off

on :module:event-store~on

Registers an event handler on the text input.

Type:

module:event-store~on

Methods

destroy()

Destroys the text input component.

focus()

Focuses the text input component

hideError() → {HTMLElement}

Removes the text below the text input if showError was called previously to show text below the text input.

Returns:

The text input element.

Type
HTMLElement

showError(error) → {HTMLElement}

Shows the specified text below the text input.

Parameters:

PrizmDoc Viewer v13.17 870

©2021 My Company. All Rights Reserved.

Name Type Description

error string The error text to show below the text input.

Returns:

The text input element.

Type
HTMLElement

value(text) → {Object}

Gets or sets the value of the text input.

Parameters:

Name Type Description

text string The text to show in the text input.

Returns:

The text input element if a value is passed. Otherwise, the current value is returned.

Type
Object

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Module: zoom-fit

Zooms and fits the document. This module will allow the user to zoom in and out, set a specific scale factor,
or set a page fit mode that will be maintained when the browser window is resized.

Example

var ZoomFit = require('zoom-fit.js');

// a generic Viewer constructor

Module: zoom-fit

PrizmDoc Viewer v13.17 871

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

function Viewer(opts) {
 var myZoomFit = ZoomFit(this, {
 elem: document.getElementById('myZoomFit')
 });
}

(require("zoom-fit"))(viewer, options)

Creates the zoom and fit module.

Parameters:

Name Type Description

viewer Core The core viewer to which the module will attach.

options Object An options object.

Properties

Name Type Description

elem HTMLElement The element in which the module UI will be inserted.

Methods

destroy()

Destroys the module.

Documentation generated by JSDoc 3.5.5 on Mon Jun 14 2021 12:02:27 GMT-0400 (Eastern Daylight Time)

Cloud Authentication

Overview
This section contains the following information on the PrizmDoc Cloud specific APIs:

Authenticating Requests
OAuth

NOTE: The APIs in this section are for PrizmDoc Cloud users only and do not apply to PrizmDoc Viewer
Self-Hosted users.

Authenticating Requests

PrizmDoc Viewer v13.17 872

©2021 My Company. All Rights Reserved.

https://github.com/jsdoc3/jsdoc

Introduction
When using PrizmDoc Cloud, you must authenticate all HTTP requests. You can do this in one of two different
ways:

Using Your API Key
Using OAuth

Using Your API Key
Include an acs-api-key header with your API key as the value.

Example

POST https://api.accusoft.com/PCCIS/V1/ViewingSession acs-api-key: <your key
here>
Content-Type: application/json
{
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 }
}

To obtain an API key, visit https://www.accusoft.com/portal/.

Using OAuth
To facilitate granular access to PrizmDoc Cloud account data, especially document storage, another level of
authorization must be implemented to further identify requests. The OAuth 2.0 specification allows for this type of
authorization. Using OAuth, PrizmDoc Cloud can not only authorize a request via the PrizmDoc Cloud API key, but
also by custom user information provided by clients. Ultimately, this will allow for the creation of rules by PrizmDoc
Cloud customers to limit access to various resources.

OAuth Authorization Method

Per the OAuth spec, PrizmDoc Cloud implements the client credentials grant method. This relies on authentication
through the PrizmDoc Cloud API key. See: https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4. By default, the
expire time for the access token is set to one day. Initially at least, the use of OAuth necessitates the use of server-
side code for the creation of the access tokens. For more information, see the OAuth API reference.

OAuth

OAuth
Using OAuth, PrizmDoc Cloud can not only authorize a request via the PrizmDoc Cloud API key, but also by custom
user information. Ultimately, this will allow you to create rules to limit access to various resources.

PrizmDoc Viewer v13.17 873

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/portal/
https://www.rfc-editor.org/rfc/rfc6749.html#section-4.4

Available URLs

URL Description

POST
/v1/authTokens

Retrieves an authorization token that can be used to authenticate calls to PrizmDoc Cloud
Services.

POST /v1/authTokens
Retrieves an authorization token that can be used to authenticate calls to PrizmDoc Cloud Services.

Request

Request Headers

Name Description

acs-api-key Required {{api-key}}

Content-Type Required application/x-www-form-urlencoded

Request Body

grant_type=client_credentials&scope={client customer user id} {client custom
role}

Successful Response

Response Body

Success returns code 200 - OK

Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

Error Responses

Status Code JSON errorCode Description

400 "Bad Request" Returned when data is incorrect within body of the request.

401 "Unauthorized" Returned when the key provided in the acs-api-key is incorrect or missing.

Examples

Request

grant_type=client_credentials&scope={client customer user id} {client custom
role}

PrizmDoc Viewer v13.17 874

©2021 My Company. All Rights Reserved.

grant_type=client_credentials&scope=userid:1234 role:admin

Response

Successful Response

{
 "access_token": "{valid access token}",
 "token_type": "acs-oauth",
 "expires_in": {time in seconds},
 "scope": {requested scope} // user:{useridValue} role:{roleValue}
}

{
 "access_token": "PrizmDoc Cloud-Hosted-ACCESS-TOKEN",
 "token_type": "acs-oauth",
 "expires_in": 3600,
 "scope": "userid:1234 role:admin"
}

Error Response

{
 "error": "invalid_request" // error code definitions: https://www.rfc-
editor.org/rfc/rfc6749.html#section-5.2
}

PAS REST API

Overview
The PAS REST API supports viewing functionality.

For automated document processing that does not involve a viewer, use the PrizmDoc Server REST API instead.

General Information
Base URL for PAS
API Data Types
Back-end Proxy

Areas of Functionality
The PAS REST APIs can be broken into three main groups:

PrizmDoc Viewer v13.17 875

©2021 My Company. All Rights Reserved.

Application Development

These are the REST APIs you will most-commonly use:

Viewing Sessions
Viewing Package Creators
Viewing Packages

Self-Hosted Administration

This REST API is useful if you are self-hosting PAS instances:

Health

Viewer Support

These REST APIs are used by our viewer. It is uncommon for your application to need to use them:

Attachments
Content Converters
Content Converters (Deprecated)
Form Definitions
Form Extractors
Image Stamps
Legacy Create Session
Markup Burners
Markup Layers
Markup XML
Search Tasks

General Information
This section contains the following information:

Base URL for PAS
API Data Types
Back-end Proxy

Base URL for PAS

Introduction
When making REST API calls to PAS, you need to use the appropriate base URL.

PrizmDoc Cloud PAS
If you are using the Accusoft-managed PAS which is part of PrizmDoc Cloud, the base URL for the PAS REST APIs
varies depending on your region:

Region PAS Base URL

United States https://api.accusoft.com/prizmdoc

PrizmDoc Viewer v13.17 876

©2021 My Company. All Rights Reserved.

Note the trailing /prizmdoc at the end of the base URL. When using the Accusoft-managed PAS which is part of
PrizmDoc Cloud, this is a required part of the base URL.

Remember that PrizmDoc Cloud requires you to authenticate each request with an acs-api-key request header.

Self-Hosted PAS
When hosting PAS yourself, just use the hostname and port of your PAS instance (or the hostname and port of the
load balancer which sits in front of your PAS cluster).

For a typical installation on localhost, the PAS base URL will be:

http://localhost:3000

API Data Types

Introduction
Prizm Application Services REST API uses a data type system that is slightly more detailed and more specific than
JavaScript's common data types (integer, date, and dateTime). These data types are used for defining properties of
the JSON objects in the body of the POST requests and in the body of the responses where applicable.

The table below shows the supported data types by the API:

Type Description Example

number Any number. This
includes numbers
with or without
decimals.

1000.15 or 1500

integer whole numbers
only

120

boolean true or false
(without quotes)

true or false

date This is the ISO 8601
profile for the full-
date as described
in the RFC 3339
section 5.6, Internet
Date/Time Format.
The syntax for full-
date as described
in this document is
as full-date =
YYYY(4 digits)

"-" MM(01

through 12) "-

" DD(01

through 31)

2015-05-12

dateTime This is the ISO 8601 November 5, 2015, 8:15:30 am, US Eastern Standard Time : 2015-11-

PrizmDoc Viewer v13.17 877

©2021 My Company. All Rights Reserved.

http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#ISO8601
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#ISO8601

profile for the date-
time as described
in the RFC 3339
section 5.6, Internet
Date/Time Format.
The date-time
syntax described in
this document is
date-time =

YYYY "-" MM "-

" DD "T" hh(00

through 23)

":" mm(00

through 59)

":" ss(00

through 59)

"Z" / ("+" /

"-") hh(00

through 23)

":" mm(00

through 59). This
profile defines two
ways of handling
time zone offsets:

1. Times are
expressed in
UTC
(Coordinated
Universal
Time), with a
special UTC
designator
("Z").

2. Times are
expressed in
local time,
together
with a time
zone offset
in hours and
minutes. A
time zone
offset of
"+hh:mm"
indicates
that the
date/time
uses a local

November 5, 2015, 8:15:30 am, US Eastern Standard Time : 2015-11-
05T08:15:30-05:00 Same instant in UTC : 2015-11-05T13:15:30Z

Type Description Example

PrizmDoc Viewer v13.17 878

©2021 My Company. All Rights Reserved.

http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14

time zone
which is "hh"
hours and
"mm"
minutes
ahead of
UTC. A time
zone offset
of "-hh:mm"
indicates
that the
date/time
uses a local
time zone
which is "hh"
hours and
"mm"
minutes
behind UTC.

object A JSON object {"fileName": "sample.doc"}

array An array object ["one", "two", "three"]

string A sequence of zero
or more characters

"abcdefhh"

url A string which is a
URL

"http://example.com"

urlSafeBase64 A URL-safe base64
encoded string,
according to RFC
4648 Section 5

"Pqu_fKOCYd1QM5oJW6pz-suKQ-

2fuxbdZtCKcApvMFVP9GGKv99crwyXTr6AZjrC5vvi3acnZVLgyEXzA"

Type Description Example

Back-end Proxy

Introduction
The following routes are proxied through PAS to PrizmDoc Server. Many of them are direct proxies to
corresponding PrizmDoc Server routes, and more information about them can be found in the PrizmDoc Server
REST API documentation.

Routes for document viewing

GET /Document/q/Attributes?DocumentID=u{viewingSessionId}

Routes key: GetDocumentAttributes

Gets a page count for the source document of a viewing session.

PrizmDoc Viewer v13.17 879

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#section-5
https://www.rfc-editor.org/rfc/rfc4648.html#section-5

For more information, see the PrizmDoc Server endpoint GET /PCCIS/V1/Document/q/Attributes.

GET /Document/q/{PageNumberBegin}-{PageNumberEnd}/Text?DocumentID=u{viewingSessionId}

Routes key: GetPageText

Gets currently-available text and text metadata for a range of pages for the source document of a viewing session.

For more information, see the PrizmDoc Server endpoint GET /PCCIS/V1/Document/q/{PageNumberBegin}-
{PageNumberEnd}/Text.

GET /v2/viewingSessions/{viewingSessionId}/revisionData?limit={limit}&continueToken=
{continueToken}

Routes key: GetDocumentRevisionData

Gets objects which describe known changes between the two documents used as input to a comparison viewing
session.

For more information, see the PrizmDoc Server endpoint GET /v2/viewingSessions/{viewingSessionId}/revisionData.

GET /Page/q/{pageNumber}?DocumentID=u{viewingSessionId}

Routes key: GetPage

Gets SVG or an image for a page of the source document of a viewing session.

For more information, see the PrizmDoc Server endpoint GET /PCCIS/V1/Page/q/{PageNumber}.

GET /Page/q/{pageNumber}/Tile/{x}/{y}/{width}/{height}?DocumentID=u{viewingSessionId}

Routes key: GetPageTile

Gets a "tile" image, a part of a page, for a page of the source document of a viewing session.

For more information, see the PrizmDoc Server endpoint GET
/PCCIS/V1/Page/q/{PageNumber}/Tile/{x}/{y}/{width}/{height}.

GET /Page/q/{pageNumber}/Attributes?DocumentID=u{viewingSessionId}

Routes key: GetPageAttributes

Gets metadata for a page of the source document of a viewing session.

For more information, see the PrizmDoc Server endpoint GET /PCCIS/V1/Page/q/{PageNumber}/Attributes.

GET /Page/q/{pageNumber}/{width}x{height}?DocumentID=u{viewingSessionId}

Routes key: GetThumbnail

Gets a thumbnail image for a page of the source document of a viewing session.

For more information, see the PrizmDoc Server endpoint GET /PCCIS/V1/Page/q/{PageNumber}/{Width}x{Height}.

Routes related to the original document

POST /ViewingSession/u{viewingSessionId}/Replacement

Routes key: CreateViewingSessionReplacement

Replaces the existing viewing session with a new one. Useful for supplying passwords on password protected
documents.

PrizmDoc Viewer v13.17 880

©2021 My Company. All Rights Reserved.

Example

POST pas_base_url/ViewingSession/uXYZ.../Replacement
Content-Type: application/json

{
 "password": "pdfPassword"
}

GET /ViewingSession/u{viewingSessionId}/SourceFile

Routes key: GetSourceFile

Downloads the original document that is being viewed.

For more information, see the PrizmDoc Server endpoint GET
/PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile.

GET /SaveDocument/q?DocumentID=u{viewingSessionId}

Routes key: SaveDocument

Downloads the original document that is being viewed, automatically setting the Content-Disposition header
with a filename based upon information given in the original POST /ViewingSession request. Like GET
/ViewingSession/u{viewingSessionId}/SourceFile, except that this endpoint does not allow you to
provide a custom ContentDispositionFilename.

This endpoint is designed for requests which originate from a browser. If you are writing server-side application
code which downloads the document from a viewing session, consider using GET
/ViewingSession/u{viewingSessionId}/SourceFile instead.

Example

GET pas_base_url/SaveDocument/q?DocumentID=uXYZ...

GET /v2/viewingSessions/{ViewingSessionID}/sourceFile/original

Routes key: GetOriginalSourceFile

Downloads the "original" (as opposed to "revised") document that is being used for a comparison session.

For more information, see the PrizmDoc Server endpoint GET
/v2/viewingSessions/{viewingSessionId}/sourceFile/original.

GET /v2/viewingSessions/{ViewingSessionID}/sourceFile/revised

Routes key: GetRevisedSourceFile

Downloads the "revised" document that is being used for a comparison session.

For more information, see the PrizmDoc Server endpoint GET
/v2/viewingSessions/{viewingSessionId}/sourceFile/revised.

GET /ViewingSession/u{viewingSessionId}/Attachments

PrizmDoc Viewer v13.17 881

©2021 My Company. All Rights Reserved.

Routes key: GetAttachments

Gets information about the document attachments (such as ones available on an eml or msg file).

For more information, see the PrizmDoc Server endpoint GET
/PCCIS/V1/ViewingSession/u{ViewingSessionID}/Attachments.

Routes for markup burning

POST /ViewingSession/u{viewingSessionId}/MarkupBurner

Routes key: CreateMarkupBurner

Creates a document burning task for the specific document in the viewing session.

For more information, see the PrizmDoc Server endpoint POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner.

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{markupBurnerId}

Routes key: PollMarkupBurner

Checks the status of the markup burning task.

For more information, see the PrizmDoc Server endpoint GET
/PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}.

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{markupBurnerId}/Document

Routes key: GetBurnedDocument

Downloads the resulting burned-in document.

For more information, see the PrizmDoc Server endpoint GET
/PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document.

GET /License/ClientViewer

Routes key: GetClientViewerLicense

NOTE: This URL has been deprecated and will be removed from the public API in a future release. It no
longer functions and returns HTTP 500 Internal Server Error.

Application Development
These are REST APIs you will most-commonly use:

Viewing Sessions
Viewing Package Creators
Viewing Packages

Viewing Sessions

Introduction
The viewing sessions REST API is used by your application every time you need to show a document with our

PrizmDoc Viewer v13.17 882

©2021 My Company. All Rights Reserved.

viewer.

A viewing session is a temporary resource. At a high level, it takes a source document as input and then, while the
viewing session exists, it is able to produce document content in a form that can be displayed in the browser.
Creating a viewing session (POST /ViewingSession) is very fast. Any document conversion work necessary will
happen in the background after the viewing session has been created.

Our viewer, running in the browser, always makes requests for document content via an existing viewing session.
So, to render HTML containing our viewer, your application must first create a viewing session. For more
information about this, see Getting Started with Document Viewing.

Available URLs

URL Description

POST /ViewingSession Creates a viewing session.

PUT /ViewingSession/u{viewingSessionId}/SourceFile Uploads a document to the session.

PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/original

Uploads original document to the comparison
viewing session.

PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/revised

Uploads revised document to the comparison
viewing session.

GET /ViewingSession/u{viewingSessionId}/SourceFile Downloads the source document in use for a viewing
session.

GET
/v2/viewingSessions/{viewingSessionId}/sourceFile/original

When viewing a comparison of two documents,
downloads the first of the two source documents.

GET
/v2/viewingSessions/{viewingSessionId}/sourceFile/revised

When viewing a comparison of two documents,
downloads the second of the two source documents.

GET /v2/viewingSessions/{viewingSessionId}/restrictions Returns information about any restrictions enforced
by the server for the current viewing session.

POST /ViewingSession/u{viewingSessionId}/Replacement Replaces a viewing session with new parameters.

POST /ViewingSession
Routes key: PostViewingSession

Creates a new viewing session. At a high level, a viewing session takes a source document as input and produces
HTML page content and document text as output.

Request

Request Headers

Name Description

Content-Type Should be application/json

Request Body

source (object) Object describing a source document where it comes from, such as local documents,

PrizmDoc Viewer v13.17 883

©2021 My Company. All Rights Reserved.

source (object) Object describing a source document where it comes from, such as local documents,
documents specified via URL, etc. Properties relevant to PrizmApplicationService will reside in this object.

When uploading the source document in a subsequent request:
type (string) Required. Set to upload.
displayName (string) Required. Unique filename, including the extension, for the document
that will be uploaded.

IMPORTANT: You must use a value which is specific for the document you
are going to upload. For optimal performance, you should NEVER use the
same value for two different documents. We use this value internally (when
running in clustered mode) to determine which machine in the cluster this
viewing session should be assigned to. This allows us to ensure that
viewing sessions with the same displayName can be consistently
assigned to the same machine in the cluster, taking advantage of
previously cached conversion output. But we are assuming you will provide
us a value which is unique for the document which you are about to
upload. If, instead, you simply use a hard-coded value for all documents,
you will mistakenly force all work to a single machine in the cluster. Make
sure this value is unique for the document you are about to upload!

markupId (string) The ID to use when querying markup with the XML and JSON layer APIs. If
one isn't passed, we create one from the other information we're given. The markupId is
required to have a non-zero length, should be less than 256 characters, and should consist of
characters defined by RFC4648 - Base 64 Encoding with URL and Filename Safe Alphabet.
downloadName (string) Filename a browser should use when an end user downloads the
source document (the filename of the Content-Disposition response header). We will
use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection Service cannot
determine what type of file was uploaded. We will get the extension from displayName if
this option is not provided. This parameter only accepts alpha-numeric characters.
documentId (string) A customer supplied identifier which is used to uniquely identify a
viewing package. The documentId is required to have a non-zero length less than 256
characters and must consist of characters defined by RFC4648 - Base 64 Encoding with URL
and Filename Safe Alphabet. If a viewing package exists for the given documentId, PAS will
use the content stored in that package and avoid sending any work to PrizmDoc Server. If a
viewing package does not exist for the given documentId, PAS will ask PrizmDoc Server to
immediately start preparing content for this viewing session and will also start creating a new
viewing package in the background. If an errored viewing package exists for the given
documentId, PAS will effectively ignore the documentId and ask PrizmDoc Server to
dynamically prepare content for the viewing session.

When using a URL for the source document:
type (string) Required. Set to url.
url (string) Required. URL to create a viewing session from.
headers (object) Request headers to send from PrizmApplicationServices when retrieving the
URL.
acceptBadSslCertificate (boolean) If true, requires SSL certificates be valid. Default is
false.
markupId (string) The ID to use when querying markup with the XML and JSON layer APIs. If
one isn't passed, we create one from the other information we're given. The markupId is
required to have a non-zero length, should be less than 256 characters, and should consist of
characters defined by RFC4648 - Base 64 Encoding with URL and Filename Safe Alphabet.
downloadName (string) Filename a browser should use when an end user downloads the
source document (the filename of the Content-Disposition response header). We will
use the displayName if this option is not provided.

PrizmDoc Viewer v13.17 884

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7

use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection Service cannot
determine what type of file was uploaded. This parameter only accepts alpha-numeric
characters.
documentId (string) A customer supplied identifier which is used to uniquely identify a
viewing package. The documentId is required to have a non-zero length less than 256
characters and must consist of characters defined by RFC4648 - Base 64 Encoding with URL
and Filename Safe Alphabet. If a viewing package exists for the given documentId, PAS will
use the content stored in that package and avoid sending any work to PrizmDoc Server. If a
viewing package does not exist for the given documentId, PAS will ask PrizmDoc Server to
immediately start preparing content for this viewing session and will also start creating a new
viewing package in the background. If an errored viewing package exists for the given
documentId, PAS will effectively ignore the documentId and ask PrizmDoc Server to
dynamically prepare content for the viewing session.

When using a local file on the PAS server as the source document (self-hosted only, not
recommended):

type (string) Required. Set to document.
fileName (string) Required. Filename that the Storage Provider API can use.
markupId (string) The ID to use when querying markup with the XML and JSON layer APIs. If
one isn't passed, we create one from the other information we're given. The markupId is
required to have a non-zero length, should be less than 256 characters, and should consist of
characters defined by RFC4648 - Base 64 Encoding with URL and Filename Safe Alphabet.
downloadName (string) Filename a browser should use when an end user downloads the
source document (the filename of the Content-Disposition response header). We will
use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection Service cannot
determine what type of file was uploaded. We will get the extension from fileName if this
option is not provided. This parameter only accepts alpha-numeric characters.
documentId (string) A customer supplied identifier which is used to uniquely identify a
viewing package. The documentId is required to have a non-zero length less than 256
characters and must consist of characters defined by RFC4648 - Base 64 Encoding with URL
and Filename Safe Alphabet. If a viewing package exists for the given documentId, PAS will
use the content stored in that package and avoid sending any work to PrizmDoc Server. If a
viewing package does not exist for the given documentId, PAS will ask PrizmDoc Server to
immediately start preparing content for this viewing session and will also start creating a new
viewing package in the background. If an errored viewing package exists for the given
documentId, PAS will effectively ignore the documentId and ask PrizmDoc Server to
dynamically prepare content for the viewing session.

When using a viewing package with pre-converted content:
type (string) Required. Set to viewingPackage.
documentId (string) Required. A customer supplied identifier which is used to uniquely
identify a viewing package. The documentId is required to have a non-zero length less than
256 characters and must consist of characters defined by RFC4648 - Base 64 Encoding with
URL and Filename Safe Alphabet. This value must refer to a completed viewing package,
otherwise the viewing session will not be created and an error will be returned.
markupId (string) The ID to use when querying markup with the XML and JSON layer APIs. If
one isn't passed, we create one from the other information we're given. The markupId is
required to have a non-zero length, should be less than 256 characters, and should consist of
characters defined by RFC4648 - Base 64 Encoding with URL and Filename Safe Alphabet.
downloadName (string) Filename a browser should use when an end user downloads the
source document (the filename of the Content-Disposition response header). We will
use the displayName if this option is not provided.

When comparing two Microsoft Word documents:
type (string) Required. Set to comparison.

PrizmDoc Viewer v13.17 885

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7

type (string) Set to comparison.
original (object) Required. Original document to compare.

When uploading the original document in a subsequent request: (NOTE: Use PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/original and/or PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/revised to upload the original and/or
revised documents):

type (string) Required. Set to upload.
displayName (string) Required. Unique filename, including the extension, for
the document that will be uploaded.
downloadName (string) Filename a browser should use when an end user
downloads the original document (the filename of the Content-
Disposition response header). We will use the displayName if this option is
not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters. We will get the extension from
displayName if this option is not provided.

When using a URL for the original document:
type (string) Required. Set to url.
url (string) Required. URL to create a viewing session from.
headers (object) Request headers to send from PrizmApplicationServices when
retrieving the URL.
acceptBadSslCertificate (boolean) If true, requires SSL certificates be
valid. Default is false. > NOTE: To use your own certificate authority, you need
to specify an agent that was created with that CA as an option.
downloadName (string) Filename a browser should use when an end user
downloads the original document (the filename of the Content-
Disposition response header). We will use the displayName if this option is
not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters.

When using a local file on the PAS server as the original document (self-hosted only,
not recommended):

type (string) Required. Set to document.
fileName (string) Required. Filename that the Storage Provider API can use.
downloadName (string) Filename a browser should use when an end user
downloads the original document (the filename of the Content-
Disposition response header). We will use the displayName if this option is
not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters. We will get the extension from fileName if
this option is not provided.

revised (object) Required. Revised document to compare.
When uploading the revised document in a subsequent request: (NOTE: Use PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/original and/or PUT
/v2/viewingSessions/{viewingSessionId}/sourceFile/revised to upload the original and/or
revised documents):

type (string) Required. Set to upload.
displayName (string) Required. Unique filename, including the extension, for
the document that will be uploaded.
downloadName (string) Filename a browser should use when an end user
downloads the revised document (the filename of the Content-Disposition

PrizmDoc Viewer v13.17 886

©2021 My Company. All Rights Reserved.

downloads the revised document (the filename of the Content-Disposition
response header). We will use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters. We will get the extension from
displayName if this option is not provided.

When using a URL for the revised document:
type (string) Required. Set to url.
url (string) Required. URL to create a viewing session from.
headers (object) Request headers to send from PrizmApplicationServices when
retrieving the URL.
acceptBadSslCertificate (boolean) If true, requires SSL certificates be
valid. Default is false. > NOTE: To use your own certificate authority, you need
to specify an agent that was created with that CA as an option.
downloadName (string) Filename a browser should use when an end user
downloads the revised document (the filename of the Content-Disposition
response header). We will use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters.

When using a local file on the PAS server as the revised document (self-hosted only,
not recommended):

type (string) Required. Set to document.
fileName (string) Required. Filename that the Storage Provider API can use.
downloadName (string) Filename a browser should use when an end user
downloads the revised document (the filename of the Content-Disposition
response header). We will use the displayName if this option is not provided.
fileExtension (string) A file extension that's used if the File Detection
Service cannot determine what type of file was uploaded. This parameter only
accepts alpha-numeric characters. We will get the extension from fileName if
this option is not provided.

markupId (string) The ID to use when querying markup with the XML
and JSON layer APIs. If one isn't passed, we create one from the other
information we're given. The markupId is required to have a non-zero
length, should be less than 256 characters, and should consist of
characters defined by RFC4648 - Base 64 Encoding with URL and
Filename Safe Alphabet.

downloadName (string) Filename a browser should use when an end user downloads the
source document (the filename of the Content-Disposition response header). We will
use the displayName if this option is not provided.

documentExtension (String) - File extension of the source document (like "docx", "html", or "csv")
used to indicate the source document file format. Often unnecessary. Only required when 1) the
documentSource is "http" or "file" but the externalId containing the URL or file path did not end
with a recognizable file extension and 2) the source document file format could not be automatically
detected (this most-commonly occurs for text-based file formats, such as txt, csv, and html). > NOTE: If
Format Detection is disabled, then the source document format will never be automatically detected.
password (String) Password to use when opening a password-protected source document.
tenantId (String) Custom, arbitrary tenant id to be associated with the viewing session. PrizmDoc Server
has no concept of tenants; if provided, this metadata is only for use by the calling application.
origin (Object) Custom, arbitrary set of key/value string pairs to be associated with the viewing session.
Intended for associating end user origin data (like IP address or hostname), but you can use any set of
key/value strings you want.
render (Object) Options which control how browser content is rendered:

PrizmDoc Viewer v13.17 887

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7

render (Object) Options which control how browser content is rendered:
html5 (Object) Options when the output format is HTML:

alwaysUseRaster (Boolean) Required. Determines whether only raster data, instead of
SVG, should be created for the viewing session. With modern browsers, it is rare to only want
raster. This is typically set to false.
svgMaxImageSize (Number) The maximum edge length, in pixels, that is allowable for any
image when creating SVG. For example, a value of 8000 would ensure that any images in a
PDF whose width or height were greater than 8000 pixels would be down-sampled before the
image was added to the final SVG. Default is configurable, but is typically 8000. To disable
this optimization, use a value of 0.
vectorTolerance (Number) For CAD documents, the amount of path simplification that is
allowable when creating the SVG. Path simplification will merge points which are "close
together" to create optimized SVG. You can think of this value as defining what "close
together" means. Higher values introduce more simplification but also more distortion.
Default is configurable, but is typically 0.3. Cannot be greater than 10.0. To disable this
optimization, use a value of 0.

watermarks (Array of Objects) Objects describing watermarks which should be applied to page content.
Each item must be an object which conforms to the following:

text watermark:
type: "text" (String) Required. Must be set to "text" to indicate the object represents a
text watermark.
text (String) Actual text of the watermark. Within the string, you can use the following special
tokens to insert dynamic values:

{{pageNumber}} - Will be replaced with the current page number.
{{pageCount}} - Will be replaced with the total number of pages.

opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely
transparent. Default is 1.0.
color (String) Text color. Can be any valid CSS color name (like "red") or hex value (like
"#FF0000"). Default is "black".
fontFamily (String) Font family for the text. Default for SVG output is to use the browser's
default font. Default for raster output is unspecified.
fontSize (String) Font size specified in points (like "12pt"). Default for SVG output is to use
the browser's default font size. Default for raster output is unspecified.
fontWeight (String) Determines the font weight. Possible values:

"normal" (default)
"bold"

textDecoration (String) Possible values:
"none" (default)
"underlined"

horizontalAlign (String) Determines the horizontal position of
the watermark. Default is "center". Possible values:

"left" - Text will be horizontally anchored to the left side of
the page and text will be left aligned.
"center" Text will be horizontally anchored to the center of
the page and text will be centered. (default)
"right" - Text will be horizontally anchored to the right
side of the page and text will be right aligned.

verticalAlign (String) Determines the vertical position of the
watermark. Default is "middle". Possible values:

"top" - Text will be vertically anchored to the top of the page.
"middle" Text will be vertically anchored to the middle of the page. (default)
"bottom" - Text will be vertically anchored to the bottom of the page.

diagonal text watermark:

PrizmDoc Viewer v13.17 888

©2021 My Company. All Rights Reserved.

type: "diagonalText" (String) Required. Must be set to "diagonalText" to indicate
the object represents a diagonal text watermark.
text (String) Actual text of the watermark. Within the string, you can use the following special
tokens to insert dynamic values:

{{pageNumber}} - Will be replaced with the current page number.
{{pageCount}} - Will be replaced with the total number of pages.

opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely
transparent. Default is 1.0.
color (String) Text color. Can be any valid CSS color name (like "red") or hex value (like
"#FF0000"). Default is "black".
fontFamily (String) Font family for the text. Default for SVG output is to use the browser's
default font. Default for raster output is unspecified.
fontSize (String) Font size specified in points (like "12pt"). Default for SVG output is to use
the browser's default font size. Default for raster output is unspecified.
fontWeight (String) Determines the font weight. Possible values:

"normal" (default)
"bold"

textDecoration (String) Possible values:
"none" (default)
"underlined"

slope (String) Controls the text angle. Default is "up". Possible values:
"up" - Text will start in the lower-left corner of the page and extend upwards to the
upper-right corner of the page. (default)
"down" - Text will start in the upper-left corner of the page and extend downwards to
the lower-right corner of the page.

image watermark:
type: "image" (String) Required. Must be set to "image" to indicate the object
represents an image watermark.
opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely
transparent. Default is 1.0.
src (String) Required. URL or work file id of a PNG image to use for this watermark. When
using a URL, the URL must be accessible from the server where PrizmDoc Server is running. >
NOTE: The src MUST be a PNG. If you use a different image format, invalid watermarks will be
created.
horizontalAlign (String) Determines the horizontal position of
the watermark. Default is "center". Possible values:

"left" - Image will be horizontally anchored near the left
side of the page.
"center" Image will be horizontally anchored to the center
of the page. (default)
"right" - Image will be horizontally anchored near the right
side of the page.

verticalAlign (String) Determines the vertical position of the
watermark. Default is "middle". Possible values:

"top" - Image will be vertically anchored near the top of the page.
"middle" Image will be vertically anchored to the middle of the page. (default)
"bottom" - Image will be vertically anchored near the bottom of the page.

scale (Number) - Determines the relative size of the image as compared to the size of the
page. Value must be between 0.0 and 1.0. A value of 1.0 indicates the image will be scaled
to the size of the page while 0.0 indicates the image will be scaled infinitesimally small and
will not be rendered. Default is 0.25.
autoSize (String) When set, the image

PrizmDoc Viewer v13.17 889

©2021 My Company. All Rights Reserved.

autoSize (String) When set, the image
will be automatically sized to fill the page
(any value provided for scale,
horizontalAlign, and
verticalAlign will be ignored). Possible
values:

"fit" - Image will be scaled to be
as large as possible while still
completely fitting within the page. The aspect ratio of the image is maintained.
"fill" - Image will be scaled to be large enough that the entire page is covered by
the image. Some of the image may fall off the edge of the page, but the entire page is
guaranteed to be covered by some part of the image. The aspect ratio of the image is
maintained.
"stretch" - Image width and height will be independently resized so that the image
width and height are the same as the page. The aspect ratio of the image is ignored.

pageContentEncryption (String) - Controls whether or not page content will be encrypted for the
viewing session. See the Enabling Content Encryption topic for more information about this feature. Possible
values:

"default" - Product configuration will be used to determine whether or not page content will be
encrypted (see viewing.contentEncryption.enabled in the Central Configuration file).
"enabled" - Page content will be encrypted for the viewing session.
"disabled" - Page content will not be encrypted for the viewing session.

countOfInitialPages (Integer) Number of pages which should be eagerly converted, or 0 if all pages
should be eagerly converted. Default is 0.
startConverting (String) When the documentSource is "http" or "file", controls whether initial
pages should be converted as soon as the document has been acquired. Default is "none". Possible values:

"none" - Conversion will begin only after the session is explicitly started or page content or
attributes are requested. (default)
"initialPages" - Conversion will begin as soon as the source document has been acquired.

contentType (String) - Determines what kind of browser content will be eagerly pre-generated (other
kinds of content may still be generated if explicitly requested). Possible values:

"svgb" - Pre-generate fully-optimized SVG (uses a unicode inline font to store glyph definitions).
Smallest possible SVG, but may not be compatible with some browsers. Recommended whenever
possible.
"svga" - Pre-generate partially-optimized SVG (uses a non-unicode inline font to store only the
most frequently-occurring glyph definitions). May not be compatible with some browsers. Use only if
"svgb" content is not compatible with the target browser.
"svg" - Pre-generate unoptimized SVG (no font is used; glyph definitions are expressed as SVG path
operations). Broadest compatibility with browsers but typically much larger, so it renders and scrolls
much slower than "svgb" and "svga". Not recommended. Use only as a fallback if both svgb and
svga are not compatible with the target browser, or the use of webfonts is disabled in the target
browser.
"png" - Pre-generate raster content.

serverCaching (String) Controls whether output is kept for potential reuse by other viewing sessions.
Default is "full". Possible values:

"full" - Output will be written to disk on the server and retained for reuse by other viewing
sessions created for the same source document. Output will not be deleted until the configured
viewing cache lifetime is reached (which is a full day with an out-of-box configuration; see
viewing.cacheLifetime in Central Configuration). Saves processing time if a source document is
viewed repeatedly before the cached data is deleted, but does consume more disk space. (default)
"none" - Output will be written to disk on the server but only retained for the duration of the
viewing session and never shared with other viewing sessions. Once the viewing session expires, the
output will be deleted from the disk. Saves disk space if you know that it is unlikely a source
document will ever be viewed more than once, but can result in redundant processing if the same

PrizmDoc Viewer v13.17 890

©2021 My Company. All Rights Reserved.

source document is viewed repeatedly.
serverSideSearch (String) Determines whether the server-side search feature will be available for the
viewing session. Default is "enabled". Possible values:

"enabled" - Server-side search will be available for the viewing session. (default)
"disabled" - Server-side search will not be available for the viewing session.

attachmentIndex (Integer) - Intended for use only by PrizmDoc Server when it automatically creates
viewing sessions for attachments. This is not a property your application should use. If the source document is
an attachment that belongs to another document (such as an email), the 1-based index of this attachment
in the list of all attachments (e.g. 1 means it was the first attachment, 2 means it was the second, etc.) or 0
to indicate that the source document is not an attachment. Default is 0.
attachmentDisplayName (String) - Intended for use only by PrizmDoc Server when it automatically creates
viewing sessions for attachments. This is not a property your application should use. If the source document is
an attachment that belongs to another document (such as an email), the filename of the attachment or
null. Default is null.

Successful Response

Response Body

JSON with metadata about the created viewing session.

viewingSessionId (string) Unique id for this viewing session.

Error Responses

Status
Code JSON errorCode Description

403 "InvalidSecret" The provided Accusoft-Secret request header value
did not match the value of secretKey in your PAS
config file. Only applies when you are self-hosting PAS.

404 "DocumentNotFound" The specified document could not be found.

480 "InvalidInput" Input is invalid. See errorDetails in the response
body.

480 "CannotChangeDocument" The viewing session already has an original source
document.

480 "IncorrectUsage" The viewing session is already used for viewing of a
single source document.

480 "FeatureNotLicensed" MSO enabled license is not installed.

480 "FeatureDisabled" Microsoft Office renderer is not configured.

480 "InputNotSupportedWithDocumentId" Input is not supported when creating a viewing session
which auto-generates an associated viewing package in
the background. See errorDetails in the response
body.

480 "InputConflictsWithViewingPackage" Input conflicts with the value previously used to create
the associated viewing package. See errorDetails in
the response body.

PrizmDoc Viewer v13.17 891

©2021 My Company. All Rights Reserved.

480 "CouldNotGetRemoteResource" Could not download a document from the specified
source url.

580 "CouldNotConnectToRemoteResource" Could not establish a connection with the specified
source url.

Examples

Uploading the source document in a subsequent request

POST pas_base_url/ViewingSession
Content-Type: application/json

{
 "source": {
 "type": "upload",
 "displayName": "sample_2015-10-31T19:15:32Z.doc"
 }
}

Using a URL for the source document

POST pas_base_url/ViewingSession
Content-Type: application/json

{
 "source": {
 "type": "url",
 "url": "http://myserver/mydocument.docx",
 "headers": {
 "My-Custom-Header": "some value required by my server"
 },
 "acceptBadSslCertificate": false
 }
}

Using an existing viewing package

You can use an already-created viewing package to start a viewing session. The pre-converted viewable content
will be immediately available and no work will be sent to PrizmDoc Server. See the PAS Viewing Package Creators
API for more details about creating viewing packages and the PAS Viewing Packages API for more details about
managing viewing packages.

POST pas_base_url/ViewingSession
Content-Type: application/json
{
 "source": {
 "type": "viewingPackage",
 "documentId": "doc_9495837910qc"
 }

Status
Code JSON errorCode Description

PrizmDoc Viewer v13.17 892

©2021 My Company. All Rights Reserved.

}

Dynamically creating a viewing package in the background the first time a document is viewed

It is possible to ask PAS to use a viewing package if it exists and, if not, automatically start creating such a viewing
package in the background so that it can be used by future viewing sessions. You do this by simply specifying a
documentId.

For example, here is a POST which uses a source.type of "upload" but also specifies a documentId:

POST pas_base_url/ViewingSession
Content-Type: application/json
{
 "source": {
 "type": "url",
 "url": "http://myserver/mydocument.docx",
 "headers": {
 "My-Custom-Header": "some value required by my server"
 },
 "documentId": "doc_9495837910qc"
 }
}

If a viewing package exists for the given documentId, then it will be used and no conversion work will be
performed. If a viewing package does not exist for the given documentId, then PAS will use PrizmDoc Server to
prepare the content needed for this viewing session and also start creating a viewing package in the background.
The application can continue to create viewing sessions in the same way for this document. Once the viewing
package exists, PAS will simply use the contents of the package directly and stop sending conversion work to
PrizmDoc Server.

Comparing two Microsoft Word documents

POST pas_base_url/ViewingSession
Content-Type: application/json

{
 "source": {
 "type": "comparison",
 "original": {
 "type": "upload",
 "displayName": "2019-10-07-original.docx"
 },
 "revised": {
 "type": "upload",
 "displayName": "2019-10-07-revised.docx"
 }
 }
}

PUT /ViewingSession/u{viewingSessionId}/SourceFile

PrizmDoc Viewer v13.17 893

©2021 My Company. All Rights Reserved.

Routes key: PutViewingSessionSourceFile

Uploads a document to the session.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

Request Body

The bytes of the source document.

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Status
Code JSON errorCode Description

403 "InvalidSecret" The provided Accusoft-Secret request header value did not match the value of
secretKey in your PAS config file. Only applies when you are self-hosting PAS.

Example

Request

PUT pas_base_url/ViewingSession/u{viewingSessionId}/SourceFile
Accusoft-Secret: mysecretkey

<<file bytes>>

Response

HTTP/1.1 200 OK

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/original
Routes key: PutViewingSessionOriginalSourceFile

Used when viewing a comparison of two documents, uploads the first of the two documents, the original
document.

Request

PrizmDoc Viewer v13.17 894

©2021 My Company. All Rights Reserved.

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

Request Body

The bytes of the original document (for comparison with a revised document).

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId
could be found.

403 "InvalidSecret" The provided Accusoft-Secret request header value did
not match the value of secretKey in your PAS config file.
Only applies when you are self-hosting PAS.

480 "CannotChangeDocument" The viewing session already has an original document
assigned.

480 "UnsupportedFormatForComparison" The uploaded file was not a Word document (for
comparison viewing, we currently only support "doc" and
"docx" files).

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a
single source document for viewing or 2) two documents
(original and revised) which should be viewed as a
comparison, but you cannot do both. If you receive this
error from this URL, it is because a single source document
has already been provided.

480 "FeatureNotLicensed" The server's license does not allow the use of the MSO
(Microsoft Office) feature, so document comparison is not
possible.

480 "FeatureDisabled" The server has not been configured to allow the use of the
Microsoft Office renderer, so document comparison is not
possible.

Example

Request

PUT pas_base_url/v2/viewingSessions/{viewingSessionId}/sourceFile/original
Accusoft-Secret: mysecretkey

PrizmDoc Viewer v13.17 895

©2021 My Company. All Rights Reserved.

<<file bytes>>

Response

HTTP/1.1 200 OK

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/revised
Routes key: PutViewingSessionRevisedSourceFile

Used when viewing a comparison of two documents, uploads the second of the two documents, the revised
document.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

Request Body

The bytes of the revised document (for comparison with an original document).

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId
could be found.

403 "InvalidSecret" The provided Accusoft-Secret request header value did
not match the value of secretKey in your PAS config file.
Only applies when you are self-hosting PAS.

480 "CannotChangeDocument" The viewing session already has a revised source document
assigned.

480 "UnsupportedFormatForComparison" The uploaded file was not a Word document (for
comparison viewing, we currently only support "doc" and
"docx" files).

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a
single source document for viewing or 2) two documents

PrizmDoc Viewer v13.17 896

©2021 My Company. All Rights Reserved.

(original and revised) which should be viewed as a
comparison, but you cannot do both. If you receive this
error from this URL, it is because a single source document
has already been provided.

480 "FeatureNotLicensed" The server's license does not allow the use of the MSO
(Microsoft Office) feature, so document comparison is not
possible.

480 "FeatureDisabled" The server has not been configured to allow the use of the
Microsoft Office renderer, so document comparison is not
possible.

Example

Request

PUT pas_base_url/v2/viewingSessions/{viewingSessionId}/sourceFile/revised
Accusoft-Secret: mysecretkey

<<file bytes>>

Response

HTTP/1.1 200 OK

GET /ViewingSession/u{viewingSessionId}/SourceFile?
ContentDispositionFilename={ContentDispositionFilename}
Routes key: GetSourceFile

Gets the source document in use for a viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{ContentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in
the Content-Disposition response header (appropriate file
extension such as doc or docx will automatically be added). By default,
the value will be SourceFile.<ext>.

Response Headers

Status
Code JSON errorCode Description

PrizmDoc Viewer v13.17 897

©2021 My Company. All Rights Reserved.

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and
specifies the filename the browser should use.

Content-Type The most-specific MIME type for the returned document or application/octet-stream
otherwise.

Response Body

The raw bytes of the viewing session's source document.

Example

Request

GET pas_base_url/ViewingSession/uXYZ.../SourceFile?
ContentDispositionFilename=MonthlySalesReport

Response

200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=MonthlySalesReport.docx; filename*=UTF-
8''MonthlySalesReport.docx

<<file bytes>>

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/original?
contentDispositionFilename={contentDispositionFilename}
Routes key: GetOriginalSourceFile

When viewing a comparison of two documents, gets the original document used in the comparison. The document
returned will be an identical copy of the document originally provided.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{contentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in
the Content-Disposition response header (appropriate file
extension such as doc or docx will automatically be added). By default,
the value will be OriginalSourceFile.<ext>.

PrizmDoc Viewer v13.17 898

©2021 My Company. All Rights Reserved.

Response Headers

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and
specifies the filename the browser should use.

Content-Type The most-specific MIME type for the returned document or application/octet-stream
otherwise.

Response Body

The raw bytes of the first of the two documents being viewed as a comparison, the original document.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be
found.

480 "DocumentNotProvidedYet" An original document has not been provided to the viewing session
yet.

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source
document for viewing or 2) two documents (original and revised) which
should be viewed as a comparison, but you cannot do both. If you
receive this error from this URL, it is because a single source document
was provided for viewing, so there will never be an original comparison
document to get.

Example

Request

GET pas_base_url/v2/viewingSessions/XYZ.../sourceFile/original?
contentDispositionFilename=OldMonthlySalesReport

Response

200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=OldMonthlySalesReport.docx;
filename*=UTF-8''OldMonthlySalesReport.docx

<<file bytes>>

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/revised?
contentDispositionFilename={contentDispositionFilename}

PrizmDoc Viewer v13.17 899

©2021 My Company. All Rights Reserved.

Routes key: GetRevisedSourceFile

When viewing a comparison of two documents, gets the revised document used in the comparison. The document
returned will be an identical copy of the document originally provided.

The response will set the Content-Type header to the most-specific MIME type it can or application/octet-
stream otherwise.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{contentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in
the Content-Disposition response header (appropriate file
extension such as doc or docx will automatically be added). By default,
the value will be RevisedSourceFile.<ext>.

Response Headers

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and
specifies the filename the browser should use.

Content-Type The most-specific MIME type for the returned document or application/octet-stream
otherwise.

Response Body

The raw bytes of the second of the two documents being viewed as a comparison, the revised document.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be
found.

480 "DocumentNotProvidedYet" A "revised" document has not been associated with the viewing session
yet.

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source
document for viewing or 2) two documents (original and revised) which
should be viewed as a comparison, but you cannot do both. If you
receive this error from this URL, it is because a single source document
was provided for viewing, so there will never be a revised comparison
document to get.

Example

PrizmDoc Viewer v13.17 900

©2021 My Company. All Rights Reserved.

Request

GET pas_base_url/v2/viewingSessions/XYZ.../sourceFile/revised?
contentDispositionFilename=NewMonthlySalesReport

Response

HTTP/1.1 200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=NewMonthlySalesReport.docx;
filename*=UTF-8''NewMonthlySalesReport.docx

<<file bytes>>

GET /v2/viewingSessions/{viewingSessionId}/restrictions
Returns information about any restrictions enforced by the server for the current viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

JSON with information about any restrictions currently in place for the viewing session:

delayEnabled (Boolean) - Indicates whether the server has enforced an artificial delay before the
document conversion results are allowed to be delivered to the viewer.
delaySecondsRemaining (Integer) - The number of seconds remaining in the artificially-imposed delay
before the document conversion results are allowed to be delivered to the viewer. Only present when
delayEnabled is true.
downloadDisabled (Boolean) - Indicates whether downloading of the source document has been
disabled for this viewing session.
markupSavingDisabled (Boolean) - Indicates whether saving markup has been disabled for this viewing
session.
markupLoadingDisabled (Boolean) - Indicates whether loading markup has been disabled for this
viewing session.
contentConvertersDisabled (Boolean) Indicates whether the content converters feature has been
disabled for this viewing session.
markupBurnersDisabled (Boolean) Indicates whether the markup burner feature has been disabled for
this viewing session.
formExtractorsDisabled (Boolean) Indicates whether the forms extractors feature has been disabled
for this viewing session.
formInfoDisabled (Boolean) Indicates whether the form detection feature has been disabled for this
viewing session.

PrizmDoc Viewer v13.17 901

©2021 My Company. All Rights Reserved.

Example Responses

When the product is licensed and the form detection feature is available

HTTP/1.1 200 OK
Content-Type: application/json

{
 "delayEnabled": false,
 "downloadDisabled": false,
 "markupSavingDisabled": false,
 "markupLoadingDisabled": false,
 "contentConvertersDisabled": false,
 "markupBurnersDisabled": false,
 "formExtractorsDisabled": false,
 "formInfoDisabled": false
}

When the product is unlicensed (evaluation mode), and 9 seconds of initial delay are remaining:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "delayEnabled": true,
 "delaySecondsRemaining": 9,
 "downloadDisabled": true,
 "markupSavingDisabled": true,
 "markupLoadingDisabled": true,
 "contentConvertersDisabled": true,
 "markupBurnersDisabled": true,
 "formExtractorsDisabled": true,
 "formInfoDisabled": true
}

POST /ViewingSession/u{viewingSessionId}/Replacement
Routes key: CreateViewingSessionReplacement

Replace the existing viewing session with a new one that has a new password parameter value. The other original
viewing session parameters are preserved. If a source document is uploaded it is attached to the newly created
viewing session with a new password. The old viewing session is stopped.

The replacement API is useful when a session is errored because of either an invalid or missing password, and you
want to replace it with a new session with the same parameters against the same document but with a modified
password.

Request

Request Headers

PrizmDoc Viewer v13.17 902

©2021 My Company. All Rights Reserved.

Name Description

Content-Type Should be application/json

Request Body

password (String) Password to use when opening a password-protected source document. If the
parameter is not provided a new viewing session is created with a default null password parameter value.

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

Response Body

JSON with metadata about the created viewing session.

viewingSessionId (String) Unique id for this viewing session.

Error Responses

Status
Code Reason Phrase Description

403 The session is

invalid or has

expired

You requested a valid {viewingSessionId} but it is no longer available.

500 Internal Server

Error

Can occur if you forget to prefix the {viewingSessionId} portion of the
URL with u, or if you simply request an invalid {viewingSessionId}.

Some error responses will have a JSON body with an errorCode and errorDetails:

Status
Code JSON errorCode Description

480 "PropertyNotReplaceable" Unsupported property to replace was used. See errorDetails in
the response body.

Example

Request

POST pas_base_url/ViewingSession/uXYZ.../Replacement
Content-Type: application/json

{
 "password":"123"
}

PrizmDoc Viewer v13.17 903

©2021 My Company. All Rights Reserved.

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "viewingSessionId": "THMMytF4ACHrxmN2bXj4vahx4Gnwly_kEeFt20XtRau-
z43pPHIjUy5JXJ05Wj1MaqvdfsXp98JxIk7ALWkukg"
}

Viewing Package Creators

Introduction
The viewing package creators REST API allows your application to create new viewing packages (to manage existing
viewing packages, use the viewing packages REST API).

A viewing package contains fully pre-converted, browser-ready content for a document. If you know ahead of time which
documents are going to be viewed and you want to make the viewing experience as fast as possible for your users, you
can create viewing packages ahead of time for your documents. Later, when you need to create a viewing session for a
document, simply use the same documentId you used when creating the viewing package and PAS will use the pre-
converted content from the viewing package.

NOTE: Creating viewing packages requires you to configure a database. See PAS Configuration for more
information.

Available URLs

URL Description

POST /v2/viewingPackageCreators Creates a new viewing package creator process.

PUT
/v2/viewingPackageCreators/{processId}/SourceFile

Uploads the source document to use when creating the viewing
package.

GET /v2/viewingPackageCreators/{processId} Gets the status of a viewing package creator process.

POST /v2/viewingPackageCreators
Starts a new viewing package creator process.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your PAS
config file.

PrizmDoc Viewer v13.17 904

©2021 My Company. All Rights Reserved.

Request Body

JSON object conforming to the following:

Property Type Required Description

input.source {object} Yes Properties relevant to
PAS will reside in this
object. > NOTE: This
object will be removed
before sending the rest of
the body to the PrizmDoc
Services.

input.source.documentId {string} Yes A customer supplied
identifier which is used
to uniquely identify the
resulting viewing
package. The
documentId is required
to have a non-zero
length less than 256
characters and must
consist of characters
defined by RFC4648 -
Base 64 Encoding with
URL and Filename Safe
Alphabet.

input.source.type {string} Yes Specify where
PrizmApplicationServices
can find the document.
The valid values are
"document", "url", or
"upload".

input.source.fileName {string} Yes (If
source.type="document")

Filename that the
Storage Provider API can
use.

input.source.url {string} Yes (If source.type="url") URL to create a viewing
session from.

input.source.headers {object} Optional (Used if
source.type="url")

Request headers to send
from
PrizmApplicationServices
when retrieving the URL.

input.source.acceptBadSslCertificate {boolean=false} Optional (Used if
source.type="url")

If true, requires SSL
certificates be valid. >
NOTE: to use your own
certificate authority (CA),
you need to specify an
agent that was created
with that CA as an
option.

PrizmDoc Viewer v13.17 905

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7

input.source.displayName {string} Yes (if
source.type="upload")

The display name of the
document that's being
uploaded. E.g.
"sample.doc"

input.source.markupId {string} Optional The ID to use when
querying markup with
the XML and JSON layer
APIs. If the ID is not
provided, we create a
new one from the other
information we are
given. The markupId is
required to have a non-
zero length, should be
less than 256 characters,
and should consist of
characters defined by
RFC4648 - Base 64
Encoding with URL and
Filename Safe Alphabet.

input.source.downloadName {string} Optional The name that will be
used when downloading
the original document.
We will use the
"displayName" or
"fileName" if this option
is not provided.

input.source.fileExtension {string} Optional A file extension that is
used if the File Detection
Service cannot
determine what type of
file was uploaded. We
will get the extension
from "displayName" or
"fileName" if this option
is not provided. > NOTE:
This parameter may only
include alpha-numeric
characters.

input.viewingPackageLifetime {integer} Optional Defines the minimum
number of integer
seconds for the created
content to remain
available. By default this
is 24 hours (if not
configured differently
through PAS
Configuration). If set to
0, the content will
remain available

Property Type Required Description

PrizmDoc Viewer v13.17 906

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7
https://www.rfc-editor.org/rfc/rfc4648.html#page-7

perpetually.

input.render {object} Optional The object that describes
rendering options.

input.render.html5 {object} Optional The object that describes
rendering options for
the HTML5 viewer. A
whitelist of the following
render properties is
used:
svgMaxImageSize and
vectorTolerance.
They are described in
the PrizmDoc Server
Viewing Session
documentation.

minSecondsAvailable {integer} Optional The minimum number of
seconds this viewing
package creator will
remain available so you
can GET its status. The
actual lifetime may be
longer.

Examples

Create a Viewing Package using a local document

POST pas_base_url/v2/viewingPackageCreators
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 ...
 },
 "viewingPackageLifetime": 2592000
 }
}

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",

Property Type Required Description

PrizmDoc Viewer v13.17 907

©2021 My Company. All Rights Reserved.

 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 ...
 },
 "viewingPackageLifetime": 2592000
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "processing",
 "percentComplete": 0
}

The response, along with other information, includes a new processId which is used to GET information about the
converted content.

Error Responses

Duplicate POST Prior to Process Completion:

If a POST request is made with a body containing the exact same content as a request prior to the completion of the
original process, an error similar to the one below will be returned.

HTTP/1.1 580 ConversionInProgress
Content-Type: application/json

{
 "errorCode": "ConversionInProgress"
}

Duplicate POST After Process Completion:

If a POST request is made with a body containing the exact same content as a prior request after that request has
completed, the following error similar to the one below will be returned.

HTTP/1.1 580 DocumentIdAlreadyInUse
Content-Type: application/json

{
 "errorCode": "DocumentIdAlreadyInUse"
}

NOTE: An existing package must be deleted before re-submitting the same content for conversion.

Examples of Input Validation error responses:

HTTP/1.1 480 MissingInput
Content-Type: application/json

{
 "errorCode": "MissingInput",
 "errorDetails": {
 "in": "body",
 "at": "input"
 }
}

PrizmDoc Viewer v13.17 908

©2021 My Company. All Rights Reserved.

HTTP/1.1 480 InvalidInput
Content-Type: application/json

{
 "errorCode": "InvalidInput",
 "errorDetails": {
 "in": "body",
 "at": "input",
 "expected": {
 "type": "object"
 }
 }
}

If you are self-hosting PAS and a POST request does not include the correct Accusoft-Secret header value, you will
receive an error like the one below. See PAS Configuration for more info about configuring your PAS secretKey.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"
}

Create a Viewing Package with extra options

PrizmDoc Server allows for render options that modify the output of the conversion process. The valid options are
documented at the top of this page, but as an example, this is what a request would look like if you only wanted raster
content:

NOTE: When creating a viewing package, watermarks cannot be used and will return an error.

POST pas_base_url/v2/viewingPackageCreators
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 ...
 },
 "viewingPackageLifetime": 2592000
 }
}

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{

PrizmDoc Viewer v13.17 909

©2021 My Company. All Rights Reserved.

 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 ...
 },
 "viewingPackageLifetime": 2592000
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "processing",
 "percentComplete": 0
}

Error Responses

Watermarks Input:

The input.watermarks property cannot be used when creating a viewing package.

HTTP/1.1 480 ReservedInput
Content-Type: application/json

{
 "errorCode": "ReservedInput",
 "errorDetails": {
 "in": "body",
 "at": "input.watermarks"
 }
}

PUT /v2/viewingPackageCreators/{processId}/SourceFile
Uploads the source document to use when creating the viewing package.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your PAS
config file.

Request Body

The source document to use.

A request to this URL allows the user to upload a document to an existing viewing package creator which has not yet been
provided a source document. When a viewing package creator is configured with input.source.type: 'upload',
viewing package creation waits until a PUT request containing the source document is received. After the source
document has been successfully uploaded, viewing package creation will resume.

Examples

PrizmDoc Viewer v13.17 910

©2021 My Company. All Rights Reserved.

PUT pas_base_url/v2/viewingPackageCreators/khjyrfKLj2g6gv8fdqg710/SourceFile
Content-Type: application/octet-stream

<<file bytes>>

Successful Response

HTTP/1.1 200 OK

Error Responses

When uploading a document for viewing package creation, the following errors may be encountered:

PUT When Not Allowed

If a PUT request is made to upload a file for a viewing package creator which does not have input.source.type:
'upload', then the following error will be returned.

HTTP/1.1 580 NotSupportedForViewingPackageSourceType
Content-Type: application/json

{
 "errorCode": "NotSupportedForViewingPackageSourceType"
}

PUT When File Already Provided

If a PUT request is made to upload a file for a viewing package creator after a file has already been uploaded for that
viewing package creator, then the following error will be returned.

HTTP/1.1 580 SourceFileAlreadyProvided
Content-Type: application/json

{
 "errorCode": "SourceFileAlreadyProvided"
}

If you are self-hosting PAS and a PUT request does not include the correct Accusoft-Secret header value, you will
receive an error like the one below. See PAS Configuration for more info about configuring your PAS secretKey.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"
}

GET /v2/viewingPackageCreators/{processId}

PrizmDoc Viewer v13.17 911

©2021 My Company. All Rights Reserved.

Gets the status of a viewing package creator process.

Requests to this URL can be sent repeatedly while the state="processing". To limit network congestion, an exponential
back-off algorithm is recommended. This means that the time interval between each request is increased, which results in
a good trade-off between quickly discovering short conversions that have completed and preventing a large number of
requests for long conversions.

Upon successful package creation, the response will have the state="complete" with percentComplete=100. The
errorCode will be null. Additionally it will include an output property which will contain the created package expiration
time. If there is an error during processing, the state="error" with percentComplete=100. The exception to this is, some
but not all page failures. In this case the state is set to "complete".

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your PAS
config file.

Examples

GET pas_base_url/v2/viewingPackageCreators/khjyrfKLj2g6gv8fdqg710

Viewing package creation completed successfully

A response for a package that was successfully generated would look like this:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "output": {
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z"
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "complete",
 "percentComplete": 100
}

The viewing package creation process may encounter three types of errors, which it will report on as follows:

Source document not found

PrizmDoc Viewer v13.17 912

©2021 My Company. All Rights Reserved.

This error describes the conversion result for a nonexistent document. Note that upon completion in this error case, the
state is set to "error" because no content could be provided for the document. Additionally, an errorCode property will be
provided indicating this is the cause of the error. No output property will be provided when the process completes in an
error state.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "error",
 "percentComplete": 100,
 "errorCode": "DocumentNotFound"
}

Incorrect password for source document

This error describes the conversion result for a password-protected document, which is not supported in this release. A
password property may be provided in the request, but it will not be used. Upon completion in this error case, the state is
set to "error" because no content could be provided for the document. An errorCode property will be provided indicating
an "InternalError". No output property will be provided when the process completes in an error state.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.pdf",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "password": "opensesame",
 "viewingPackageLifetime": 2592000
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "error",
 "percentComplete": 100,
 "errorCode": "InternalError"
}

Individual page conversion failures

These errors will not mark the entire package as errored, but rather report in the output object in a pageFailures

PrizmDoc Viewer v13.17 913

©2021 My Company. All Rights Reserved.

These errors will not mark the entire package as errored, but rather report in the output object in a pageFailures
array.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },
 "output": {
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z",
 "pageFailures": [
 {
 "errorCode": "CouldNotRetrievePngContent",
 "pageNumber": "4"
 },
 {
 "errorCode": "CouldNotRetrieveSvgaContent",
 "pageNumber": "5"
 },
 {
 "errorCode": "CouldNotRetrieveTextContent",
 "pageNumber": "8"
 }
]
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "complete",
 "percentComplete": 100
}

Attachment failures

These errors describe the failure of the conversion to provide an artifact for an attachment in the case where a document
supports attachments, such as .EML or .MSG.

If the conversion process finds attachments associated with the document, but the process is unable to provide content
for one or more pages, then the state is set to "complete" and an array of attachments is returned as a property in the
body.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "source": {
 "type": "document",
 "fileName": "sample.eml",
 "documentId": "unT67Fxekm8lk1p0kPnyg8",
 . . .
 },
 "viewingPackageLifetime": 2592000
 },

PrizmDoc Viewer v13.17 914

©2021 My Company. All Rights Reserved.

 "output": {
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z",
 "attachments": [
 {
 "name": "text-file",
 "errorCode": "ArtifactCouldNotBeRetrieved"
 },
 {
 "name": "document-text.pdf"
 },
 {
 "name": "last-pages-dont-exist.pdf",
 "errorCode": "CouldNotConvertSourceDocument"
 }
]
 },
 "expirationDateTime": "2015-12-09T06:22:18.624Z",
 "processId": "khjyrfKLj2g6gv8fdqg710",
 "state": "complete",
 "percentComplete": 100
}

Error Responses

If you are self-hosting PAS and a GET request does not include the correct Accusoft-Secret header value, you will
receive an error like the one below. See PAS Configuration for more info about configuring your PAS secretKey.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"
}

Viewing Packages

Introduction
The viewing packages REST API allows your application to manage existing viewing packages.

To create a new viewing package, use the viewing package creators REST API or provide a
documentId when creating a viewing session.

Available URLs

URL Description

GET /v2/viewingPackages/{documentId} Gets info about a viewing package.

GET
/v2/viewingPackages/{documentId}/creator

Gets the processId of the viewingPackageCreator which created
this viewing package if it still exists.

DELETE /v2/viewingPackages/{documentId} Deletes a viewing package and its associated content stored on disk.

PrizmDoc Viewer v13.17 915

©2021 My Company. All Rights Reserved.

GET /v2/viewingPackages/{documentId}
Gets info about a viewing package.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

After a viewing package creator process has been created, information about the converted content can be
requested as shown in the example below:

Example

GET pas_base_url/v2/viewingPackages/unT67Fxekm8lk1p0kPnyg8

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "source": {
 "type": "document",
 "fileName": "sample.doc",
 "documentId": "unT67Fxekm8lk1p0kPnyg8"
 },
 "state": "complete",
 "packageExpirationDateTime": "2016-1-09T06:22:18.624Z",
 "pageFailures": [
 {
 "errorCode": "CouldNotRetrieveJpegContent",
 "pageNumber": "4"
 },
 {
 "errorCode": "CouldNotRetrieveSvgaContent",
 "pageNumber": "5"
 }
]
}

Error Responses

If you are self-hosting PAS and a GET request does not include the correct Accusoft-Secret header value, you
will receive an error like the one below. See PAS Configuration for more info about configuring your PAS
secretKey.

PrizmDoc Viewer v13.17 916

©2021 My Company. All Rights Reserved.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"
}

GET /v2/viewingPackages/{documentId}/creator
Gets the processId of the viewingPackageCreator which created this viewing package if it still exists.

This URL is useful when you create a viewing session with a documentId (allowing PAS to automatically start a
viewingPackageCreator for you in the background if no viewing package exists yet) and you want to check the
status of the viewingPackageCreator which PAS may have created on your behalf. After creating a viewing session
with a documentId, you can use this URL to see if any associated viewingPackageCreator exists. If it does, you can
then use the returned viewingPackageCreatorId to GET more info about the status of the
viewingPackageCreator that PAS started for you.

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

Example

GET pas_base_url/v2/viewingPackages/unT67Fxekm8lk1p0kPnyg8/creator

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "viewingPackageCreatorId": "khjyrfKLj2g6gv8fdqg710"
}

Error Responses

If a request is made with an invalid viewing package ID or the creator process has expired, an error will be returned.

HTTP/1.1 404 Not Found

If you are self-hosting PAS and a GET request does not include the correct Accusoft-Secret header value, you
will receive an error like the one below. See PAS Configuration for more info about configuring your PAS
secretKey.

PrizmDoc Viewer v13.17 917

©2021 My Company. All Rights Reserved.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"
}

DELETE /v2/viewingPackages/{documentId}
Deletes a viewing package and its associated content stored on disk.

Request

Request Headers

Name Description

Accusoft-

Secret

Required only if you are self-hosting PAS, must match the value of secretKey in your
PAS config file.

Example

DELETE pas_base_url/v2/viewingPackages/unT67Fxekm8lk1p0kPnyg8

Successful Response

If a DELETE request is made the content will be marked for asynchronous deletion.

HTTP/1.1 204 No Content

Error Responses

If a DELETE request is made with an invalid package ID, an error will be returned.

HTTP/1.1 404 Not Found

If you are self-hosting PAS and a DELETE request does not include the correct Accusoft-Secret header value,
you will receive an error like the one below. See PAS Configuration for more info about configuring your PAS
secretKey.

HTTP/1.1 403 InvalidSecret
Content-Type: application/json

{
 "errorCode": "InvalidSecret"

PrizmDoc Viewer v13.17 918

©2021 My Company. All Rights Reserved.

}

Self-Hosted Administration
This REST API is useful if you are self-hosting PAS instances:

Health

Health

Introduction
For customers who are self-hosting PAS, the health REST API allows an administrator or application to check the
health of a PAS instance.

NOTE: These URLs are not available in PrizmDoc Cloud.

Available URLs

URL Description

GET /health Determines whether PAS is healthy or not.

GET /servicesConnection Returns the status of PAS connectivity to PrizmDoc Server.

GET /info A request to get information about the service.

GET /health
Determines whether PAS is healthy or not. A 200 response indicates PAS is healthy. Anything else indicates PAS is
unhealthy.

GET http://localhost:3000/health

Successful Response

HTTP/1.1 200 OK
OK

There are no error states for this request. If the request times out or the connection is refused, then the service is
not running or reachable.

GET /servicesConnection
Returns the status of PAS connectivity to PrizmDoc Server.

PrizmDoc Viewer v13.17 919

©2021 My Company. All Rights Reserved.

https://cloud.accusoft.com/

Successful Response

HTTP/1.1 200 OK
OK

A 200 response indicates PAS is able to communicate with PrizmDoc Server.

NOTE: A successful response only indicates whether PAS is able to communicate with PrizmDoc
Server; it does not mean that PrizmDoc Server instances themselves are healthy. To check the health
of PrizmDoc Server instances, use the PrizmDoc Server Health REST API.

Error Responses

HTTP/1.1 580 Server Error

A non-200 response indicates PAS is NOT able to communicate with PrizmDoc Server.

GET /info
A request to get information about the service.

GET http://localhost:3000/info

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "version": "X.X.XXXX.XXXX"
}

Where the version is the PAS version.

There are no error states for this request. If the request times out or the connection is refused, then the service is
not running or reachable.

Viewer Support
These REST APIs are used by our viewer. It is uncommon for your application to need to use them:

Attachments
Content Converters

Content Converters (Deprecated)
Form Definitions
Form Extractors

PrizmDoc Viewer v13.17 920

©2021 My Company. All Rights Reserved.

Image Stamps
Legacy Create Session
Markup Burners
Markup Layers
Markup XML
Search Tasks

Attachments

Introduction
The attachments REST API is used by our viewer to get EML and MSG attachments for a document being viewed.

Available URLs

URL Description

GET /ViewingSession/u{ViewingSessionID}/Attachments Lists the attachments available in the source document.

GET /ViewingSession/u{ViewingSessionID}/Attachments
Routes key: GetAttachments

This API returns a JSON list of attachment objects. If the return object list length has a zero count and no errors detected, there are no
attachments. The status property of the list object indicates whether or not the list has been completed. If the list hasn't been completed,
the request must be retried again. Each Attachment object in the list contains displayName and viewingSessionId property. The
displayName can be used to label an href link on a web page and the link points to the viewingSessionId URL for the attachment.

Request

URL Parameters

Parameter Description

{ViewingSessionID} The ID of the viewing session associated with the request.

Successful Response

Response Body

If successful, this method returns the following properties:

status (String) Specifies the current status of the attachments.
"pending" - There may be attachments, but the list has not yet been constructed.
"complete" - The list is known and present in this object.

attachments (List) The list of attachments, if any. Each item in this list will be a new viewing session ID, which is used to view any
of the listed attachments in the Viewer by passing in the viewing session ID provided in this list.

Error Responses

Status
Code Description

500 Internal service error. This error can be returned for a number of different reasons. Please verify that your input is correct, and
contact Support if the error persists.

Examples

Request

PrizmDoc Viewer v13.17 921

©2021 My Company. All Rights Reserved.

GET pas_base_url/ViewingSession/uGcIsIsEGbLV2_V9yy4NzmK2HB-JuLOH--
A9sZ16cla9txO0ZDBGfq1G4kKu0r_GyEps4wWCvDwn4dpnZAR76Uw/Attachments

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "attachments": [
 {
 "displayName": "example-file.pdf",
 "viewingSessionId":
"SC0fZEMYiiGdOPMKBqLY8P6EAnVLEqxeTHjUUYqqxgJJc3s3wsQ8Lw2qqvkD1uLKTpAlF1ce23EQ6BFpYb4E3LC9TsXxwHCgB-
I1c5rPOt0"
 },
 {
 "displayName": "second-example.doc",
 "viewingSessionId": "33qQovKTjc0UKbNgOI-5POEyCpNw5x-
uEzGMB13iUVhnCa_UHSSnOpRBEzPKeD7Maxq2RQu2SOOwJjl4X4iU_65OQjx2EI5-7h-bXlYc6uA"
 }
],
 "status": "complete"
}

Content Converters

Introduction
The content converters REST API is used by our viewer to allow the user to download the document they are viewing as a PDF.

This REST API is designed for our viewer. If your application needs to convert a document to a different format, we recommend you use PrizmDoc Server’s content converters
REST API instead. It offers more options and does not require the use of a viewing session.

Available URLs

URL Description

POST /v2/viewingSessions/{viewingSessionId}/contentConverters Starts a conversion process for the source document of a particular
viewing session.

GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId} Gets the status of the specific converter process.

GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}/results/{index}/file?
ContentDispositionFilename={fileName}

Gets the contents of a file produced by the converter process.

POST /v2/viewingSessions/{viewingSessionId}/contentConverters
Routes key: CreateContentConverterV2

Starts a conversion process for the source document of a particular viewing session. This URL has the following parameters:

Parameter Description

{viewingSessionId} The ID provided in the response from POST /ViewingSession.

Request

Body: Empty. An error will be returned if any data is present.

NOTE: PDF is currently the only supported destination format. A successful response will include several input properties as shown below. A future release will allow these properties to be set in the
request body to create various kinds of output.

Response

Body: a JSON object with the following properties:

Property Type Description

input {object} An object that specifies the input used for the conversion.

input.dest {object} An object that specifies the destination file format and any additional details which control how the content is converted.

input.dest.format {string} Specifies the output file format.

PrizmDoc Viewer v13.17 922

©2021 My Company. All Rights Reserved.

input.dest.pdfOptions {object} An object that specifies additional options when input.dest.format is "pdf".

input.dest.pdfOptions.forceOneFilePerPage {boolean} If true, the conversion process will produce single-page PDF files, one file for each page of content (instead of a single
PDF with multiple pages). Default is false.

input.sources {object} An array of objects, one for each input file.

input.sources[n].pages {string} The page numbers and/or page ranges, separated by commas, of the source document to convert.

processId {string} The id of the contentConverter resource which represents the file conversion operation.

state {string} The current state of the conversion process, which will be one of the following: "processing", "complete", or "error". If
"processing", the conversion is still in progress. If "complete", the conversion has completed successfully. If "error", the
conversion failed due to a problem. For the initial POST, this value will almost always be "processing". Results are typically
only available with a subsequent GET.

percentComplete {integer} An integer from 0 to 100 that indicates what percentage of the conversion is complete.

errorCode {string} An error code string if a problem occurred during the conversion process.

Examples

POST pas_base_url/v2/viewingSessions/ZGZhc2RmYXNkZmFzZGZkcw/contentConverters

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 },
 "sources": [
 {
 "pages": ""
 }
]
 },
 "expirationDateTime": "2015-11-04T19:20:09.280Z",
 "processId": "mxivIVSw7UhtL1yWwt3QEA",
 "state": "processing",
 "percentComplete": 0
}

Errored Responses

When a response with a status code of 580 is received check the response body for details:

HTTP/1.1 580 InternalError
Content-Type: application/json

{
 "errorCode": "InternalError"
}

When a viewing session does not exist for the given viewingSessionId:

HTTP/1.1 404 Not Found

When any data is present in the body of the request:

HTTP/1.1 480 ReservedInput
Content-Type: application/json

{
 "errorCode": "ReservedInput",
 "errorDetails": {
 "in": "body"
 }
}

When the server's license could not be verified:

HTTP/1.1 480 LicenseCouldNotBeVerified
Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

Property Type Description

PrizmDoc Viewer v13.17 923

©2021 My Company. All Rights Reserved.

GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}
Routes key: PollContentConverterV2

Gets the status of the specific converter process. This URL has the following parameters:

Parameter Description

{viewingSessionId} The ID provided in the response from POST /ViewingSession.

{processId} The ID provided in the response from POST /v2/viewingSessions/{viewingSessionId}/contentConverters.

Response

Body: a JSON object with the following properties:

Property Type Description

input {object} An object that specifies the input used for the conversion.

input.dest {object} An object that specifies the destination file format and any additional details which control how the content is converted.

input.dest.format {string} Specifies the output file format.

input.dest.pdfOptions {object} An object that specifies additional options when input.dest.format is "pdf".

input.dest.pdfOptions.forceOneFilePerPage {boolean} If true, the conversion process will produce single-page PDF files, one file for each page of content (instead of a single
PDF with multiple pages). Default is false.

input.sources {object} An array of objects, one for each input file.

input.sources[n].pages {string} The page numbers and/or page ranges, separated by commas, of the source document to convert.

processId {string} The id of the contentConverter resource which represents the file conversion operation.

state {string} The current state of the conversion process, which will be one of the following: "processing", "complete", or "error". If
"processing", the conversion is still in progress. If "complete", the conversion has completed successfully. If "error", the
conversion failed due to a problem.

percentComplete {integer} An integer from 0 to 100 that indicates what percentage of the conversion is complete.

errorCode {string} An error code string if a problem occurred during the conversion process.

output.results {object} An array of objects, one for each output file created. The 0-based index of each output file will be used in the URL GET
/v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}/results/{index}/file

to retrieve the contents of each file.

output.results[n].sources {object} An array of objects, one for each source file which contributed to this output file.

output.results[n].sources[n].pages {string} The page or pages used from the source file. This will be a string value using one-based indexing. For example, if the
output file represents page 2 of the source document, pages would have a value of "2". If the output file represents all 20
pages of a source document, pages would have a value of "1-20".

output.results[n].pageCount {integer} The total number of pages in the output file.

Example

GET pas_base_url/v2/viewingSessions/ZGZhc2RmYXNkZmFzZGZkcw/contentConverters/mxivIVSw7UhtL1yWwt3QEA

Successful Response

When the converter process completes with no conversion failures:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 },
 "sources": [
 {
 "pages": ""
 }
]
 },
 "processId": "mxivIVSw7UhtL1yWwt3QEA",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "eOsJIqI8aHkxVV0yJug",
 "sources": [
 {
 "pages": "1-4"
 }
],

PrizmDoc Viewer v13.17 924

©2021 My Company. All Rights Reserved.

 "pageCount": 4
 }
]
 }
}

When the converter process completes with a failure:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 },
 "sources": [
 {
 "pages": ""
 }
]
 },
 "processId": "mxivIVSw7UhtL1yWwt3QEA",
 "state": "error",
 "percentComplete": 100,
 "errorCode": "CouldNotConvert",
 "output": {
 "results": [
 {
 "errorCode": "CouldNotConvertPage",
 "sources": [
 {
 "pages": "3"
 }
]
 }
]
 }
}

Error Responses

When a response with a status code of 580 is received check the response body for details:

HTTP/1.1 580 InternalError
Content-Type: application/json

{
 "errorCode": "InternalError"
}

When a converter process does not exist for the given processId:

HTTP/1.1 404 Not Found

GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}/results/{index}/file?
ContentDispositionFilename={fileName}
Routes key: GetContentConverterOutputFileV2

Gets the contents of a file produced by the converter process. This URL has the following parameters:

Parameter Description

{viewingSessionId} The ID provided in the response from POST /ViewingSession.

{processId} The ID provided in the response from POST /v2/viewingSessions/{viewingSessionId}/contentConverters.

{index} The 0-based index of the result file, originating from its position in the response.output.results array in the response from GET
/v2/viewingSessions/{viewingSessionId}/contentConverters/{processId} .

{fileName} The filename as a URL-encoded string, without extension, to be used in the Content-Disposition response header (the appropriate file extension such as pdf
will be appended automatically).

Response Headers

Name Description

Content-

Disposition

Specifies 'attachment' disposition, RFC-2183 compatible filename parameter and an RFC-8187 compatible filename* parameter, allowing the use of non-ASCII
filenames.

Content-Type The most-specific MIME type for the returned document.

Response Body

PrizmDoc Viewer v13.17 925

©2021 My Company. All Rights Reserved.

The raw bytes of the result document.

Example

GET pas_base_url/v2/viewingSessions/ZGZhc2RmYXNkZmFzZGZkcw/contentConverters/mxivIVSw7UhtL1yWwt3QEA/results/0/file?
ContentDispositionFilename=MyFile

Successful Response

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Disposition: attachment; filename="Greek____.pdf"; filename*=UTF-8''Greek%CE%91%CE%92%CE%93%CE%94.pdf

<<PDF data>>

Error Responses

When an output file does not exist for the given index:

HTTP/1.1 404 Not Found

Content Converters (Deprecated)

Introduction
NOTE: The following URLs have been deprecated and will be removed from the public API in a future release.
They are not available at all in PrizmDoc Cloud. Please use the newer Content Converters API instead.

Deprecated URLs

URL Description

(DEPRECATED) POST
/contentConverters

Used to start a conversion process for a particular document based on the viewing
session. Use POST /v2/viewingSessions/{viewingSessionId}/contentConverters instead.

(DEPRECATED) GET
/contentConverters/{processId}

Used to get the status of the specific conversion task. Use GET
/v2/viewingSessions/{viewingSessionId}/contentConverters/{processId} instead.

(DEPRECATED) GET
/WorkFile/{fileId}

Used to get the output PDF. Use GET
/v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}/results/{index}/file
instead.

POST /contentConverters (Deprecated)
Deprecated. Use POST /v2/viewingSessions/{viewingSessionId}/contentConverters instead.

Converts a viewing session to a PDF.

Note that this URL is only available with PrizmDoc Viewer Self-Hosted.

Routes key: CreateContentConverter

Starts a conversion process for a particular document based on the viewing session.

POST http://localhost:3000/contentConverters
Content-Type: application/json

{ "viewingSessionId": "1234" }

PrizmDoc Viewer v13.17 926

©2021 My Company. All Rights Reserved.

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 },
 "sources": [
 {
 "fileId": "9BgnvnYFK96E0YOsK-A9xA",
 "pages": ""
 }
]
 },
 "expirationDateTime": "2015-11-04T19:20:09.280Z",
 "processId": "mxivIVSw7UhtL1yWwt3QEA",
 "state": "processing",
 "percentComplete": 0,
 "affinityToken": "wxyz"
}

Error Responses

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

GET /contentConverters/{processId} (Deprecated)
Routes key: PollContentConverter

Deprecated. Use GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId} instead.

Gets the status of the process which is converting the viewing session to a PDF.

GET http://localhost:3000/contentConverters/9BgnvnYFK96E0YOsK-A9xA
Accusoft-Affinity-Token: wxyz

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

PrizmDoc Viewer v13.17 927

©2021 My Company. All Rights Reserved.

{
 "input": {
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 },
 "sources": [
 {
 "fileId": "9BgnvnYFK96E0YOsK-A9xA",
 "pages": ""
 }
]
 },
 "expirationDateTime": "2015-11-04T19:20:09.280Z",
 "processId": "mxivIVSw7UhtL1yWwt3QEA",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "eOsJIqI8aHkxVV0yJug",
 "sources": [
 {
 "fileId": "9BgnvnYFK96E0YOsK-A9xA",
 "pages": "1-4"
 }
],
 "pageCount": 4
 }
]
 }
}

Error Responses

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

GET /WorkFile/{fileId}?ContentDispositionFilename={file
name}&affinityToken={affinityToken} (Deprecated)
Deprecated. Use GET /v2/viewingSessions/{viewingSessionId}/contentConverters/{processId}/results/{index}/file instead.

Used to get the output PDF.

Note that this URL is only available with PrizmDoc Viewer Self-Hosted.

Routes key: GetWorkFile

PrizmDoc Viewer v13.17 928

©2021 My Company. All Rights Reserved.

GET http://localhost:3000/WorkFile/eOsJIqI8aHkxVV0yJug?
ContentDispositionFilename=MyFile&affinityToken=wxyz

Successful Response

HTTP/1.1 200 OK
Content-Disposition: attachment; filename={documentDisplayName}.{ext}
Content-Type: {content type of the specific document}

Form Definitions

Introduction
The form definitions REST API allows an application to manage form definitions used by our e-signature viewer.

Available URLs

URL Description

GET /FormDefinitions Gets the list of forms available on the server.

GET
/FormDefinitions/{formDefinitionId}

Gets a specific form definition from the server.

POST /FormDefinitions Creates a new form definition using the uploaded data.

POST
/FormDefinitions/{formDefinitionId}

Updates an existing form definition with the new uploaded data. This will
overwrite all of the existing data with the new uploaded data.

DELETE
/FormDefinitions/{formDefinitionId}

Deletes a form definition from the server.

GET /FormDefinitions
Routes key: GetFormDefinitions

Gets the list of forms available on the server.

GET pas_base_url/FormDefinitions

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

[{
 "name": "Form 1",
 "formRoles": {

PrizmDoc Viewer v13.17 929

©2021 My Company. All Rights Reserved.

 "formRole1": {
 "formRoleId": "formRole1",
 "fieldColor": "#439fe0",
 "displayName": "one",
 "sortIndex": 1
 },
 "formRole2": {
 "formRoleId": "formRole2",
 "fieldColor": "#58bb63",
 "displayName": "two",
 "sortIndex": 2
 }
 },
 "formDefinitionId": "03f3e9c4a976419da576276acc427700"
},{
 "name": "Form 2",
 "formRoles": {},
 "formDefinitionId": "04a6032f3eaa4a8a9eb1b5fce1cb99e9"
}]

Error Responses

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

GET /FormDefinitions/{formDefinitionId}
Routes key: GetFormDefinition

Gets a specific form definition from the server.

GET pas_base_url/FormDefinitions/03f3e9c4a976419da576276acc427700

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "templateDocumentId": "Form 1.pdf",
 "globalSettings": { ... global settings ... },
 "formRoles": { ... form roles ... },
 "groups": {},
 "formName": "Form 1",
 "formData": [... form data ...]
}

PrizmDoc Viewer v13.17 930

©2021 My Company. All Rights Reserved.

Error Responses

When the form definition does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

POST /FormDefinitions
Routes key: CreateFormDefinition

Creates a new form definition using the uploaded data.

POST pas_base_url/FormDefinitions
Content-Type: application/json

{
 "templateDocumentId": "Form 3.pdf",
 "globalSettings": { ... global settings ... },
 "formRoles": { ... form roles ... },
 "groups": {},
 "formName": "Form 3",
 "formData": [... form data ...]
}

Successful Response

HTTP/1.1 201 Created
Content-Type: application/json

{
 "formDefinitionId": "5418c96283bc469783bd30e7c8fdc059"
}

Error Responses

PrizmDoc Viewer v13.17 931

©2021 My Company. All Rights Reserved.

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

POST /FormDefinitions/{formDefinitionId}
Routes key: UpdateFormDefinition

Updates an existing form definition with the new uploaded data. This will overwrite all of the existing data with the
new uploaded data.

POST pas_base_url/FormDefinitions/03f3e9c4a976419da576276acc427700
Content-Type: application/json

{
 "templateDocumentId": "Form 1.pdf",
 "globalSettings": { ... global settings ... },
 "formRoles": { ... form roles ... },
 "groups": {},
 "formName": "Form 1 - updated",
 "formData": [... form data ...]
}

Successful Response

HTTP/1.1 200 OK

Error Responses

When the form definition does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

PrizmDoc Viewer v13.17 932

©2021 My Company. All Rights Reserved.

{
 "errorCode": "InternalError"
}

DELETE /FormDefinitions/{formDefinitionId}
Routes key: DeleteFormDefinition

Deletes a form definition from the server.

DELETE pas_base_url/FormDefinitions/03f3e9c4a976419da576276acc427700

Alternatively, the POST method is supported for this request in combination with an X-HTTP-Method-Override
header, as such:

POST pas_base_url/FormDefinitions/03f3e9c4a976419da576276acc427700
X-HTTP-Method-Override: DELETE

Successful Response

HTTP/1.1 204 No Content

Error Responses

When the form definition does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

Form Extractors

PrizmDoc Viewer v13.17 933

©2021 My Company. All Rights Reserved.

Introduction
The form extractors REST API is used by our e-signature viewer to automatically detect form field elements in a
document being viewed.

A form extractor resource represents an asynchronous form extraction process. Each form extractor that is created is
assigned a unique processId.

Available URLs

URL Description

GET /ViewingSession/u{viewingSessionId}/FormInfo Returns what kind of form field data, if any, is
available in a viewing session's source
document.

POST /v2/viewingSessions/{viewingSessionId}/formExtractors Creates a new form extractor from the source
document of a viewing session, starting the
process of extracting form field data.

GET
/v2/viewingSessions/{viewingSessionId}/formExtractors/{processId}

Gets the status and final output of a form
extractor created for a specified viewing
session.

Output Schemas
"acroform" Output
"rasterForm" Output

GET /ViewingSession/u{viewingSessionId}/FormInfo
Returns what kind of form field data, if any, is available in a viewing session's source document.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session. Note this particular URL
requires a letter 'u' to be provided before the viewingSessionId.

Successful Response

Response Body

JSON with information about what kind of form data, if any, is available in the source document of the viewing
session.

formType[] (Array of strings) Array of values indicating what types of form data, if any, are available for
extraction from this viewing session's source document. Values will be one of the following:

"acroform" - The source document is a PDF which contains AcroForm data. The data can be

PrizmDoc Viewer v13.17 934

©2021 My Company. All Rights Reserved.

"acroform" - The source document is a PDF which contains AcroForm data. The data can be
extracted by using an input.formType of "acroform" in a subsequent POST to create a form
extractor process.
"xfa" - The source document is a PDF which contains XFA form data. We do not yet support
extraction of XFA data.
"rasterForm" - The source document is a raster file which may or may not contain detectable form
fields. You can attempt to extract form data by using an input.formType of "rasterForm" in a
subsequent POST to create a form extractor process.

Error Responses

Status
Code JSON errorCode Description

404 No viewing session with the provided {viewingSessionId} could
be found.

480 "DocumentNotProvidedYet" A source document has not been provided to the viewing session.

480 "FeatureNotLicensed" You are not licensed to use the form extraction feature.

501 "NotImplemented" Form extraction is not yet implemented for a viewing session which
uses a cached viewing package.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

GET pas_base_url/ViewingSession/uXYZ.../FormInfo

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "formType": ["acroform"]
}

POST /v2/viewingSessions/{viewingSessionId}/formExtractors
Creates a new form extractor from the source document of a viewing session, starting the process of extracting form
field data.

Request

Request Headers

PrizmDoc Viewer v13.17 935

©2021 My Company. All Rights Reserved.

Name Description

Content-Type Must be application/json

Request Body

input
password (String) Password to open the source document, if required.
formType (String) Required. Type of form field data to extract. Must be one of the following:

"acroform" - Extract AcroForm field data from a PDF and return results in our "acroform"
JSON format.
"rasterForm" - Detect visible form fields in a raster document and return results in our
"rasterForm" JSON format.

minSecondsAvailable (Integer) The minimum number of seconds this process will remain available to GET
its status. The actual lifetime may be longer.

Successful Response

Response Body

JSON with metadata about the created form extractor process. You can check on the status of the form extraction
process with additional GET requests.

input (Object) Input we accepted to create the form extractor process.
processId (String) Unique id for the newly-created form extractor process.
state (String) State of extracting form field data:

"processing" - The server is extracting form field data.
"complete" - All form field data has been extracted.
"error" - There was a problem extracting form field data.

percentComplete (Integer) Percentage of form extraction which has completed (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the form extractor resource will expire
and no longer be available. This time may be extended if we have need to keep using the data. Format is [RFC
3339 Internet Date/Time profile of ISO 8601], e.g. "2016-11-05T08:15:30.494Z".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.

Error Responses

Status
Code JSON errorCode Description

480 "MissingInput" A required input value was not provided. See errorDetails in the
response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response
body.

480 "DocumentNotProvidedYet" A source document has not been provided to the viewing session.

480 "FeatureNotLicensed" You are not licensed to use the form extraction feature.

480 "LicenseCouldNotBeVerified" The server's license could not be verified. If you are evaluating the
product without a license, the product is running in evaluation mode
and this particular part of the product is unavailable without a
license. If you have a license, make sure you configured your license

PrizmDoc Viewer v13.17 936

©2021 My Company. All Rights Reserved.

correctly, that your license has not expired, and that you have not
exceeded any license limits (such as, for a Cloud License, the total
number of logical CPU cores in use).

501 "NotImplemented" Form extraction is not yet implemented for a viewing session which
uses a cached viewing package.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

POST pas_base_url/v2/viewingSessions/uXYZ.../formExtractors
Content-Type: application/json

{
 "input": {
 "formType": "acroform"
 }
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "formType": "acroform"
 },
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

GET
/v2/viewingSessions/{viewingSessionId}/formExtractors/{processId}
Gets the status and final output of a form extractor created for a specified viewing session.

Request

URL Parameters

Status
Code JSON errorCode Description

PrizmDoc Viewer v13.17 937

©2021 My Company. All Rights Reserved.

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{processId} The processId which identifies the form extractor process.

Successful Response

Response Body

JSON with metadata about the form extractor process and the final output, if available. You can check on the status
of the form extraction process with additional GET requests.

input (Object) Input we accepted to create the form extraction process.
processId (String) Unique id for this form extractor process.
state (String) State of extracting form field data:

"processing" - The server is extracting form field data.
"complete" - All form field data has been extracted.
"error" - There was a problem extracting form field data.

percentComplete (Integer) Percentage of form extraction which has completed (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the form extractor resource will expire
and no longer be available. This time may be extended if we have need to keep using the data. Format is [RFC
3339 Internet Date/Time profile of ISO 8601], e.g. "2016-11-05T08:15:30.494Z".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.
output (Object) Present when state is "complete":

acroform (Object) Present when input.formType is "acroform". See "acroform" Output below
for details.
rasterForm (Object) Present when input.formType is "rasterForm". See "rasterForm"
Output below for details.

Error Responses

Status
Code JSON errorCode Description

404 - No form extractor could be found for the given {viewingSessionId} and
{processId}.

501 "NotImplemented" Form extraction is not yet implemented for a viewing session which uses a
cached viewing package.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Request

GET pas_base_url/v2/viewingSessions/uXYZ.../formExtractors/x62gH3TYdqlKj94pLqzmtS

Response

PrizmDoc Viewer v13.17 938

©2021 My Company. All Rights Reserved.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "formType": "acroform"
 },
 "output": {
 "acroform": {
 "pages": [
 {
 "page": 1,
 "height": 792,
 "width": 612,
 "fields": [
 {
 "fieldType": "Text",
 "name": "email",
 "required": true,
 "tabOrder": 0,
 "appearance": {
 "textColor": "0 g",
 "font": "Helvetica"
 },
 "boundingBox": {
 "lowerLeftX": 89,
 "lowerLeftY": 646,
 "upperRightX": 239,
 "upperRightY": 668
 },
 "options": {
 "multiline": false,
 "maxLen": -1
 },
 "format": {
 "formatCategory": "None"
 }
 },
 {
 "fieldType": "Text",
 "name": "fullName",
 "required": false,
 "tabOrder": 1,
 "appearance": {
 "textColor": "0 g",
 "font": "Helvetica"
 },
 "boundingBox": {
 "lowerLeftX": 89,
 "lowerLeftY": 676,
 "upperRightX": 239,
 "upperRightY": 698
 },
 "options": {
 "multiline": false,
 "maxLen": -1
 },
 "format": {
 "formatCategory": "None"
 }
 }

PrizmDoc Viewer v13.17 939

©2021 My Company. All Rights Reserved.

]
 }
]
 }
 },
 "expirationDateTime": "2016-10-11T03:30:33.166Z",
 "percentComplete": 100,
 "processId": "x62gH3TYdqlKj94pLqzmtS",
 "state": "complete"
}

"acroform" Output

The output.acroform object will conform to the following. All properties are always present unless otherwise
noted:

pages[] (Array of Objects) Pages in the document which contains acroform fields. Array will be empty if
document does not contain any acroform fields. Each item will contain:

page (Integer) One-indexed page number.
height (Number) Page height in points.
width (Number) Page width in points.
fields[] (Array of Objects) Acroform fields in the current page. Items may contain:

fieldType (String) Field type. Will be one of the following:
"Text" - Text field
"Button" - Push button, check box, or radio button:

push button when options.pushButton is true
check box when options.pushButton and options.radio are both false
radio button when options.radio is true

"Signature" - Signature field
name (String) Unique field or radio button group name.
required (Boolean) Indicates whether or not this field is required for the form to be
considered complete.
tabOrder (Integer) Tab order of the field within the document.
boundingBox (Object) Position and size of this field. Object will contain:

lowerLeftX (Number) Distance in points from the left edge of the page to the left side
of this field.
lowerLeftY (Number) Distance in points from the bottom edge of the page to the
bottom edge of this field.
upperRightX (Number) Distance in points from the left edge of the page to the right
edge of this field.
upperRightY (Number) Distance in points from the bottom edge of the page to the
top edge of this field.

appearance (Object) Field appearance details:
textColor (String) Text fill color. Not always present.
font (String) Font name to use for this field. Not always present.

format (Object) Field formatting details:
formatCategory (String) Will be one of the following:

"None" - Indicates there are no additional formatOptions for this field.
"Date" - For text fields, requires the field value to be a date.

formatOptions Additional options for the given formatCategory, if any:
When formatCategory is "Date": (String) Date format string to use when
formatting the date value for display.

PrizmDoc Viewer v13.17 940

©2021 My Company. All Rights Reserved.

options (Object) Additional field options, present for some field types:
When fieldType is "Text":

multiline (Boolean) Indicates whether or not this is a multi-line text field.
maxLen (Integer) Indicates the maximum number of characters this form field
accepts, or -1 if there is no limit.

When fieldType is "Button":
pushButton (Boolean) true if this field is a push button, false otherwise.
radio (Boolean) true if this field is a radio button, false otherwise.
When both pushButton and radio are false, this field is a check box.

When fieldType is "Button" and options.radio is true:
buttonOnValue (String) Indicates the form value to use when this radio button
is selected.
buttonOffValue (String) Indicates the form value to use when this radio button
is not selected. Value will always be "Off".
buttonValue (String) Indicates whether or not this radio button should be
initially selected. When the value matches buttonOnValue, then this radio
button should be initially selected. Otherwise (when the value is "Off"), this radio
button should not be initially selected.

Fill Color Strings

A string of one or more numbers followed by an operator indicating what the numbers represent:

Grayscale value (when string ends in "g"): A single number between 0 and 1 followed by "g" represents the
amount of white which forms a grayscale color value. For example:

"0 g" - black
"0.5 g" - 50% gray
"1 g" - white

RGB value (when string ends in "rg"): Three numbers between 0 and 1 followed by "rg" represent the the
amount of red, green, and blue light which are additively mixed to form the final color. For example:

"1 0 0 rg" - red
"1 1 0 rg" - yellow
"0.5 0.25 0.75 rg" - 50% red, 25% blue, 75% green

CMYK (when string ends in "k"): Four numbers between 0 and 1 followed by "k" represent the amount of
cyan, magenta, yellow, and black which should be subtractively mixed to form the final color. For example:

"0 0 0 1 k" - black
"1 1 1 0 k" - black
"1 1 1 1 k" - black
"1 0 0 0 k" - cyan
"0.25 0.88 0.2 0.16 k" - 25% cyan, 88% magenta, 20% yellow, 16% black

Date Format Strings

Date format strings use the following special substitution patterns:

yy - 2-digit year (e.g. 16 for the year 2016)
yyyy - 4-digit year (e.g. 2016)
m - Month number with no zero padding (e.g. 7 for July)
mm - Month number zero-padded to always be two characters long (e.g. 07 for July)
mmm - Abbreviated month name (e.g. Jan)
mmmm - Full month name (e.g. January)
d - Day of the month with no zero padding (e.g. 4 for the fourth day of the month)
dd - Day of the month zero-padded to always be two characters (e.g. 04 for the fourth day of the month)

PrizmDoc Viewer v13.17 941

©2021 My Company. All Rights Reserved.

dd - Day of the month zero-padded to always be two characters (e.g. 04 for the fourth day of the month)
ddd - Abbreviated day of the week (e.g. Sun)
dddd - Full name for the day of the week (e.g. Sunday)
h - Hour number in 12-hour time with no zero padding (e.g. 2 for 2 o'clock)
hh - Hour number in 12-hour time zero-padded to always be two characters (e.g. 02 for 2 o'clock)
H - Hour number in 24-hour time with no zero padding (e.g. 13 for the 1:00 pm hour)
HH - Hour number in 24-hour time zero-padded to always be two characters (e.g. 02 for the 2:00 am hour)
M - Minute without zero padding
MM - Minute, zero-padded to always be two digits
s - Second without zero-padding
ss - Second, zero-padded to always be two digits
z - Offset from UTC (e.g. -0400)
j - Abbreviated Japanese era and year (e.g. H28 for the year 2016).
jj - Full Japanese era and year (e.g. 平成28 for the year 2016).
jjj - Japanese era year without specifying the era (e.g. 28 for the year 2016).

All other characters are considered literal punctuation for the format string. The special characters used above may
be used literally by escaping them with a backslash.

"rasterForm" Output

The output.rasterForm object will conform to the following. All properties are always present unless otherwise
noted:

pages[] (Array of Objects) Information about each page in the raster document. Each item will contain:
page (Integer) One-indexed page number.
height (Number) Page height in pixels.
width (Number) Page width in pixels.
fields[] (Array of Objects) Fields detected in the current page. Array will be empty if no fields were
detected. Items will contain:

name (String) Unique name we have automatically assigned to this field in the document (e.g.
"field5").
fieldType (String) Field type. Will be one of the following:

"Text" - Text field
"CheckBox" - Check box

confidence (Number) Our confidence in the correct detection of this field using a scale of 0
(no confidence) to 100 (complete confidence).
boundingBox (Object) Position and size of this field. Object will contain:

x (Number) Distance in pixels from the left edge of the page to the left side of this field.
y (Number) Distance in pixels from the top edge of the page to the top edge of this field.
width (Number) Distance in pixels from the left edge of this field (x) to the right edge of
this field.
height (Number) Distance in pixels from the top edge of this field (y) to the bottom
edge of this field.

tables[] (Array of Objects) Tables detected in the current page. Array will be empty if no tables were
detected. Items will contain:

numOfColumns (Integer) Number of columns in the detected table.
numOfRows (Integer) Number of rows in the detected table.
fields[] (Array of Objects) Fields detected in the current table. Items will contain:

name (String) Unique name we have automatically assigned to this field in the document
(e.g. "field5").
fieldType (String) Field type. Will be one of the following:

"Text" - Text field

PrizmDoc Viewer v13.17 942

©2021 My Company. All Rights Reserved.

"Text" - Text field
"CheckBox" - Check box

confidence (Number) Our confidence in the correct detection of this field using a scale
of 0 (no confidence) to 100 (complete confidence).
boundingBox (Object) Position and size of this field. Object will contain:

x (Number) Distance in pixels from the left edge of the page to the left side of this
field.
y (Number) Distance in pixels from the top edge of the page to the top edge of
this field.
width (Number) Distance in pixels from the left edge of this field (x) to the right
edge of this field.
height (Number) Distance in pixels from the top edge of this field (y) to the
bottom edge of this field.

Image Stamps

Introduction
The image stamps REST API is used by our viewer to load image stamps. It is unusual for your application to need
to use this REST API.

By default, a PAS installation contains two image stamps: a green check and a red X. To customize
your image stamps, see Add Custom Image Stamps.

Available URLs

URL Description

GET /ImageStampList Gets list of available image stamps.

GET /ImageStamp/{imageStampId}/q?format={formatStr} Gets image data for an image stamp.

GET /ImageStampList
Routes key: GetImageStamps

GET pas_base_url/ImageStampList

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 imageStamps : [
 { id: "ZmlsZTEuZ2lm", displayName: "file1.gif" },
 { id: "ZmlsZTIucG5n", displayName: "file2.png" }
]
}

PrizmDoc Viewer v13.17 943

©2021 My Company. All Rights Reserved.

GET /ImageStamp/{imageStampId}/q?format={formatStr}
Routes key: GetImageStamp

Gets image data for an image stamp. The query string parameter format defined the format of the response, and
supports the following values:

Base64: Returns a JSON object containing the image as a base64 encoded string, as well as a hash of the
original image.
Image: Returns the raw image file itself.

The raw image file itself is returned if no format or an unsupported format is specified.

Getting Base64 data

GET pas_base_url/ImageStamp/ZmlsZTIucG5n/q?format=Base64

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "dataHash": "1ca8d2e80b6f8f2774f3bc0e6422bc653b0e4d80",
 "dataUrl": "data:image/png;base64,..."
}

Getting the image data

GET pas_base_url/ImageStamp/ZmlsZTIucG5n/q?format=Image

Successful Response

HTTP/1.1 200 OK
Content-Type: {content type of the image}

<<binary image data>>

Error Responses

When an invalid imageStampId is requested:

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
 "errorCode": "BadRequest"

PrizmDoc Viewer v13.17 944

©2021 My Company. All Rights Reserved.

}

When a valid imageStampId is requested but it does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

Legacy Create Session

Introduction
DEPRECATED: The legacy create session REST API is deprecated in PAS and is available for backwards
compatibility only. Please use the newer viewing sessions REST API instead.

Available URLs

URL Description

GET /CreateSession?document={document
name}

Creates a viewing session based on a specific document in storage.

GET /CreateSession?form=
{formDefinitionId}

Creates a viewing session for the document referenced by a form
definition.

GET /CreateSession?document={document name}
Note that this URL is only available with PrizmDoc Viewer Self-Hosted.

Routes key: LegacyCreateSession

Creates a viewing session based on a specific document in storage.

GET pas_base_url/CreateSession?document=Sample.doc

To make the equivalent call using the new ViewingSession API:

POST pas_base_url/ViewingSession
Content-Type: application/json

{
 "source": {
 "type": "document",
 "fileName": "Sample.doc"
 }

PrizmDoc Viewer v13.17 945

©2021 My Company. All Rights Reserved.

}

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "viewingSessionId": "XYZ..."
}

Error Responses

When the document does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "DocumentNotFound"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

GET /CreateSession?form={formDefinitionId}
Note that this URL is only available with PrizmDoc Viewer Self-Hosted.

Routes key: LegacyCreateSession

Creates a viewing session for the document referenced by a form definition.

GET pas_base_url/CreateSession?form=03f3e9c4a976419da576276acc427700

There is no equivalent to this call in the new ViewingSession API. Instead, the user should refer to the
templateDocumentId field in the form definition JSON object, and use it as a document to create a viewing
session.

Error Responses

When the form definition does not exist:

PrizmDoc Viewer v13.17 946

©2021 My Company. All Rights Reserved.

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "FormDefinitionNotFound"
}

When the document referenced by the form definition does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "DocumentNotFound"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

Markup Burners

Introduction
The PAS markup burners REST API is used by our viewer to allow the user to download the document they are viewing as a PDF with all annotations applied.

This REST API is designed for our viewer. If your application needs to perform its own markup burning, we recommend you use PrizmDoc Server’s markup burners REST API instead. It allows your
application to produce PDFs with annotations “burned in” without the need for a viewing session.

Available URLs

URL Description

POST /ViewingSession/u{viewingSessionId}/MarkupBurner Starts a new MarkupBurner using the source document of a viewing session and provided markup data as input.

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId} Gets the status of a MarkupBurner for a viewing session.

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document Gets the output result of a MarkupBurner process for a viewing session.

POST /ViewingSession/u{viewingSessionId}/MarkupBurner
Routes key: CreateMarkupBurner

Starts a new MarkupBurner using the source document of a viewing session and a provided markup data as input. When the asynchronous process is ultimately finished, the output will be a new document which includes
the provided markup as part of the document itself (the original source document of the viewing session is left unaltered).

This is a specialized URL which allows you to do markup burning against the source file of an existing viewing session without needing to use the work file API.

This request merely begins the markup burning process. Once started, you poll the status of the process using the GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId} URL below to
know when the process has completed.

Request

Request Headers

Name Description

Content-Type Specifies the type of content being provided to the markup burner process. It must be application/xml or application/json depending on the markup format used in the request body.

URL Parameters

Parameter Description

{viewingSessionId} The id provided in the response from POST /PCCIS/V1/ViewingSession.

PrizmDoc Viewer v13.17 947

©2021 My Company. All Rights Reserved.

Query String Parameters

Parameter Description

{redactionMode} How redactions should be applied. May be one of the following:

"normal" - Actually redact the document, removing document content covered by redactions, drawing opaque redaction rectangles, and drawing any associated redaction
reason text in the center of the rectangles.
"draft" - Do NOT actually redact the document. Instead, indicate which parts of the document would be redacted by drawing partially transparent redaction rectangles over the
parts of the document that would be redacted. In order to avoid interfering with the original document content, redaction reason text will not be drawn in the center of the
transparent redaction rectangles.

Default is "normal".

{redactionDraftOpacity} Controls the opacity of redactions when redactionMode is set to "draft". Must be a value within 0 and 1 where 0 is fully transparent and 1 is fully opaque. Default is 0.2.

{RemoveFormFields} Optional parameter indicating which interactive form fields to remove from the source document upon markup burner process. Currently only "acroform" value is supported. Please
see example below.

Request Body

The JSON or XML markup to burn into the source document.

Response Body

If successful, a JSON object which may contain:

processId (String) The id of the process.
state (String) The current state of the markup burning process running on the server. This will always be "processing" in the initial POST response.
percentComplete (Integer) The percentage (0 – 100) complete of the process. This will always be 0 in the initial POST response.
input (null) Legacy property which exists only for backwards compatibility. Value will always be null.
output (null) Legacy property which exists only for backwards compatibility. Value will always be null.

Error Responses

Status Code Description

404 Not Found, if {viewingSessionId} does not exist.

405 Method Not Allowed, if POST HTTP method is not used.

480 An invalid input value was used. See errorDetails in the response body.

Examples

Request to burn a rectangle annotation using JSON markup

POST pas_base_url/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner
Content-Type: application/json

{
 "marks": [
 {
 "uid": "Z2diOV8yMDE3LTAzLTMxVDA3OjQ5OjExLjUyNVpfY2VnNjZy",
 "interactionMode": "Full",
 "pageNumber": 1,
 "type": "RectangleAnnotation",
 "creationDateTime": "2017-03-31T07:49:11.525Z",
 "modificationDateTime": "2017-03-31T07:49:11.526Z",
 "data": {},
 "conversation": {},
 "rectangle": {
 "x": 0,
 "y": 0,
 "width": 0,
 "height": 0
 },
 "pageData": {
 "width": 612,
 "height": 792
 },
 "borderColor": "#000000",
 "borderThickness": 4,
 "fillColor": "#FB0404",
 "opacity": 255
 }
]
}

Request to burn a rectangle annotation using JSON markup with removal of acroform fields

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner?
RemoveFormFields=acroform
Content-Type: application/json
{
 "marks": [
 {
 "uid": "Z2diOV8yMDE3LTAzLTMxVDA3OjQ5OjExLjUyNVpfY2VnNjZy",
 "interactionMode": "Full",
 "pageNumber": 1,
 "type": "RectangleAnnotation",
 "creationDateTime": "2017-03-31T07:49:11.525Z",
 "modificationDateTime": "2017-03-31T07:49:11.526Z",
 "data": {},
 "conversation": {},
 "rectangle": {
 "x": 0,
 "y": 0,
 "width": 0,
 "height": 0
 },
 "pageData": {
 "width": 612,
 "height": 792
 },
 "borderColor": "#000000",

PrizmDoc Viewer v13.17 948

©2021 My Company. All Rights Reserved.

 "borderThickness": 4,
 "fillColor": "#FB0404",
 "opacity": 255
 }
]
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}
Routes key: PollMarkupBurner

Gets the status of a MarkupBurner for a viewing session.

Requests are typically sent to this URL repeatedly as long as the state is "processing".

When state is "complete", a new document with the provided markup burned into it will be available at:

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document

If an error occurred and the output could not be created, the state property will be "error" and the errorCode property will contain an error code string.

Request

URL Parameters

Parameter Description

{viewingSessionId} The id provided in the response from POST /ViewingSession.

{processId} The id of the process.

Response Body

If successful, a JSON object which may contain:

processId (String) The id of the process.
state (String) The current state of the process. The following values are allowed:

"processing" - The markup burning is in progress.
"complete" - The markup burning is completed.
"error" - The markup burning returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the process.
errorCode (String) An error code string if a problem occurred during processing.
input (null) Legacy property which exists only for backwards compatibility. Value will always be null.
output (null) Legacy property which exists only for backwards compatibility. Value will always be null.

Error Responses

Status Code Description

404 Not Found, if either the {viewingSessionId} or {processId} do not exist.

405 Method Not Allowed, if GET method is not used.

Examples

Request

GET
pas_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner/5rGUUh3Qxhf6VXm8RkBPfA

Response when the state is "processing"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "5rGUUh3Qxhf6VXm8RkBPfA",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

Response when the state is "complete"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "5rGUUh3Qxhf6VXm8RkBPfA",
 "state": "complete",
 "percentComplete": 100,

PrizmDoc Viewer v13.17 949

©2021 My Company. All Rights Reserved.

 "errorCode": null,
 "output": null
}

Response when the state is "error" because the provided markup XML did not contain valid XML markup or the provided markup JSON was auto-detected as a non-text format

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "RedactionError",
 "output": null
}

Response when the state is "error" because the provided markup JSON cannot be parsed as JSON

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidJson",
 "output": null
}

Response when the state is "error" because the provided markup JSON does not match the JSON Marks Schema

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidMarkup",
 "output": null
}

GET /ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document?ContentDispositionFilename=
{ContentDispositionFilename}
Routes key: GetBurnedDocument

Downloads the resulting burned-in document. It will be served with the correct Content-Type of the document, and using the specified ContentDispositionFilename as the name, along with the correct file
extension.

Request

URL Parameters

Parameter Description

{viewingSessionId} The id provided in the response from POST /ViewingSession.

{processId} The id of the process which identifies the MarkupBurner task as a string.

{ContentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in the Content-Disposition response header (the file extension will be appended automatically). The
default value is "document".

Response Headers

Name Description

Content-Disposition Specifies 'attachment' disposition, RFC-2183 compatible filename parameter and an RFC-8187 compatible filename* parameter, allowing the use of non-ASCII filenames.

Content-Type Will be application/pdf.

Response Body

The raw bytes of the PDF document with markup burned into it.

Error Responses

Status Code Description

404 Not Found, which may occur if any of the following are true: the MarkupBurner has not completed yet, no such MarkupBurner exists, or no such ViewingSession exists.

405 Method Not Allowed, if GET method is not used.

Examples

Request

GET
pas_base_url/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner/ElkNzWtrUJp4rXI5YnLUgw/Document

PrizmDoc Viewer v13.17 950

©2021 My Company. All Rights Reserved.

Response

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Disposition: attachment; filename="Greek____.pdf"; filename*=UTF-8''Greek%CE%91%CE%92%CE%93%CE%94.pdf

<<PDF data>>

Markup Layers

Introduction
The markup layers REST API is used by our viewer to save and load markup (annotations and redactions) in our
newer JSON format.

Background
Our viewer has two different markup persistence modes it operates in:

Legacy XML markup mode - In this mode, the viewer saves and loads markup data in our older, legacy
XML format using the markup XML REST API. This is the default viewer behavior.
JSON markup mode - In this mode, the viewer saves and loads markup data in our newer JSON format
using this markup layers REST API. This mode applies when the viewer is configured with
annotationsMode set to 'LayeredAnnotations' (recommended).

We recommend you always instantiate the viewer with annotationsMode set to 'LayeredAnnotations' so
that it will operate in the new JSON markup mode. When you do this, the viewer will use this markup layers REST
API to save and load markup data in our newer JSON format.

If your application needs to access or manipulate the annotation JSON created by your end users, you will
need to use this REST API.

A set of markup data is accessed by markupId. But, because this REST API was designed for use by our viewer, all
operations are based upon a viewing session. In order to get access to a set of markup data by markupId, you first
must create a “dummy” viewing session, specifying the markupId you want to access via the source.markupId
property of your POST /ViewingSession request.

However, because source.markupId is optional when creating a viewing session, you may not know the
markupId to use. Fortunately, as long as you still know the information about the source document and how you
created the original viewing session for your end user, there is still a way to access the markup data. When a
viewing session is created without a source.markupId specified, we will automatically calculate a markupId
value based upon the other source object properties. So, if your did not specify an explicit source.markupId
when creating the original viewing session for your end user, you can still access the markup data that end user
saved by creating a new “dummy” viewing session with exactly the same set of source properties. For more
information about the source object options you can pass in on a POST /ViewingSession request, see the
POST /ViewingSession API reference.

Available URLs

URL Description

GET /MarkupLayers/u{viewingSessionId} Gets the list of all available markup layers for the particular
document.

POST /MarkupLayers/u{viewingSessionId} Creates a new markup layer using the provided data.

PrizmDoc Viewer v13.17 951

©2021 My Company. All Rights Reserved.

GET
/MarkupLayers/u{viewingSessionId}/{layerRecordId}

Gets a particular layer record from the server.

PUT
/MarkupLayers/u{viewingSessionId}/{layerRecordId}

Updates an existing markup layer record with new data. This
will overwrite all old data with the new uploaded data.

DELETE
/MarkupLayers/u{viewingSessionId}/{layerRecordId}

Deletes a markup layer record from the server.

GET /MarkupLayers/u{viewingSessionId}
Routes key: GetMarkupLayers

Gets the list of all available markup layers for the particular document.

GET pas_base_url/MarkupLayers/u1234

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "name": "layer name 1",
 "layerRecordId": "2fee93fadf2ed11df",
 "originalXmlName": ""
 },
 {
 "name": "layer name 2",
 "layerRecordId": "32f993b09fb0f2236",
 "originalXmlName": ""
 }
]

Error Responses

When the document cannot be identified based on the viewing session:

HTTP/1.1 502 Bad Gateway
Content-Type: application/json

{
 "errorCode": "BadGateway"
}

When the server's license could not be verified:

HTTP/1.1 480 LicenseCouldNotBeVerified

URL Description

PrizmDoc Viewer v13.17 952

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

POST /MarkupLayers/u{viewingSessionId}
Routes key: CreateMarkupLayer

Creates a new markup layer using the provided data.

POST pas_base_url/MarkupLayers/u1234
Content-Type: application/json

{
 "name": "layer name 1",
 "comments": [],
 "data": {},
 "marks": [{ array of mark objects }]
}

Successful Response

HTTP/1.1 201 Created
Content-Type: application/json

{
 "layerRecordId": "2fee93fadf2ed11df"
}

Error Responses

When the document cannot be identified based on the viewing session:

HTTP/1.1 502 Bad Gateway
Content-Type: application/json

{
 "errorCode": "BadGateway"
}

PrizmDoc Viewer v13.17 953

©2021 My Company. All Rights Reserved.

When the server's license could not be verified:

HTTP/1.1 480 LicenseCouldNotBeVerified
Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

GET /MarkupLayers/u{viewingSessionId}/{layerRecordId}
Routes key: GetMarkupLayer

Gets a particular layer record from the server.

GET pas_base_url/MarkupLayers/u1234/2fee93fadf2ed11df

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 ...markup layer data...
}

Error Responses

When the markup layer record does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

PrizmDoc Viewer v13.17 954

©2021 My Company. All Rights Reserved.

When the document cannot be identified based on the viewing session:

HTTP/1.1 502 Bad Gateway
Content-Type: application/json

{
 "errorCode": "BadGateway"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

PUT /MarkupLayers/u{viewingSessionId}/{layerRecordId}
Routes key: UpdateMarkupLayer

Updates an existing markup layer record with new data. This will overwrite all old data with the new uploaded data.

PUT pas_base_url/MarkupLayers/u1234/2fee93fadf2ed11df
Content-Type: application/json

Alternatively, the POST method is supported for this request in combination with an X-HTTP-Method-Override
header, as such:

POST pas_base_url/MarkupLayers/u1234/2fee93fadf2ed11df
Content-Type: application/json
X-HTTP-Method-Override: PUT

Successful Response

HTTP/1.1 200 OK

Error Responses

When the markup layer record does not exist:

HTTP/1.1 404 Not Found
Content-Type: application/json

PrizmDoc Viewer v13.17 955

©2021 My Company. All Rights Reserved.

{
 "errorCode": "NotFound"
}

When the document cannot be identified based on the viewing session:

HTTP/1.1 502 Bad Gateway
Content-Type: application/json

{
 "errorCode": "BadGateway"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

DELETE /MarkupLayers/u{viewingSessionId}/{layerRecordId}
Routes key: DeleteMarkupLayer

Deletes a markup layer record from the server.

DELETE pas_base_url/MarkupLayers/u1234/2fee93fadf2ed11df

Alternatively, the POST method is supported for this request in combination with an X-HTTP-Method-Override
header, as such:

POST pas_base_url/MarkupLayers/u1234/2fee93fadf2ed11df
X-HTTP-Method-Override: DELETE

Successful Response

HTTP/1.1 204 No Content

Error Responses

When the markup layer record does not exist:

PrizmDoc Viewer v13.17 956

©2021 My Company. All Rights Reserved.

HTTP/1.1 404 Not Found
Content-Type: application/json

{
 "errorCode": "NotFound"
}

When the document cannot be identified based on the viewing session:

HTTP/1.1 502 Bad Gateway
Content-Type: application/json

{
 "errorCode": "BadGateway"
}

When an unknown error occurs while gathering data:

HTTP/1.1 580 Server Error
Content-Type: application/json

{
 "errorCode": "InternalError"
}

Markup XML

Introduction
The markup XML REST API is used by our viewer to save and load markup (annotations and redactions) in our
legacy XML format.

Background
Our viewer has two different markup persistence modes it operates in:

Legacy XML markup mode - In this mode, the viewer saves and loads markup data in our older, legacy
XML format using this markup XML REST API. This is the default viewer behavior.
JSON markup mode - In this mode, the viewer saves and loads markup data in our newer JSON format
using the markup layers REST API. This mode applies when the viewer is configured with
annotationsMode set to 'LayeredAnnotations' (recommended).

We recommend you always instantiate the viewer with annotationsMode set to 'LayeredAnnotations' so
that it will operate in the new JSON markup mode. When you do this, the viewer will NOT use this REST API but will
instead use this markup layers REST API to save and load markup data in our newer JSON format.

However, if your application is already using the viewer in the legacy XML markup mode and you need to
access or manipulate the markup XML created by your end users, you will need to use this REST API.

A set of markup data is accessed by markupId. But, because this REST API was designed for use by our viewer, all

PrizmDoc Viewer v13.17 957

©2021 My Company. All Rights Reserved.

A set of markup data is accessed by markupId. But, because this REST API was designed for use by our viewer, all
operations are based upon a viewing session. In order to get access to a set of markup data by markupId, you first
must create a “dummy” viewing session, specifying the markupId you want to access via the source.markupId
property of your POST /ViewingSession request.

However, because source.markupId is optional when creating a viewing session, you may not know the
markupId to use. Fortunately, as long as you still know the information about the source document and how you
created the original viewing session for your end user, there is still a way to access the markup data. When a
viewing session is created without a source.markupId specified, we will automatically calculate a markupId
value based upon the other source object properties. So, if your did not specify an explicit source.markupId
when creating the original viewing session for your end user, you can still access the markup data that end user
saved by creating a new “dummy” viewing session with exactly the same set of source properties. For more
information about the source object options you can pass in on a POST /ViewingSession request, see the
POST /ViewingSession API reference.

Available URLs

URL Description

GET /AnnotationList/q/Art/q Gets the list of available annotation XML files from the server.

GET /Document/q/Art/q Gets a specific annotations XML file from the server.

POST /Document/q/Art/q Creates a new annotations XML file using the provided data.

GET /AnnotationList/q/Art/q?DocumentID=u{viewingSessionId}
Routes key: GetAnnotations

Gets the list of available annotation XML files from the server.

GET pas_base_url/AnnotationList/q/Art/q?DocumentID=u1234

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "annotationFiles": [
 {
 "annotationLabel": "anId",
 "annotationName": "abcd_0_anId.xml",
 "ID": "1"
 }
]
}

Error Responses

When the server's license could not be verified:

PrizmDoc Viewer v13.17 958

©2021 My Company. All Rights Reserved.

HTTP/1.1 480 LicenseCouldNotBeVerified
Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

GET /Document/q/Art/q?
DocumentID=u{viewingSessionId}&AnnotationID=u{annotationId}
Routes key: GetAnnotation

Gets a specific annotations XML file from the server.

GET pas_base_url/Document/q/Art/q?DocumentID=u1234&AnnotationID=uanId

Successful Response

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0"?>...

Error Responses

When the server's license could not be verified:

HTTP/1.1 480 LicenseCouldNotBeVerified
Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

POST /Document/q/Art/q?
DocumentID=u{viewingSessionId}&AnnotationID=u{annotationId}
Routes key: CreateAnnotation

Creates a new annotations XML file using the provided data.

POST pas_base_url/Document/q/Art/q?DocumentID=u1234&AnnotationID=uanotherId
Content-Type: application/xml

<?xml version="1.0">...

PrizmDoc Viewer v13.17 959

©2021 My Company. All Rights Reserved.

Successful Response

HTTP/1.1 200 OK

Error Responses

When the server's license could not be verified:

HTTP/1.1 480 LicenseCouldNotBeVerified
Content-Type: application/json

{
 "errorCode": "LicenseCouldNotBeVerified"
}

Search Tasks

Introduction
The search task REST API is used by our viewer to perform server-side searching and text retrieval against a
document which is currently being viewed.

This REST API is designed primarily for our viewer. If your application needs to perform document
search without a viewer involved, we recommend you use PrizmDoc Server’s search context and
search tasks REST APIs directly.

Available URLs

URL Description

POST
/v2/viewingSessions/{viewingSessionId}/searchTasks

Starts an asynchronous full-text search against a viewing
session's source document.

GET /v2/searchTasks/{processId}/results Gets available search results.

DELETE /v2/searchTasks/{processId} Cancels a search task.

POST /v2/viewingSessions/{viewingSessionId}/searchTasks
Starts an asynchronous full-text search against a viewing session's source document.

After a successful POST to create the search task, we immediately begin a background process to start populating
search results for you to GET. You do not need to wait for the full set of results to be available; you can start
retrieving partial search results as soon as they are available. Once the full text of the document has been searched
and no more results will be added, the search task state will change from "processing" to "complete".

Request

Request Headers

PrizmDoc Viewer v13.17 960

©2021 My Company. All Rights Reserved.

Name Description

Content-Type Must be application/json

Request Body

input
searchTerms[] (Array of Objects) Required and must contain at least one item. Each item must
be an object which conforms to one of the following:

Simple (finds all occurrences of a single regex pattern):
type: "simple" (String) Required. Must be set to "simple" to indicate this is a
simple term object.
pattern (String) Required. Regular expression to search for, using a JavaScript-
flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when matching this
term. Default is false.
contextPadding (Integer) Maximum number of characters to include both before
and after the search result in the returned context string. For example, a value of 25
would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a
termId property on each search result produced by this term. When used, we do not
enforce uniqueness; it is your responsibility to use a unique termId for each term.

Proximity (finds all occurrences of multiple regex patterns which are near each other):
type: "proximity" (String) Required. Must be set to "proximity" to indicate
this is a proximity term object.
subTerms[] (Array of Objects) Required and must contain at least two items. Each
item may contain:

pattern (String) Required. Regular expression for this particular term, using a
JavaScript-flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when
matching this term. Default is false.

distance (Integer) Required. Maximum number of words allowed between any two
consecutive sub-terms.
contextPadding (Integer) Maximum number of characters to include both before
and after the search result in the returned context string. For example, a value of 25
would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a
termId property on each search result produced by this term. When used, we do not
enforce uniqueness; it is your responsibility to use a unique termId for each term.

minSecondsAvailable (Integer) The minimum number of seconds this search task will remain available.
The actual lifetime may be longer.

Successful Response

Response Body

JSON with metadata about the created search task.

input (Object) Input we accepted to create the search task.
processId (String) Unique id for this search task.
affinityToken (String) Affinity token for this search task. Present when clustering is enabled.
state (String) State of getting search results.

PrizmDoc Viewer v13.17 961

©2021 My Company. All Rights Reserved.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

state (String) State of getting search results.
"processing" - The search is still being executed. Additional results may become available.
"complete" - The search is complete. No additional results will become available.
"error" - There was a problem performing the search. No additional results will become available.

percentComplete (Integer) Percentage of the document text which has been searched (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search task resource will expire
and no longer be available for use. Format is RFC 3339 Internet Date/Time profile of ISO 8601, e.g. "2016-
11-05T08:15:30.494Z".

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided
{viewingSessionId} could be found.

480 "DocumentNotProvidedYet" The viewing session does not yet have a source document
attached.

480 "MissingInput" A required input value was not provided. See
errorDetails in the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the
response body.

480 "MissingInputForSimpleTerm" An invalid input value was used in a "simple" term object.
See errorDetails in the response body.

480 "InvalidInputForSimpleTerm" An invalid input value was used in a "simple" term object.
See errorDetails in the response body.

480 "MissingInputForProximityTerm" An invalid input value was used in a "proximity" term
object. See errorDetails in the response body.

480 "InvalidInputForProximityTerm" An invalid input value was used in a "proximity" term
object. See errorDetails in the response body.

480 "FeatureDisabled" The viewing session was created with
"serverSideSearch" disabled.

480 "ResourceNotUsable" The underlying search resources are not usable for this
viewing session.

580 "InternalError" The server encountered an internal error when handling the
request.

Example

Request

This POST begins a search task which finds all instances of the word "quick":

POST pas_base_url/v2/viewingSessions/XYZ.../searchTasks
Content-Type: application/json

{

PrizmDoc Viewer v13.17 962

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }]
 }
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick",
 "caseSensitive": false,
 "contextPadding": 25
 }]
 },
 "processId": "pR5X6nPDgMwat6cxlmn0Q3",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Additional Examples

Start a case-sensitive search for an exact phrase

This POST begins a case-sensitive search for the exact phrase "The quick brown fox jumped over the lazy dog.".
Notice that we had to escape the period character because it is a special regex character (\.), and because this is a
JSON string value, the backslash itself must also be escaped ("\\."):

POST pas_base_url/v2/viewingSessions/XYZ.../searchTasks
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "The quick brown fox jumped over the lazy dog\\.",
 "caseSensitive": true
 }]
 }
}

Start a search for every instance of the word "quick" or "brown" or "fox"

This POST begins a search for the words "quick" or "brown" or "fox", locating all instances of each of these words:

PrizmDoc Viewer v13.17 963

©2021 My Company. All Rights Reserved.

POST pas_base_url/v2/viewingSessions/XYZ.../searchTasks
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }, {
 "type": "simple",
 "pattern": "fox"
 }, {
 "type": "simple",
 "pattern": "dog"
 }]
 }
}

Start a search for "quick" and "fox" and "dog" where there are no more than 5 words between any two
consecutive occurrences of them

POST pas_base_url/v2/viewingSessions/XYZ.../searchTasks
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "proximity",
 "subTerms": [{
 "pattern": "quick"
 }, {
 "pattern": "fox"
 }, {
 "pattern": "dog"
 }],
 "distance": 5
 }]
 }
}

Start a case-sensitive search for "John Doe" within 30 words of what looks like a Social Security Number

POST pas_base_url/v2/viewingSessions/XYZ.../searchTasks
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "proximity",
 "subTerms": [{
 "pattern": "John Doe",
 "caseSensitive": true
 }, {
 "pattern": "\\d{3}-\\d{2}-\\d{4}"

PrizmDoc Viewer v13.17 964

©2021 My Company. All Rights Reserved.

 }],
 "distance": 30
 }]
 }
}

GET /v2/searchTasks/{processId}/results?limit=
{limit}&continueToken={continueToken}
Gets a block of newly-available search results up to a limit.

This URL is designed to give you the results in chunks as they become available. Each GET request will return the
currently-known results up to a limit (default is 100). If a response contains a continueToken, it indicates that
additional results may be available and that you should issue another GET request using that continueToken as a
query string parameter to skip the results you have already received. As long as a response contains a
continueToken, use it to issue a subsequent GET for more results. When you encounter a response which does
not have a continueToken, you have received all of the results and no more GET requests are necessary.

In order to optimize the number of network requests you make, any response which contains a continueToken
will also contain a continueAfter value with a recommended number of milliseconds you should wait before
sending the next GET request.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the search task.

{limit} The maximum number of results to return for this HTTP request. Must be an integer
greater than 0. Default is 100.

{continueToken} Used to continue getting results from the point where a previous GET request left off.

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the search task. Required when server clustering is
enabled.

Successful Response

Response Body

JSON with any available search results.

results (Array of Objects) Always present. Array of newly-available search results. If no new results are
available, this array will be empty.

id (Integer) Unique number assigned to this search result.
pageIndex (Integer) Zero-indexed page number where this search result occurs in the document.
text (String) Text which was matched.

PrizmDoc Viewer v13.17 965

©2021 My Company. All Rights Reserved.

text (String) Text which was matched.
context (String) Contextual excerpt, including the matched text itself. The amount of leading and
trailing characters to include in this value is controlled by input.contextPadding in the initial
POST to create the search task.
boundingRectangle (Object) Bounding rectangle dimensions of the matched text on the page
where it occurs.

x (Number) Distance from the left edge of the page to the left edge of the search result
bounding box.
y (Number) Distance from the top edge of the page to the top edge of the search result
bounding box.
width (Number) Width of the search result bounding box.
height (Number) Height of the search result bounding box.

lineRectangles (Array of Objects) Array of rectangles for each line of the matched text on the
page where it occurs. If the match is on one line, the result is a single array item with a rectangle
equal to boundingRectangle. If the match is on multiple lines, all rectangles in the array will be
within the bounds of the boundingRectangle.

x (Number) Distance from the left edge of the page to the left edge of the search result line
rectangle.
y (Number) Distance from the top edge of the page to the top edge of the search result line
rectangle.
width (Number) Width of the search result line rectangle.
height (Number) Height of the search result line rectangle.

pageData (Object) Information about the dimensions of the page where this search result occurs.
width (Number) Width of the page.
height (Number) Height of the page.

searchTerm (Object) Search term which produced this result. The value will correspond to one of
the items passed in to input.searchTerms in the initial POST to create the search task.

When type is "simple":
type (String) Always present with a value of "simple".
pattern (String) Always present. Regular expression which produced the result.
caseSensitive (Boolean) Always present. Indicates whether or not case was
considered for this result.
contextPadding (Integer) Always present. Amount of context padding requested
for this term in the initial POST.
termId (String) When provided in the initial POST, termId of the term which
produced this result.

When type is "proximity":
type (String) Always present with a value of "proximity".
subTerms[] (Array of Objects) Always present. The sub-terms which contributed to
this result. Each item will contain:

pattern (String) Always present. Regular expression for this particular sub-
term.
caseSensitive (Boolean) Always present. Indicates whether or not case was
considered when matching this particular sub-term in the result.

distance (Integer) Always present. Maximum number of words allowed between
any two consecutive sub-terms.
contextPadding (Integer) Always present. Amount of context padding requested
for this term in the initial POST.
termId (String) When provided in the initial POST, termId of the term which
produced this result.

startIndex (Integer) JavaScript string index into the full-page text string where the matched text
begins.
startIndexInContext (Integer) JavaScript string index into the returned context string where

PrizmDoc Viewer v13.17 966

©2021 My Company. All Rights Reserved.

startIndexInContext (Integer) JavaScript string index into the returned context string where
the matched text begins.

pagesWithoutText (Array of Integers) Always present. Currently known pages in the document which
do not contain any text content at all. Values are zero-indexed page numbers. If the search task is still
processing (a continueToken is present in the response), the data should be considered partial. Note that,
unlike results, this value is cumulative (we always deliver the entire set of pages we know to not contain
text data).
continueToken (String) When present, indicates that more search results may be available. An additional
GET request should be made for more results using this value as the continueToken query string
parameter. When not present, indicates that the search is complete and no further results will be available.
continueAfter (Number) Recommended milliseconds to delay before issuing the next GET request for
more results.

Error Responses

Status
Code JSON errorCode Description

404 - No search task with the provided {processId} could be found.

480 "MissingInput" A required input value was not provided. See errorDetails in the
response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response
body.

480 "ResourceNotUsable" Can occur when the search task is in a state of "error".

580 "InternalError" The server encountered an internal error when handling the request.

Example

Say you have a search task which was created to find the regex "manag[a-z]*" in a particular whitepaper. Here is
an example sequence of requests and responses illustrating how you would acquire the full set of results for the
search task (for brevity, the total number of search results in this example is small).

You would start with an initial GET:

GET pas_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "results": [
 {
 "id": 0,
 "pageIndex": 0,
 "text": "Management",
 "context": "Self-Hosted Content Management Best Practices",
 "boundingRectangle": { "x": 24.20, "y": 13.74, "width": 234.20, "height":
26.10 },
 "lineRectangles": [{ "x": 24.20, "y": 13.74, "width": 234.20, "height":
26.10 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {

PrizmDoc Viewer v13.17 967

©2021 My Company. All Rights Reserved.

 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 19,
 "startIndexInContext": 19
 },
 {
 "id": 1,
 "pageIndex": 0,
 "text": "management",
 "context": "ue of enterprise content management software should go way b",
 "boundingRectangle": { "x": 156.07, "y": 352.19, "width": 105.00, "height":
13.41 },
 "lineRectangles": [{ "x": 156.07, "y": 352.19, "width": 105.00, "height":
13.41 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 527,
 "startIndexInContext": 25
 }
],
 "pagesWithoutText": [],
 "continueToken": "Cx07GHlkmi32gxAQhv49WZ",
 "continueAfter": 500
}

The initial response has given us two results for the first page of the document (page index 0) and a
continueToken which we should use to get more results after waiting 500 milliseconds.

So, half a second later, we issue a follow-up request with the continueToken passed in as a query string
parameter (so we skip over the results we already have):

GET pas_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results?
continueToken=Cx07GHlkmi32gxAQhv49WZ
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "results": [
 {
 "id": 2,
 "pageIndex": 1,
 "text": "management",
 "context": "Self-Hosted content management software helps eliminate",
 "boundingRectangle": { "x": 310.21, "y": 562.14, "width": 254.03, "height":
26.10 },
 "lineRectangles": [{ "x": 310.21, "y": 562.14, "width": 254.03, "height":
26.10 }],

PrizmDoc Viewer v13.17 968

©2021 My Company. All Rights Reserved.

 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 652,
 "startIndexInContext": 19
 }
],
 "pagesWithoutText": [2,3],
 "continueToken": "B4uGe7m0ZtxR3lkqA07Nmj",
 "continueAfter": 500
}

This time we get back a new result as well as some new information about pagesWithoutText: we now know
that at least page indices 2 and 3 (zero-indexed page numbers) have no text at all.

The presence of a new continueToken tells us there may be more results, so we submit another request with the
new continueToken:

GET pas_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results?
continueToken=B4uGe7m0ZtxR3lkqA07Nmj
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "results": [
 {
 "id": 3,
 "pageIndex": 5,
 "text": "management",
 "context": "upply chains to contract management, or HR processes to gove",
 "boundingRectangle": { "x": 67.00, "y": 142.53, "width": 254.03, "height":
26.10 },
 "lineRectangles": [{ "x": 67.00, "y": 142.53, "width": 254.03, "height":
26.10 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 113,
 "startIndexInContext": 25
 }
],
 "pagesWithoutText": [2,3,4]
}

This time we get a new result for page index 5, and we now know that page indices 2, 3, and 4 all contain no text

PrizmDoc Viewer v13.17 969

©2021 My Company. All Rights Reserved.

This time we get a new result for page index 5, and we now know that page indices 2, 3, and 4 all contain no text
at all (apparently this was not much of a whitepaper!). The lack of a continueToken tells us we have received all
of the results, so there are no more GET requests to make.

DELETE /v2/searchTasks/{processId}
Cancels a search task. Further requests using this processId will return errors.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the search task.

Request Headers

Name Description

Accusoft-Affinity-

Token

the affinityToken of the search task. Required when server clustering is
enabled.

Successful Response

HTTP/1.1 204 No Content

Error Responses

Status
Code JSON errorCode Description

404 - No search task with the provided {processId} could be found.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token
was not provided.

580 "InternalError" The server encountered an internal error when handling the request.

PrizmDoc Server REST API

Overview
The PrizmDoc Server REST API is for automated document processing.

For viewing functionality, use the PAS REST API instead.

For application development in .NET, we recommend using the PrizmDoc Server .NET SDK instead of
using the PrizmDoc Server REST APIs directly.

General Information

PrizmDoc Viewer v13.17 970

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/

Base URL for PrizmDoc Server

Areas of Functionality
The PrizmDoc Server REST APIs can be broken into the following groups:

Application Development

These are the REST APIs you will most-commonly use:

Content Conversion Service
Markup Burners
Plain Text Redactors
Redaction Creator
Search Contexts
Search Tasks
Work Files

Self-Hosted Administration

These REST APIs are useful if you are self-hosting PrizmDoc Server instances:

Health Status
Cluster Management

Viewing Support

These REST APIs are used by PAS and our viewer. It is uncommon for your application to need to use them:

Attachments
Form Extractors
HTML5 Viewing
Viewing Sessions

Unsupported Routes

These unsupported REST APIs are only for internal use by Accusoft products and components.

Unsupported Routes

General Information
This section contains the following information:

Base URL for PrizmDoc Server

Base URL for PrizmDoc Server

Introduction
When making REST API calls to PrizmDoc Server, you need to use the appropriate base URL.

PrizmDoc Viewer v13.17 971

©2021 My Company. All Rights Reserved.

PrizmDoc Cloud
If you are using our PrizmDoc Cloud offering, the base URL for the PrizmDoc Server APIs varies depending on your
region:

Region PrizmDoc Server Base URL

United States https://api.accusoft.com

Remember that PrizmDoc Cloud requires you to authenticate each request with an acs-api-key request header.

PrizmDoc Viewer Self-Hosted (Self-Hosted)
When hosting PrizmDoc Server yourself, just use the hostname and port of your PrizmDoc Server instance (or the
hostname and port of the load balancer which sits in front of your PrizmDoc Server cluster).

For a typical installation on localhost, the PrizmDoc Server base URL will be:

http://localhost:18681

Application Development
These are the REST APIs you will most commonly use:

Content Conversion Service
Markup Burners
Plain Text Redactors
Redaction Creator
Search Contexts
Search Tasks
Work Files

Content Conversion Service

Introduction
The content converters REST API allows your application to convert files from a variety of input formats to several common output formats.

For application development in .NET, we recommend using the PrizmDoc Server .NET SDK instead of the REST API. See the .NET SDK How to Guides for examples of how
to perform file conversion with the .NET SDK.

To convert a file using the REST API:

1. Upload a file you want to use as input using the WorkFile API.
2. Start a conversion operation by using the POST URL below.
3. Check the status of the conversion by (repeatedly) using the GET URL below.
4. When complete, a separate output file will exist which you can download via the WorkFile API.

Available URLs

URL Description

POST /v2/contentConverters Create and start a content conversion

GET /v2/contentConverters/{processId} Get the status of a content conversion

Note that these URLs begin with /v2, not /PCCIS/V1.

POST /v2/contentConverters
Creates a new contentConverter resource which represents the conversion process and begins converting one or multiple input files which you have previously uploaded using the
WorkFile API. A successful response will include a unique processId which identifies this contentConverter. You will use this processId in subsequent GET calls to get the status
and final results of the conversion.

PrizmDoc Viewer v13.17 972

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/

Request Headers

Name Value Details

Content-Type application/json required

Accusoft-

Affinity-Token

The affinityToken of the work files involved in the input
to the process.

Example:
rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w=

Required when server clustering is enabled. Providing this value is important to ensuring the
process will execute on the machine where the input work files actually exist.

NOTE: If you do not provide the required Accusoft-Affinity-Token, the POST itself will
succeed but the process itself will likely fail.

Request Body

At a high level, your request body should be JSON containing an input object with details about the sources and dest for the conversion.

Here is a minimal example:

POST prizmdoc_server_base_url/v2/contentConverters
Content-Type application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 }
],
 "dest": {
 "format": "pdf"
 }
 }
}

Additional options are available. Here is the full reference:

input.sources

The input.sources object specifies an array of objects, one for each input file.

Currently multiple input files are only supported when the destination format is pdf or tiff, but a future version of the product may allow you to submit multiple input source files
for other destination formats.

Name Description Details

input.sources[n].fileId Id of the WorkFile to use as input.

See Supported Input File Formats

string, required

Example:
"ek5Zb123oYHSUEVx1bUrVQ"

input.sources[n].pages Page numbers and/or page ranges separated by commas.

Currently pages is only supported when the destination format is pdf or tiff, and is ignored
otherwise. We expect this to change in a future version, in which case pages will be supported for
other destination formats.

string, optional

Example: 1,3,5-10

input.sources[n].password Password to open the document.

Currently password is only supported when the source format is PDF, MS Word, MS Excel, MS
PowerPoint or OpenDocument, and is ignored otherwise. Please note that only Office Open
XML versions of MS Word, MS Excel and MS PowerPoint are supported when
fidelity.msOfficeDocumentsRenderer is set to "libreoffice". We expect this to change in a future
version, in which case password will be supported for other source formats.

string, optional

Example: "secret"

input.sources[n].wordOptions Additional options of a Microsoft Word compatible source file format. object, optional

input.sources[n].powerPointOptions Additional options of a Microsoft PowerPoint compatible source file format. object, optional

input.sources[n].wordOptions

The input.sources[n].wordOptions object will be considered only when the source is a supported Microsoft Word format:

doc
docx
docm
dot
dotx
dotm

Otherwise it will be ignored. The object has a trackedChanges enumeration property that controls how tracked changes should be handled. Supported values:

"preserve" - Preserve all tracked changes, neither accepting nor rejecting them before creating the output file. Output PDFs, images, or SVGs will visually show the tracked
changes in a different color (additions as colored text and deletions as struck-through colored text).
"acceptAll" - Accept all tracked changes before creating the output file(s).
"rejectAll" - Reject all tracked changes before creating the output file(s).

The default is "preserve" (where output PDFs, images, and SVGs will visually show the tracked changes). If you want to create output files where tracked changes are not shown, specify
one of the other options.

PrizmDoc Viewer v13.17 973

©2021 My Company. All Rights Reserved.

NOTE: In order to use "acceptAll" and "rejectAll" values, the Microsoft Office rendering mode should be enabled by the MSO feature in your license key.

Here is a minimal example:

POST prizmdoc_server_base_url/v2/contentConverters
Content-Type application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "wordOptions": {
 "trackedChanges": "preserve"
 }
 },
 {
 "fileId": "ElkNzWtrUJp4rXI5YnLUgw",
 "wordOptions": {
 "trackedChanges": "acceptAll"
 }
 }
],
 "dest": {
 "format": "pdf"
 }
 }
}

input.sources[n].powerPointOptions

The input.sources[n].powerPointOptions object will be considered only when the source is a supported Microsoft PowerPoint format:

ppt
pptx
pptm
pot
potx
potm
pps
ppsx
ppsm

Otherwise it will be ignored. The object has a renderingMode enumeration property that controls how the document should be rendered. Supported values:

"slides" - Put only slides into the output file(s).
"slidesWithNotes" - Put slides along with speaker notes into the output file(s).

The default is "slides" (where output PDFs, images, and SVGs will contain slides only). If you want to create output files with speaker notes shown, please specify "slidesWithNotes"
option.

NOTE: In order to use "slidesWithNotes" value, the Microsoft Office rendering mode should be enabled by the MSO feature in your license key.

Here is a minimal example:

POST prizmdoc_server_base_url/v2/contentConverters
Content-Type application/json

{
 "input": {
 "sources": [
 {
 "fileId": "eV3tAl3awOLE7i-s1FUkUA",
 "powerPointOptions": {
 "renderingMode": "slides"
 }
 },
 {
 "fileId": "YJ6jG1EM8eT7TggX5TD8og",
 "wordOptions": {
 "renderingMode": "slidesWithNotes"
 }
 }
],
 "dest": {
 "format": "pdf"
 }
 }
}

input.src (deprecated)

The input.src object specifies the file to use as input. This property has been deprecated, please use input.sources instead.

Name Description Details

input.src.fileId Id of the WorkFile to use as input.

See Supported Input File Formats

string, required

Example: "ek5Zb123oYHSUEVx1bUrVQ"

PrizmDoc Viewer v13.17 974

©2021 My Company. All Rights Reserved.

input.dest

The input.dest object specifies the destination file format and any additional details which control how the content is converted.

Name Description Details

input.dest.format Output file format.

Supported values:

"jpeg"

"pdf"

"png"

"svg"

"tiff"

"docx"

"xlsx"

Currently "docx" destination format is only supported when the source format is PDF, and input._features.pdfToDocx.enabled is enabled.
This functionality also requires the Microsoft Office rendering mode to be enabled by the MSO feature in your license key.

The "xlsx" destination format is only supported when the source format is either XLS or CSV. This functionality also requires the
Microsoft Office rendering mode to be enabled by the MSO feature in your license key.

string,
required

input.dest.jpegOptions Additional options when input.dest.format is "jpeg". object,
optional

input.dest.pdfOptions Additional options when input.dest.format is "pdf". object,
optional

input.dest.pngOptions Additional options when input.dest.format is "png". object,
optional

input.dest.tiffOptions Additional options when input.dest.format is "tiff". object,
optional

input.dest.header Header to append to each page of the output. The page dimensions will be expanded to allow space for the additional header content
(the original page content will be unaltered).

object,
optional

input.dest.footer Footer to be append to each page of the output. The page dimensions will be expanded to allow space for the additional footer content
(the original page content will be unaltered).

object,
optional

input.dest.watermarks Watermarks to apply to each page of the output. object,
optional

input.dest.jpegOptions

Name Description Details

input.dest.jpegOptions.maxWidth Maximum pixel width of the output JPEG image, expressed as a CSS-style string, e.g. "800px". When specified, the output
will never be wider than the specified value and its aspect ratio will be preserved.

string,
optional

Example:
"800px"

input.dest.jpegOptions.maxHeight Maximum pixel height of the output JPEG image, expressed as a CSS-style string, e.g. "600px". When specified, the output
will never be taller than the specified value and its aspect ratio will be preserved.

string,
optional

Example:
"600px"

For CAD input, you must specify either maxWidth or maxHeight.

input.dest.pdfOptions

Name Description Details

input.dest.pdfOptions.forceOneFilePerPage When true, forces output to be a collection of single-page PDF files (rather than a single multi-page PDF file).

Default is false.

boolean,
optional

input.dest.pdfOptions.ocr Options for text recognition. Applies when the source file is raster or image-based PDF (a PDF which has a single
raster image on each page). > NOTE: If you are attempting to make a searchable PDF from an existing PDF
document, please note that the source PDF file should be an image-only PDF. PrizmDoc will not create a
searchable file from already-existing vector content.

object,
optional

input.dest.pdfOptions.ocr.language Language to recognize. Currently, only English is supported. Value must be "english". string,
required

input.dest.pdfOptions.ocr.defaultDpi Default DPI to use when the input does not specify DPI information.

Default is { x: 300, y: 300 }

object,
optional

input.dest.pdfOptions.ocr.defaultDpi.x Horizontal DPI value. integer,
required

input.dest.pdfOptions.ocr.defaultDpi.y Vertical DPI value. integer,
required

PrizmDoc Viewer v13.17 975

©2021 My Company. All Rights Reserved.

When converting PDF documents to a single PDF with multiple pages or a set of single-page PDF files, the result PDF file(s) will lose bookmarks and intra-document links due to
restructuring of the PDF content.

The width and height of the recognized image should not exceed 32767 pixels.

Strikethrough text will not be recognized.

input.dest.pngOptions

Name Description Details

input.dest.pngOptions.maxWidth Maximum pixel width of the output PNG image, expressed as a CSS-style string, e.g. "800px". When specified, the output
will never be wider than the specified value and its aspect ratio will be preserved.

string,
optional

Example:
"800px"

input.dest.pngOptions.maxHeight Maximum pixel height of the output PNG image, expressed as a CSS-style string, e.g. "600px". When specified, the output
will never be taller than the specified value and its aspect ratio will be preserved.

string,
optional

Example:
"600px"

For CAD input, you must specify either maxWidth or maxHeight.

input.dest.tiffOptions

Name Description Details

input.dest.tiffOptions.forceOneFilePerPage When true, forces output to be a collection of single-page TIFF files (rather than a single multi-page TIFF
file).

Default is false.

boolean,
optional

input.dest.tiffOptions.maxWidth Maximum pixel width of each page of the output TIFF, expressed as a CSS-style string, e.g. "800px". When
specified, the output pages are guaranteed to never be wider than the specified value and their aspect ratio
will be preserved.

string,
optional

Example:
"800px"

input.dest.tiffOptions.maxHeight Maximum pixel height of each page of the output TIFF, expressed as a CSS-style string, e.g. "600px". When
specified, the output pages are guaranteed to never be taller than the specified value and their aspect ratio
will be preserved.

string,
optional

Example:
"600px"

input.dest.tiffOptions.compression.type Output image compression type to use.

Supported values:

"auto" - Automatically choose output compression type based on the source document(s).
"lzw" - Force the use of LZW compression. LZW is a lossless compression format which preserves
transparency.
"jpeg" - Force the use of JPEG compression. JPEG is a lossy compression format ideal for
photographs. "jpeg" compression can only be used when
input.dest.tiffOptions.color.mode is "auto" (the default), "grayscale", or "rgb".
"group4" - Force the use of Group 4 compression. Group 4 is only for bitonal (black and white)
output. As such, "group4" can only be used when input.dest.tiffOptions.color.mode is
"auto" (the default) or "bitonal".

Default is "auto"

string,
optional

Example:
"lzw"

input.dest.tiffOptions.color.mode Output image color mode to use.

Supported values:

"auto" - Automatically choose output color mode based on the source document(s).
"bitonal" - Force the use of bitonal color mode, limiting the output to black and white only, 1-bit
per pixel.
"grayscale" - Force the use of grayscale color mode, limiting the output to grayscale colors, 8-bits
per pixel.
"indexed" - Force the use of indexed color mode, limiting the output to 256 colors, 8-bits per pixel.
"rgb" - Force the use of RGB color, 24-bits per pixel.

Default is "auto".

string,
optional

Example:
"indexed"

input.dest.tiffOptions.dpi Output image resolution (in dots per inch) to use. When specified (it should be a positive integer), the
output TIFF image will have requested dpi value and will be scaled if necessary.

Please note that input.dest.tiffOptions.maxWidth and input.dest.tiffOptions.maxHeight
have precedence over input.dest.tiffOptions.dpi, so if either of those parameters is present, the
output image will be resized according to them, and the new resolution will be assigned without additional
resizing. Otherwise, if neither of maxWidth/maxHeight is specified, the dpi resolution will be applied as
follows:

If the source image has a valid resolution, the output image will be resized by scale factor
input.dest.tiffOptions.dpi / imageCurrentResolution

If the source image has no valid resolution, the new resolution will be assigned without resizing

integer,
optional

Example:
300

PrizmDoc Viewer v13.17 976

©2021 My Company. All Rights Reserved.

For CAD input, you must specify either maxWidth or maxHeight.

input.dest.header

Name Description Details

input.dest.header.lines Text content for the header. This is a multi-dimensional array that allows you to easily position text left, center, and right. The first
string in any inner array will always be placed on the left (left-justified), the second string placed in the center (center-justified), and
the third string placed on the right (right-justified). The number of items in the outer array defines the total number of text lines.
You may provide between one and three lines of text for a header.

array,
optional

input.dest.header.fontFamily Font family to use (e.g. "Courier"). The font name provided must be present on the server to be applied. string,
optional

input.dest.header.fontSize Font size in points. Value must be a string with a number followed by "pt" (e.g. "12pt"). string,
optional

input.dest.header.color Text color. Value must be in 6-digit CSS hex color format (e.g. "#FF0000"). string,
optional

Currently, the input.dest.header property is only supported when converting all pages of a single document to either "pdf" or "tiff", and forceOneFilePerPage is false.

Text may overlap other text and/or overflow the page bounds. The caller specifies the text position and size, and the product simply renders the text. For example, if the font size is too
big, text on the left may overlap text in the center, or if the text is so long it can't fit on the page width, it may overflow the page bounds.

For input.dest.header code examples refer to Conversion Input Examples.

input.dest.footer

Name Description Details

input.dest.footer.lines Text content for the footer. This is a multi-dimensional array that allows you to easily position text left, center, and right. The first
string in any inner array will always be placed on the left (left-justified), the second string placed in the center (center-justified), and
the third string placed on the right (right-justified). The number of items in the outer array defines the total number of text lines.
You may provide between one and three lines of text for a footer.

array,
optional

input.dest.footer.fontFamily Font family to use (e.g. "Courier"). The font name provided must be present on the server to be applied. string,
optional

input.dest.footer.fontSize Font size in points. Value must be a string with a number followed by "pt" (e.g. "12pt"). string,
optional

input.dest.footer.color Text color. Value must be in 6-digit CSS hex color format (e.g. "#FF0000"). string,
optional

Currently, the input.dest.footer property is only supported when converting all pages of a single document to either "pdf" or "tiff", and forceOneFilePerPage is false.

Text may overlap other text and/or overflow the page bounds. The caller specifies the text position and size, and the product simply renders the text. For example, if the font size is too
big, text on the left may overlap text in the center, or if the text is so long it can't fit on the page width, it may overflow the page bounds.

For input.dest.footer code examples refer to Conversion Input Examples.

input.dest.watermarks

Diagonal text watermark

Currently only diagonal text watermarks are supported. Each array item must be an object which conforms to the following:

Name Description Details

type Must be set to "diagonalText" to indicate the object represents a diagonal text watermark. string,
required

text Actual text of the watermark. To compose multiline text put new line characters (\n) in corresponding places. Within the string, you can use the
following special tokens to insert dynamic values:

{{pageNumber}} - Will be replaced with the current page number
{{pageCount}} - Will be replaced with the total number of pages

string,
required

opacity Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely transparent. Default is 1.0. number,
optional

color Text color. Can be any valid CSS color name (like "red") or hex value (like "#FF0000"). Default is "black". string,
optional

fontFamily Specifies the name of the font that is used for the watermark (e.g. "fontFamily": "Courier"). The font name provided must be present on the server
to be applied.

string,
optional

fontSize Font size in points. Value must be a string with a number followed by "pt" (e.g. "12pt"). string,
optional

fontWeight Font weight.

Supported values:

"normal"

"bold"

string,
optional

Name Description Details

PrizmDoc Viewer v13.17 977

©2021 My Company. All Rights Reserved.

Default is "normal".

fontStyle Font style.

Supported values:

"normal"

"italic"

Default is "normal".

string,
optional

textDecoration Text decoration

Supported values:

"none"

"underlined"

Default is "none".

string,
optional

slope Controls the text angle.

Supported values:

"up" - Text will start in the lower-left corner of the page and extend upwards to the upper-right corner of the page.
"down"- Text will start in the upper-left corner of the page and extend downwards to the lower-right corner of the page.

Default is "up".

string,
optional

Note that currently diagonal text watermarks are supported only when input.dest.format is "pdf".

input._features

The input._features object specifies a set of toggles used to enable some beta options for conversion operations.

input._features.pdfToDocx

Name Description Details

input._features.pdfToDocx.enabled When true, enables CCS conversion from 'PDF' to 'DOCX'. This feature also requires the Microsoft Office rendering
mode to be enabled by the MSO feature in your license key.

Default is false.

boolean,
required

Here is a minimal example:

POST prizmdoc_server_base_url/v2/contentConverters
Content-Type application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 }
],
 "dest": {
 "format": "docx"
 },
 "_features": {
 "pdfToDocx": { "enabled": true }
 }
 }
}

minSecondsAvailable

Allows you to specify a minimum number of seconds in which you can continue to GET the status of this conversion operation after the initial POST has been submitted. The default
lifetime is defined by the processIds.lifetime central configuration parameter.

Response Body

A successful response will return JSON which contains:

1. The input object submitted in the request, normalized to include default values.
2. Information about the status of the conversion.

Here is an example:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "sources": [
 {

Name Description Details

PrizmDoc Viewer v13.17 978

©2021 My Company. All Rights Reserved.

 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "pages": ""
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0
}

Conversion Status Details

Name Description Details

processId The id of the contentConverter resource which represents the file conversion operation. string

expirationDateTime The date and time (in ISO 8601 Extended Format) when the contentConverter resource will
be deleted.

string

Example: "2015-12-17T20:38:39.796Z"

state The current state of the conversion process, which will be one of the following:

"processing" - The conversion is still in progress.
"complete" - The conversion has completed successfully.
"error" - The conversion failed due to a problem.

For the initial POST, this value will almost always be "processing". Results are typically
only available with a subsequent GET.

string

percentComplete An integer from 0 to 100 that indicates what percentage of the conversion is complete. integer

Example: 0

errorCode An error code string if a problem occurred during the conversion process. string

Example: "InvalidInput"

affinityToken Affinity token echoed from request header. This value will only be present if PrizmDoc Server
is running in cluster mode.

string

Example:
"rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="

HTTP Status Codes and Response JSON Error Codes

HTTP
Status

"state" in
response
JSON
body

"errorCode" in response JSON body Description

200 processing - The contentConverter was created and the conversion process was started.

400 error CouldNotReadRequestData Could not read request data.

405 - - POST HTTP method was not used.

480 error InvalidJson Json error details are in errorDetails.

480 - InvalidDimensionValue Invalid dimension value specified for rasterization. See details in errorDetails.

480 - InvalidInput Invalid input. Invalid request data is referenced in the errorDetails.

480 - InvalidPageSyntax Invalid page specification. See errorDetails.

480 - ForceOneFilePerPageNotSupportedWhenUsingHeaderOrFooter forceOneFilePerPage mode is not supported when using header or footer options.
Supported forceOneFilePerPage option is referenced in errorDetails.

480 - MaxWidthOrMaxHeightMustBeSpecifiedWhenRasterizingCadInput Max width or max height must be specified when rasterizing CAD input. See
errorDetails.

480 - MissingInput Missing input. See errorDetails.

480 - MultipleSourcesAreNotSupportedForThisDestinationFormat Multiple source files or pages are not supported for this destination format.

480 - MultipleSourceDocumentsNotSupportedWhenUsingHeaderOrFooter Multiple source documents are not supported when using header or footer.

480 - PagesPropertyNotSupportedWhenUsingHeaderOrFooter Pages property is not supported for conversion with header or footer. The property is
referenced in errorDetails

480 - UnrecognizedExpression Unrecognized expression. See errorDetails.

480 - UnsupportedConversion Unsupported conversion. See errorDetails.

480 - UnsupportedDestinationFormatWhenUsingHeaderOrFooter Unsupported destination format when using header or footer. Supported destination
formats are listed in errorDetails.

480 - UnsupportedDestinationFormatWhenUsingWatermarks Unsupported destination format when using watermarks. Supported destination formats

PrizmDoc Viewer v13.17 979

©2021 My Company. All Rights Reserved.

are listed in errorDetails.

480 - UnsupportedSourceFileFormat Unsupported source file format. Unsupported file is referenced in errorDetails.

480 - UnsupportedSourceFileFormatForOCR Unsupported source file format for OCR. Unsupported file is referenced in
errorDetails.

480 - WorkFileDoesNotExist Specified work file does not exist.

480 - FeatureNotLicensed The server's license does not allow the use of the requested feature. The unlicensed
feature will be referenced by the errorDetails object in the response.

480 - FeatureDisabled Occurs when using an option that is not supported by the server's configuration (such as
trying to set certain wordOptions or powerPointOptions when the server is not using
Microsoft Office for rendering). See the errorDetails in the response for the specific
input value which could not be used.

480 - LicenseCouldNotBeVerified The server's license could not be verified. If you are evaluating the product without a
license, the product is running in evaluation mode and this particular part of the product is
unavailable without a license. If you have a license, make sure you configured your license
correctly, that your license has not expired, and that you have not exceeded any license
limits (such as, for a Cloud License, the total number of logical CPU cores in use).

580 - InternalServiceError Internal service error. This error can be returned for a number of different reasons. Please
contact Customer Support.

GET /v2/contentConverters/{processId}
Gets the status of a content conversion operation and its final output if available.

In general, the response JSON will contain:

1. The input object submitted in the POST request, normalized to include default values.
2. Information about the status of the conversion.
3. Information about the output of the conversion, if available.

Requests can be sent to this URL repeatedly while the state is "processing".

When the state is "complete", the output section will list one or more WorkFile ids for each output file, and the files themselves can be downloaded using the WorkFile API.

Parameters

Name Description Details

processId The processId for a particular contentConverter. This processId was returned in the response for the initial POST. string, required

Request Headers

Name Value Details

Accusoft-Affinity-

Token

Affinity token returned in post response body for content converter specified by processId
parameter.

Example: "rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="

Only used if PrizmDoc Server is running in cluster
mode.

Response Body

While processing, the response will return JSON with only the processing details. For example:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "pages": ""
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 82
}

HTTP
Status

"state" in
response
JSON
body

"errorCode" in response JSON body Description

PrizmDoc Viewer v13.17 980

©2021 My Company. All Rights Reserved.

Once the processing has completed, the response will return JSON showing the WorkFile id of the output file or files.

If the output format supports multiple pages (e.g. PDF or TIFF), then only a single output file will be created. For example:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "pages": ""
 }
],
 "dest": {
 "format": "pdf",
 "pdfOptions": {
 "forceOneFilePerPage": false
 }
 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "KOrSwaqsguevJ97BdmUbXi",
 "sources": [{ "fileId": "ek5Zb123oYHSUEVx1bUrVQ", "pages": "1-3" }],
 "pageCount": 3
 }
]
 }
}

If the output format does not support multiple pages (e.g. JPEG), then multiple output files will be created. For example:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "sources": [
 {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 }
],
 "dest": {
 "format": "jpeg"
 }
 },
 "expirationDateTime": "2015-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "results": [
 {
 "fileId": "N6uDE11Ed6+JQPy0POu+8A",
 "sources": [{ "fileId": "ek5Zb123oYHSUEVx1bUrVQ", "pages": "1" }],
 "pageCount": 1
 },
 {
 "fileId": "+4b6QW90Fb9yjDak+ALFEg",
 "sources": [{ "fileId": "ek5Zb123oYHSUEVx1bUrVQ", "pages": "2" }],
 "pageCount": 1
 },
 {
 "fileId": "Lx/4z8AyJKV5eMjWKsBm5w",
 "sources": [{ "fileId": "ek5Zb123oYHSUEVx1bUrVQ", "pages": "3" }],
 "pageCount": 1
 }
]
 }
}

Conversion Status Details

Name Description Details

processId The id of the contentConverter resource which represents the file conversion operation. string

expirationDateTime The date and time (in ISO 8601 Extended Format) when the contentConverter resource will be
deleted.

string

Example: "2015-12-17T20:38:39.796Z"

state The current state of the conversion process, which will be one of the following: string

PrizmDoc Viewer v13.17 981

©2021 My Company. All Rights Reserved.

"processing" - The conversion is still in progress.
"complete" - The conversion has completed successfully.
"error" - The conversion failed due to a problem.

percentComplete An integer from 0 to 100 that indicates what percentage of the conversion is complete. integer

Example: 0

errorCode An error code string if a problem occurred during the conversion process. string

Example: "CouldNotConvertFile"

affinityToken Affinity token echoed from request header. This value will only be present if PrizmDoc Server is
running in cluster mode.

string

Example:
"rcqmuB9pAa8+4V7fhO1SXzawy/YMQU1g8lLdNDe5l7w="

Conversion Output Details

Name Description Details

output.results An array of objects, one for each output file created. object

output.results[n].fileId The WorkFile id for an output file. Use this id to download the output file using the WorkFile API. string

output.results[n].pageCount The total number of pages in the output file. integer

output.results[n].sources An array of objects, one for each source file which contributed to this output file. array

output.results[n].sources[n].fileId The WorkFile id of the source input file. string

output.results[n].sources[n].pages The page or pages used from the source file.

This will be a string value using one-based indexing. For example, if the output file represents page 2 of the source
document, pages would have a value of "2". If the output file represents all 20 pages of a source document, pages
would have a value of "1-20".

string

Examples:
"1-3" or
"2"

output.results[n].src (deprecated) An array with a single object which corresponds to input.src. This will only appear in the output if you used the
deprecated input.src property instead of the new input.sources in the original POST request.

array

HTTP Status Codes and Response JSON Error Codes

HTTP
status

"state" in
response
JSON
body

"errorCode" in response JSON
body

Additional "errorCode"
location in response JSON
body

Additional "errorCode" in response JSON
body Description

200 processing - - - The contentConverter was created and the
conversion process was started.

200 complete - - - The conversion process was completed.

200 complete - output.results[n].errorCode NoSuchPage No such page. Problem fileId and page number
are listed in
output.results[n].sources[0].fileId,
output.results[n].sources[0].page

200 error CouldNotConvert output.results[n].errorCode CouldNotConvertFile Could not convert file. Problem fileId is listed in
output.results[n].sources[0].fileId

200 error CouldNotConvert output.results[n].errorCode CouldNotConvertPage Could not convert page. Problem fileId and page
number are listed in
output.results[n].sources[0].fileId,
output.results[n].sources[0].page

200 error CouldNotConvert output.results[n].errorCode InvalidPassword Password is incorrect or missing. Problem fileId,
page number and password if it was passed are
listed in
output.results[n].sources[0].fileId,
output.results[n].sources[0].page,
output.results[n].sources[0].password

200 error CouldNotConvert output.results[0].errorCode RequestedHeaderOrFooterFontIsNotAvailable Requested header or footer font is not available.
Name of the font which is not available is listed in
input.dest.header.fontFamily or
input.dest.footer.fontFamily

200 error CouldNotConvert output.results[0].errorCode RequestedWatermarkFontIsNotAvailable Requested watermark font is not available. Name
of the font which is not available is listed in
input.dest.watermarks[n].fontFamily

200 error CouldNotConvertAllFilesOrPages output.results[n].errorCode One or more occurrences of either of the
following codes: CouldNotConvertFile,
CouldNotConvertPage, NoSuchPage,
InvalidPassword

Could not convert all files or pages.

For CouldNotConvertFile error, problem fileId is
listed in
output.results[n].sources[0].fileId.

For CouldNotConvertPage, InvalidPassword and

Name Description Details

PrizmDoc Viewer v13.17 982

©2021 My Company. All Rights Reserved.

NoSuchPage errors, problem fileId and
pageNumber are listed in
output.results[n].sources[0].fileId,
output.results[n].sources[0].page

404 - ContentConverterDoesNotExist - - Content converter does not exist. Invalid processId
was specified in the request.

405 - - - - POST HTTP method was not used.

580 - InternalServiceError - - Internal service error. This error can be returned
for a number of different reasons. Please contact
support.

Appendix

Supported Input File Formats

For a complete list of image and document source types supported by CCS, please refer to: File Formats Reference.

Supported Output File Formats

PDF
TIFF
PNG
JPEG
SVG
DOCX
XLSX

Note that the conversion from the source PDF to the output PDF file is implemented to remove all JavaScript during the source file processing. After the source file processing is
complete, there is no JavaScript in the output PDF file(s).

HTTP
status

"state" in
response
JSON
body

"errorCode" in response JSON
body

Additional "errorCode"
location in response JSON
body

Additional "errorCode" in response JSON
body Description

Markup Burners

Introduction
The markup burners REST API allows your application to “burn” markup into a document, producing a new PDF with annotations applied.

For application development in.NET, we recommend using the PrizmDoc Server .NET SDK instead of the REST API. See the .NET SDK How to Guides for examples of how to perform markup burning and redaction with the.NET SDK.

Available URLs

URL Description

POST /PCCIS/V1/MarkupBurner Creates and starts a new MarkupBurner.

GET /PCCIS/V1/MarkupBurner/{processId} Gets the status and result of an existing MarkupBurner.

POST /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner Starts a new MarkupBurner using the source document of a viewing session and provided markup data as input.

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId} Gets the status of a MarkupBurner for a viewing session.

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document Gets the output result of a MarkupBurner process for a viewing session.

POST /PCCIS/V1/MarkupBurner
Creates and starts a new MarkupBurner.

NOTE: CAD files are not supported.

NOTE: When applying redactions, PDF annotations are never removed.

NOTE: There are limitations on what content is removed under the rectangle redaction box on vector content in PDF files when the markup burner burns the redactions.

When redacting a vector line, a small portion of the lines under the redaction box may still exist under the redaction.
When redacting a vector graphic with color filling, such as a colored in half circle, the color will still remain under the redaction rectangle.
When redacting a vector graphic rectangle, they are fully removed only if the PDF graphic rectangle is fully overlapped by the redaction rectangle. If they are partially overlapped then the part not overlapped remains unredacted.

A MarkupBurner represents a process that runs on the server to "burn" markup into a document. The "burning" process makes the markup definitions a permanent part of a document. The server process is started by this request then a response is
sent. Use the GET /PCCIS/V1/MarkupBurner/{processId} URL below to get the status and results of an in-progress or completed MarkupBurner process.

The input required to create a MarkupBurner is two WorkFile objects; one representing the JSON or XML which defines the markup to burn, the other representing the source document on which to burn the markup. Refer to the work file API topic
for more information.

A new document is created that contains the burned-in markup. The source document will not be modified. The new document will be made available by a new WorkFile ID.

By default, MarkupBurner objects will be automatically deleted 20 minutes after they are created.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-Affinity-Token The affinityToken of the work files specified by input.documentFileId and input.markupFileId. Required when server clustering is enabled.

Request Body

In the request body, provide JSON containing the following properties:

input (Object) Input to create the MarkupBurner.

documentFileId (String) Required. The ID of the WorkFile that represents the document to burn in the markup. This document will not be modified.

redactionOptions (Object) Redaction options. May contain:

PrizmDoc Viewer v13.17 983

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/

mode (String) How redactions should be applied. May be one of the following:

"normal" - Actually redact the document, removing document content covered by redactions, drawing opaque redaction rectangles, and drawing any associated redaction reason text in the center of the
rectangles.
"draft" - Do NOT actually redact the document. Instead, indicate which parts of the document would be redacted by drawing partially transparent redaction rectangles over the parts of the document that would
be redacted. In order to avoid interfering with the original document content, redaction reason text will not be drawn in the center of the transparent redaction rectangles.

Default is "normal".

draftOptions (Object) Options to apply when mode is set to "draft" (ignored otherwise). May contain:
opacity (number) Controls the opacity of redactions when input.redactionOptions.mode is set to "draft". Must be a value between 0 and 1 where 0 is fully transparent and 1 is fully opaque. Default is
0.2.

includeCategories (Array of String) When present, limits the burning to only include the specified categories of mark types. The following categories are available:

"annotations"
"redactions"
"signatures"

For example, if you only want to apply redactions you could specify:

"includeCategories": ["redactions"]

Or, if you only wanted to apply annotations and signatures you could specify:

"includeCategories": ["annotations", "signatures"]

markupFileId (String) Required. The ID of the WorkFile that represents the JSON or XML document which contains the markup definition.
minSecondsAvailable (Integer) The minimum number of seconds which this MarkupBurner must remain available. The default lifetime is defined by the processIds.lifetime central configuration parameter. This value is
ignored if it is shorter than the default value.

Successful Response

Response Body

If successful, this method returns JSON containing the following properties:

input (Object) Input we accepted to create the MarkupBurner.
documentFileId (String) The ID of the WorkFile that represents the document to burn in the markup. This document will not be modified. This is an echo of what was passed in by the request.
markupFileId (String) The ID of the WorkFile that represents the JSON or XML document which contains the markup definition. This is an echo of what was passed in by the request.

expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the MarkupBurner will be deleted.
processId (String) The ID of the MarkupBurner.
state (String) The current state of the markup burning process running on the server. This will always be "processing" in this response.
percentComplete (Integer) The percentage (0 – 100) complete of the markup burning process. This will always be 0 in this response.
errorCode (String) An error code string if a problem occurred during the markup burning process. This will always be null in this response.
output (Object)

documentFileId (String) The ID of the new WorkFile that represents a new document with markup burned into it. This will always be null in this response.
affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses

Status
Code Description

400 Bad Request, if input.documentFileId, input.markupFileId is missing or invalid format, or if minSecondsAvailable is not a number.

405 Method Not Allowed, if POST HTTP method is not used.

480 with JSON errorCode "LicenseCouldNotBeVerified". The server's license could not be verified. If you are evaluating the product without a license, the product is running in evaluation mode and this particular part of the product is
unavailable without a license. If you have a license, make sure you configured your license correctly, that your license has not expired, and that you have not exceeded any license limits (such as, for a Cloud License, the total number of
logical CPU cores in use).

Examples

Creating a MarkupBurner

Request

POST prizmdoc_server_base_url/PCCIS/V1/MarkupBurner
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "minSecondsAvailable": 60
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

GET /PCCIS/V1/MarkupBurner/{processId}
Gets the status and result of an existing MarkupBurner.

Requests can be sent to this URL repeatedly while state is "processing".

When state is "complete", the new document with burned-in annotations will be made available by a new WorkFile ID in the output.documentFileId. Refer to the work file API topic to find out how to download a WorkFile.

If the markup burning process encountered an error, the state property will be "error", the errorCode property will contain an error code string and output will be null.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-Affinity-Token The affinityToken of the work files specified by input.documentFileId and input.markupFileId. Required when server clustering is enabled.

PrizmDoc Viewer v13.17 984

©2021 My Company. All Rights Reserved.

Accusoft-Affinity-Token The affinityToken of the work files specified by input.documentFileId and input.markupFileId.

URL Parameters

Parameter Description

{processId} The id of the process.

Response Body

If successful, this method returns JSON containing the following properties:

input (Object) Input we accepted to create the MarkupBurner.
documentFileId (String) The ID of the WorkFile that represents the document to burn in the markup. This document will not be modified.
markupFileId (String) The ID of the WorkFile that represents the XML document which contains the markup definition.

expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the MarkupBurner will be deleted.
processId (String) The ID of the MarkupBurner.
state (String) The current state of the markup burning process running on the server. The following values are allowed:

"processing" - The markup burning is in progress.
"complete" - The markup burning is completed.
"error" - The markup burning returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the markup burning process.
errorCode (String) An error code string if a problem occurred during the markup burning process.
output (Object)

documentFileId (String) The ID of the new WorkFile that represents a new document with markup burned into it.
affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses

Status Code Description

404 Not Found, if {processId} does not exist.

405 Method Not Allowed, if GET HTTP method is not used.

Examples

Request

GET prizmdoc_server_base_url/PCCIS/V1/MarkupBurner/ElkNzWtrUJp4rXI5YnLUgw
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Response when the state is "processing"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "processing",
 "percentComplete": 100,
 "errorCode": null,
 "output": null
}

Response when the state is "complete"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "complete",
 "percentComplete": 100,
 "errorCode": null,
 "output": {
 "documentFileId": "vry3FPE0zQqYwhzndRccOQ"
 }
}

Response when the state is "error" because the work file that represents document to burn could not be found

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "DocumentFileIdDoesNotExist"
}

Response when the state is "error" because the work file that contains markup could not be found

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },

Name Description

PrizmDoc Viewer v13.17 985

©2021 My Company. All Rights Reserved.

 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "MarkupFileIdDoesNotExist"
}

Response when the state is "error" because the markup work file does not contain valid XML markup and the extension of the markup work file is not JSON

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "RedactionError"
}

Response when the state is "error" because the work file that contains markup JSON cannot be parsed as JSON

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidJson"
}

Response when the state is "error" because the work file that contains markup JSON does not match the JSON Marks Schema

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidMarkup"
}

POST /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner
Starts a new MarkupBurner using the source document of a viewing session and a provided markup data as input. When the asynchronous process is ultimately finished, the output will be a new document which includes the provided markup as part
of the document itself (the original source document of the viewing session is left unaltered).

This is a specialized URL which allows you to do markup burning against the source file of an existing viewing session without needing to use the work file API.

This request merely begins the markup burning process. Once started, you poll the status of the process using the GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId} URL below to know when the
process has completed.

Request

Request Headers

Name Description

Content-Type Specifies the type of content being provided to the markup burner process. It must be application/xml or application/json depending on the markup format used in the request body.

URL Parameters

Parameter Description

{viewingSessionId} The id provided in the response from POST /PCCIS/V1/ViewingSession.

Query String Parameters

Parameter Description

{redactionMode} How redactions should be applied. May be one of the following:

"normal" - Actually redact the document, removing document content covered by redactions, drawing opaque redaction rectangles, and drawing any associated redaction reason text in the center of the
rectangles.
"draft" - Do NOT actually redact the document. Instead, indicate which parts of the document would be redacted by drawing partially transparent redaction rectangles over the parts of the document that
would be redacted. In order to avoid interfering with the original document content, redaction reason text will not be drawn in the center of the transparent redaction rectangles.

Default is "normal".

{redactionDraftOpacity} Controls the opacity of redactions when redactionMode is set to "draft". Must be a value within 0 and 1 where 0 is fully transparent and 1 is fully opaque. Default is 0.2.

{RemoveFormFields} Optional parameter indicating which interactive form fields to remove from the source document upon markup burner process. Currently only "acroform" value is supported. Please see example below.

Request Body

The JSON or XML markup to burn into the source document.

Response Body

If successful, a JSON object which may contain:

processId (String) The id of the process.
state (String) The current state of the markup burning process running on the server. This will always be "processing" in the initial POST response.

PrizmDoc Viewer v13.17 986

©2021 My Company. All Rights Reserved.

state (String) The current state of the markup burning process running on the server. This will always be in the initial POST response.
percentComplete (Integer) The percentage (0 – 100) complete of the process. This will always be 0 in the initial POST response.
input (null) Legacy property which exists only for backwards compatibility. Value will always be null.
output (null) Legacy property which exists only for backwards compatibility. Value will always be null.

Error Responses

Status Code Description

404 Not Found, if {viewingSessionId} does not exist.

405 Method Not Allowed, if POST HTTP method is not used.

480 An invalid input value was used. See errorDetails in the response body.

Examples

Request to burn a rectangle annotation using JSON markup

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner
Content-Type: application/json
{
 "marks": [
 {
 "uid": "Z2diOV8yMDE3LTAzLTMxVDA3OjQ5OjExLjUyNVpfY2VnNjZy",
 "interactionMode": "Full",
 "pageNumber": 1,
 "type": "RectangleAnnotation",
 "creationDateTime": "2017-03-31T07:49:11.525Z",
 "modificationDateTime": "2017-03-31T07:49:11.526Z",
 "data": {},
 "conversation": {},
 "rectangle": {
 "x": 0,
 "y": 0,
 "width": 0,
 "height": 0
 },
 "pageData": {
 "width": 612,
 "height": 792
 },
 "borderColor": "#000000",
 "borderThickness": 4,
 "fillColor": "#FB0404",
 "opacity": 255
 }
]
}

Request to burn a rectangle annotation using JSON markup with removal of acroform fields

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner?
RemoveFormFields=acroform
Content-Type: application/json
{
 "marks": [
 {
 "uid": "Z2diOV8yMDE3LTAzLTMxVDA3OjQ5OjExLjUyNVpfY2VnNjZy",
 "interactionMode": "Full",
 "pageNumber": 1,
 "type": "RectangleAnnotation",
 "creationDateTime": "2017-03-31T07:49:11.525Z",
 "modificationDateTime": "2017-03-31T07:49:11.526Z",
 "data": {},
 "conversation": {},
 "rectangle": {
 "x": 0,
 "y": 0,
 "width": 0,
 "height": 0
 },
 "pageData": {
 "width": 612,
 "height": 792
 },
 "borderColor": "#000000",
 "borderThickness": 4,
 "fillColor": "#FB0404",
 "opacity": 255
 }
]
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}
Gets the status of a MarkupBurner for a viewing session.

Requests are typically sent to this URL repeatedly as long as the state is "processing".

When state is "complete", a new document with the provided markup burned into it will be available at:

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document

If an error occurred and the output could not be created, the state property will be "error" and the errorCode property will contain an error code string.

Request

URL Parameters

Parameter Description

{viewingSessionId} The id provided in the response from POST /ViewingSession.

{processId} The id of the process.

PrizmDoc Viewer v13.17 987

©2021 My Company. All Rights Reserved.

Response Body

If successful, a JSON object which may contain:

processId (String) The id of the process.
state (String) The current state of the process. The following values are allowed:

"processing" - The markup burning is in progress.
"complete" - The markup burning is completed.
"error" - The markup burning returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the process.
errorCode (String) An error code string if a problem occurred during processing.
input (null) Legacy property which exists only for backwards compatibility. Value will always be null.
output (null) Legacy property which exists only for backwards compatibility. Value will always be null.

Error Responses

Status Code Description

404 Not Found, if either the {viewingSessionId} or {processId} do not exist.

405 Method Not Allowed, if GET method is not used.

Examples

Request

GET prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner/5rGUUh3Qxhf6VXm8RkBPfA

Response when the state is "processing"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "5rGUUh3Qxhf6VXm8RkBPfA",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

Response when the state is "complete"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "5rGUUh3Qxhf6VXm8RkBPfA",
 "state": "complete",
 "percentComplete": 100,
 "errorCode": null,
 "output": null
}

Response when the state is "error" because the provided markup XML did not contain valid XML markup or the provided markup JSON was auto-detected as a non-text format

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "RedactionError",
 "output": null
}

Response when the state is "error" because the provided markup JSON cannot be parsed as JSON

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidJson",
 "output": null
}

Response when the state is "error" because the provided markup JSON does not match the JSON Marks Schema

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": null,
 "processId": "53LCkvO8-rsDIaW95WgoFA",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "InvalidMarkup",
 "output": null
}

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/MarkupBurner/{processId}/Document?ContentDispositionFilename=
{ContentDispositionFilename}
Gets the output result of a MarkupBurner process for a viewing session.

Request

URL Parameters

PrizmDoc Viewer v13.17 988

©2021 My Company. All Rights Reserved.

Parameter Description

{viewingSessionId} The id provided in the response from POST /ViewingSession.

{processId} The id of the process which identifies the MarkupBurner task as a string.

{ContentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in the Content-Disposition response header (the file extension will be appended automatically). The default value is "document".

Response Headers

Name Description

Content-Disposition Specifies 'attachment' disposition, RFC-2183 compatible filename parameter and an RFC-8187 compatible filename* parameter, allowing the use of non-ASCII filenames.

Content-Type Will be application/pdf.

Response Body

The raw bytes of the PDF document with markup burned into it.

Error Responses

Status Code Description

404 Not Found, which may occur if any of the following are true: the MarkupBurner has not completed yet or no such MarkupBurner exists or no such ViewingSession exists

405 Method Not Allowed, if GET method is not used.

Examples

Request

GET
prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/MarkupBurner/ElkNzWtrUJp4rXI5YnLUgw/Document

Response

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Disposition: attachment; filename="Greek____.pdf"; filename*=UTF-8''Greek%CE%91%CE%92%CE%93%CE%94.pdf

<<PDF data>>

Plain Text Redactors

Introduction
The plain text redactors REST API allows your application to take a source document and a redaction markup file as
input and produce redacted plain text as output.

For application development in .NET, we recommend using the PrizmDoc Server .NET SDK instead of
the REST API. See the How to Create Redacted Plain Text topic in the .NET SDK documentation for an
example of how to do perform plain text redaction with the .NET SDK.

Available URLs

URL Description

POST /v2/plainTextRedactors Creates and starts a new plain text redactor process.

GET /v2/plainTextRedactors/{processId} Gets the state of an existing plain text redactor process.

POST /v2/plainTextRedactors
Creates and starts a new plain text redactor process.

A plain text redactor represents a process that runs on the server and creates a plain text file with the text from the
source document. Each redacted text fragment is replaced with the string "<Text Redacted>".

The server process to create the redaction markup is started by this request, but a response is sent before the
process is complete. Use the GET /v2/plainTextRedactors/{processId} URL below to get the state and results of an
in-progress or completed plain text redactor process.

PrizmDoc Viewer v13.17 989

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/redact-to-plain-text.html

A new plain text document will be created that will contain the redacted document text. The new document will be
made available by a new WorkFile ID.

NOTES:

1. Plain text redactor supports the following mark types (see Markup JSON Specification):

TextSelectionRedaction

RectangleRedaction

Other types of marks will have no effect on the result.

2. Plain text redactor will produce an empty plain text document for raster documents.

3. CAD files are not supported.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-

Affinity-

Token

The affinityToken of work files specified by input.source.fileId and
input.markup.fileId. Required when server clustering is enabled.

Request Body

JSON object conforming to the following:

input
source (Object) Required. Describes the document from which text will be redacted. This document
will not be modified.

fileId (String) Required. The ID of the WorkFile which represents the source document that
will have redactions applied.

markup (Object) Required. Describes the JSON document which contains the markup definition.
fileId (String) Required. The ID of the WorkFile that represents the JSON markup
document. The document must satisfy the Markup JSON Specification.

dest (Object) Required. Describes the plain text output document.
lineEndings (String) Required. Describes the line endings in the plain text output
document. The following values are allowed:

"\r\n" - Represents Windows-style line endings as CR followed by LF.
"\n" - Represents Unix-style line endings as LF alone.

minSecondsAvailable (Integer) The minimum number of seconds this plain text redactor status will
remain available via a GET request. The actual lifetime may be longer. The default lifetime is defined by the
processIds.lifetime central configuration parameter.

Successful Response

Response body

JSON object with the following properties:

PrizmDoc Viewer v13.17 990

©2021 My Company. All Rights Reserved.

input (Object) A copy of the request body input object.
processId (String) The id of the new plain text redactor process.
expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the plain text
redactor will be deleted.
state (String) The current state of the plain text redaction process running on the server. The response will
always be "processing".
percentComplete (Integer) The percentage (0 – 100) complete of the plain text redactor process. The
response will always be 0.
affinityToken (String) Affinity token for this plain text redactor. Present when clustering is enabled.

Error Responses

Status
Code JSON errorCode Description

480 "MissingInput" A required input value was not provided. See errorDetails in
the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the
response body.

480 "UnrecognizedInput" An unrecognized JSON property was provided. See
errorDetails in the response body.

480 "ResourceNotFound" Source document or markup work file does not exist. See
errorDetails in the response body.

480 "LicenseCouldNotBeVerified" The server's license could not be verified. If you are evaluating the
product without a license, the product is running in evaluation
mode and this particular part of the product is unavailable without
a license. If you have a license, make sure you configured your
license correctly, that your license has not expired, and that you
have not exceeded any license limits (such as, for a Cloud License,
the total number of logical CPU cores in use).

580 "InternalError" The server encountered an internal error when handling the
request.

Example

Request

POST /v2/plainTextRedactors
Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },

PrizmDoc Viewer v13.17 991

©2021 My Company. All Rights Reserved.

 "minSecondsAvailable": 60
}

Response

HTTP 200 OK
Content-Type: application/json
{
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "expirationDateTime": "2019-02-07T13:24:35.395Z",
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },
 "state": "processing",
 "percentComplete": 0
}

GET /v2/plainTextRedactors/{processId}
Gets the state and result of an existing plain text redactor process created by POST /v2/plainTextRedactors.

Requests can be sent to this URL repeatedly while state is "processing".

When state is "complete", the new plain text document containing the redacted document text will be made
available by a new WorkFile ID in the output.fileId. See the work file API topic to find out how to download a
WorkFile.

If the plain text redactor process encountered an error, the state property will be "error" and the errorCode
property will contain an error code string.

Request

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the plain text redactor process. Required when server
clustering is enabled.

Parameter Description

{processId} The id of the plain text redactor process.

Response body

JSON object with the following properties:

PrizmDoc Viewer v13.17 992

©2021 My Company. All Rights Reserved.

input (Object) A copy of the POST /v2/plainTextRedactors request body input object we accepted to
create the plain text redactor process.
processId (String) The id of the plain text redactor process.
expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the plain text
redactor will be deleted.
state (String) The current state of the plain text redaction process running on the server. The following
values are allowed:

"processing" - The plain text redaction is in progress.
"complete" - The plain text redaction is completed.
"error" - The plain text redaction returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the plain text redaction process. The
percentage will be 100 when state is "complete".
errorCode (String) An error code string if a problem occurred during the plain text redaction process. Only
present when state is "error".
output (Object) Describes the created plain text document. Only present when state is "complete".

fileId (String) The ID of the new WorkFile that represents a new plain text document with redacted
source document text.

affinityToken (String) Affinity token for this plain text redactor. Present when clustering is enabled.

Error Responses and JSON Error Codes

Status
Code JSON errorCode Description

404 "ResourceNotFound" Text redactor process specified by {processId} could be
found.

200 "InvalidJson" Provided markup work file cannot be parsed as JSON.

200 "InvalidMarkup" Provided markup JSON does not satisfy the Markup JSON
Specification.

200 "MarkRefersToNonExistentPage" Provided markup JSON refers to a non-existent page in the
source document. See errorDetails in the response body.

200 "UnsupportedSourceDocument" Provided source document is a CAD file and it is not supported.

580 "InternalError" The server encountered an internal error when handling the
request.

Example

Request

GET /v2/plainTextRedactors/iFhSZRvrz2vtFjcTSi9Qlg

Successful Response

When the plain text redactor process completes with no errors:

HTTP 200 OK
Content-Type: application/json

PrizmDoc Viewer v13.17 993

©2021 My Company. All Rights Reserved.

{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "expirationDateTime": "2019-02-07T13:24:35.395Z",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "fileId": "eOsJIqI8aHkxVV0yJug"
 }
}

Error responses

Response when a plain text redactor process does not exist for the given processId:

HTTP 404
Content-Type: application/json
{
 errorCode: 'ResourceNotFound'
}

Response when provided markup work file cannot be parsed as JSON:

HTTP 200 OK
Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "state": "error",
 "errorCode": "InvalidJson",
 "percentComplete": 0,
 "expirationDateTime": "2019-02-07T13:24:35.395Z"
}

PrizmDoc Viewer v13.17 994

©2021 My Company. All Rights Reserved.

Response when markup JSON does not satisfy the Markup JSON Specification:

HTTP 200 OK
Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "state": "error",
 "errorCode": "InvalidMarkup",
 "percentComplete": 0,
 "expirationDateTime": "2019-02-07T13:24:35.395Z"
}

Response when markup refers to a page that does not exist in the source document:

{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "state": "error",
 "errorCode": "MarkRefersToNonExistentPage",
 "expirationDateTime": "2019-02-07T13:24:35.395Z"
}

Response when source document is a CAD file:

{
 "input": {
 "source": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "markup": {
 "fileId": "vry3FPE0zQqYwhzndRccOQ"
 },
 "dest": {
 "lineEndings": "\n"
 }

PrizmDoc Viewer v13.17 995

©2021 My Company. All Rights Reserved.

 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "state": "error",
 "errorCode": "UnsupportedSourceDocument",
 "expirationDateTime": "2019-02-07T13:24:35.395Z"
}

Redaction Creators

Introduction
The redaction creators REST API allows your application to automatically create redaction definitions for a
document based on a given set of text-matching rules.

For application development in.NET, we recommend using the PrizmDoc Server.NET SDK instead of
using the PrizmDoc Server REST API directly. See the How to Create a Redacted PDF topic in the.NET
SDK documentation for an example of how to easily create redactions from a set of Regular
Expression rules.

A redaction creator takes as input a source document and a set of text-matching regular expressions and produces
as output a markup JSON file (or, if using the deprecated endpoints, a markup XML file). The output markup can
then be used with the markup burners REST API to “burn” the redactions into a document.

Available URLs

URL Description

POST /v2/redactionCreators Creates and starts a new redaction creator process.

GET /v2/redactionCreators/{processId} Gets the state of an existing redaction creator process.

Deprecated URLs

URL Description

POST /PCCIS/V1/RedactionCreator Creates and starts a new RedactionCreator.

GET /PCCIS/V1/RedactionCreator/{processId} Gets the state and result of an existing RedactionCreator.

POST /v2/redactionCreators
Creates and starts a new redaction creator process.

A redaction creator represents a process that runs on the server which searches a document for text fragments
matching specified rules and then, based on any matches, creates a new JSON Markup document containing
redaction markup. The redaction markup that is created by this process can be used with the markup burner API to
"burn" the redactions into a document.

The server process to create the redaction markup is started by this request, but a response is sent before the
process is complete. Use the GET /v2/redactionCreators/{processId} URL below to get the state and results of an in-
progress or completed redaction creator process.

PrizmDoc Viewer v13.17 996

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/how-to/redact-to-plain-text.html

There are two required inputs to create a RedactionCreator:

One is a WorkFile object that represents the source document whose text will be searched, and
One or more rules to match and redact the document text.

See the work file API topic for more information about a WorkFile.

A new markup document will be created that will contain the redaction markup. The new document will be made
available by a new WorkFile ID.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-

Affinity-Token

The affinityToken of the work file specified by input.documentFileId. Required
when server clustering is enabled.

Request Body

JSON object conforming to the following:

input
source (Object) Required. Describes the document for which the markup will be created. This
document will not be modified.

fileId (String) Required. The ID of the WorkFile that represents the source document
whose text will be searched.

rules (Array) Required. The list of rules, each containing a Regular Expression to match the text and
markup properties for any matches.

find (Object) Required. Describes the way to find matching text in the document.
type (String) Required. Must be "regex". The type of the text match algorithm.
pattern (String) Required, when type is "regex". The Regular Expression to match
within the source document text using a POSIX extended RE (ERE) or basic RE (BRE)
syntax.

redactWith (Object) Required. Describes how to redact matching text.
type (String) Required. Must be "RectangleRedaction". Type of redaction to be
created for the matching text.
reason (String) Reason the content was redacted, displayed in the center of the
redaction annotation.

NOTE: Only one of "reason" or "reasons" properties can be specified
for a specific rule.

reasons (Array of strings) Reasons the content was redacted, displayed semicolon
space separated in the center of the redaction annotation.

NOTE: Only one of the "reason" or "reasons" properties can be
specified for a specific rule.

fontColor (String) Color of the text specified as a 6-character hexadecimal color
string with a leading # sign. For example, a value of "#FF0000" will create red text.
Default is "#FFFFFF".

PrizmDoc Viewer v13.17 997

©2021 My Company. All Rights Reserved.

http://laurikari.net/tre/documentation/regex-syntax/
http://laurikari.net/tre/documentation/regex-syntax/

Default is "#FFFFFF".
fillColor (String) Color of the redaction background specified as a 6-character
hexadecimal color string with a leading # sign. For example, a value of "#FF0000" will
create a red background. Default is "#000000".
borderColor (String) Color of the border specified as a 6-character hexadecimal
color string with a leading # sign. For example, a value of "#FF0000" will create a red
border. Default is "#000000".
borderThickness (Integer) Thickness of the border in pixels. Should be greater than
0. Default is 1.

NOTE: Large borderThickness values may create borders which
visually hide content from neighboring redacted text, however, this content
will not be removed from the document during burning.

data (Object) A property bag of user-defined values. Property values are only allowed
to be strings.

minSecondsAvailable (Integer) The minimum number of seconds this markup creator will remain
available so you can GET its status. The actual lifetime may be longer. The default lifetime is defined by the
processIds.lifetime central configuration parameter.

Successful Response

Response body

JSON object with the following properties:

input (Object) A copy of the request body input object.
processId (String) The id of the new redaction creator process.
expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the
RedactionCreator will be deleted.
state (String) The current state of the redaction creation process running on the server. This will always be
"processing" in this response.
percentComplete (Integer) The percentage (0 – 100) complete of the redaction creation process. This will
always be 0 in this response.
affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses

Status
Code JSON errorCode Description

480 "MissingInput" A required input value was not provided. See errorDetails in
the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the
response body.

480 "InvalidInputCombination" An invalid combination of JSON properties was used. See
errorDetails in the response body.

480 "UnrecognizedInput" An unrecognized JSON property was provided. See
errorDetails in the response body.

480 "ResourceNotFound" Source document work file does not exist.

580 "InternalError" The server encountered an internal error when handling the

PrizmDoc Viewer v13.17 998

©2021 My Company. All Rights Reserved.

580 "InternalError"
request.

Example

Request

POST /v2/redactionCreators
Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "NmFzioyWzFM5ADpthsuitw"
 },
 "rules": [{
 "find": {
 "type": "regex",
 "pattern": "wat"
 },
 "redactWith": {
 "type": "RectangleRedaction"
 }
 },
 {
 "find": {
 "type": "regex",
 "pattern": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "borderColor": "#FF0000",
 "fillColor": "#FF0000",
 "fontColor": "#000000",
 "reason": "Redacted",
 "data": {
 "author": "John Smith",
 "phone": "+1 123 456 789"
 }
 }
 }
]
 }
}

Response

HTTP 200 OK
Content-Type: application/json
{
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "expirationDateTime": "2019-02-07T13:24:35.395Z",
 "input": {
 "source": {
 "fileId": "NmFzioyWzFM5ADpthsuitw"
 },

Status
Code JSON errorCode Description

PrizmDoc Viewer v13.17 999

©2021 My Company. All Rights Reserved.

 "rules": [
 {
 "find": {
 "regex": "wat"
 },
 "redactWith": {
 "type": "RectangleRedaction"
 }
 },
 {
 "find": {
 "regex": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "borderColor": "#FF0000",
 "fillColor": "#FF0000",
 "fontColor": "#000000",
 "reason": "Redacted",
 "data": {
 "author": "John Smith",
 "phone": "+1 123 456 789"
 }
 }
 }
]
 },
 "state": "processing",
 "percentComplete": 0
}

GET /v2/redactionCreators/{processId}
Gets the state and result of an existing redaction creator process created by POST /v2/redactionCreators.

Requests can be sent to this URL repeatedly while state is "processing".

When state is "complete", the new markup document containing redactions will be made available by a new
WorkFile ID in the output.markupFileId. See the work file API topic to find out how to download a WorkFile.

If the markup burning process encountered an error, the state property will be "error" and the errorCode
property will contain an error code string.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-

Affinity-Token

The affinityToken of the work file specified by input.documentFileId. Required
when server clustering is enabled.

URL Parameters

PrizmDoc Viewer v13.17 1000

©2021 My Company. All Rights Reserved.

Parameter Description

{processId} The id of the redaction creator process.

Response body

JSON object with the following properties:

input (Object) A copy of the POST /v2/redactionCreators request body input object we accepted to
create the redaction creator process.
processId (String) The id of the redaction creator process.
expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the
RedactionCreator will be deleted.
state (String) The current state of the redaction creation process running on the server. The following
values are allowed:

"processing" - The redaction creation is in progress.
"complete" - The redaction creation is completed.
"error" - The redaction creation returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the redaction creation process. Will be
100 when state is "complete".
errorCode (String) An error code string if a problem occurred during the redaction creation process. Only
present when state is "error".
output (Object) The object describes the created markup document. Only present when state is
"complete".

markupFileId (String) The ID of the new WorkFile that represents a new Markup document
specifying the redactions.

affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses and JSON Error Codes

Status
Code JSON errorCode Description

404 "ResourceNotFound" Redaction creator process specified by {processId} could not be
found.

200 "MarkupCreationError" The server encountered an error when creating the markup.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

GET /v2/redactionCreators/iFhSZRvrz2vtFjcTSi9Qlg

Successful Response

When the redaction creator process completes with no errors:

HTTP 200 OK

PrizmDoc Viewer v13.17 1001

©2021 My Company. All Rights Reserved.

Content-Type: application/json
{
 "input": {
 "source": {
 "fileId": "NmFzioyWzFM5ADpthsuitw"
 },
 "rules": [
 {
 "find": {
 "regex": "wat"
 },
 "redactWith": {
 "type": "RectangleRedaction"
 }
 },
 {
 "find": {
 "regex": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "borderColor": "#FF0000",
 "fillColor": "#FF0000",
 "fontColor": "#000000",
 "reason": "Redacted",
 "data": {
 "author": "John Smith",
 "phone": "+1 123 456 789"
 }
 }
 }
]
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "expirationDateTime": "2019-02-07T13:24:35.395Z",
 "state": "complete",
 "percentComplete": 100,
 "output": {
 "markupFileId": "eOsJIqI8aHkxVV0yJug"
 }
}

Error responses

When a redaction converter process does not exist for the given processId:

HTTP 404
Content-Type: application/json
{
 errorCode: 'ResourceNotFound'
}

When source document is corrupted and Markup can not be created:

HTTP 200 OK
Content-Type: application/json

PrizmDoc Viewer v13.17 1002

©2021 My Company. All Rights Reserved.

{
 "input": {
 "source": {
 "fileId": "NmFzioyWzFM5ADpthsuitw"
 },
 "rules": [
 {
 "find": {
 "regex": "wat"
 },
 "redactWith": {
 "type": "RectangleRedaction"
 }
 },
 {
 "find": {
 "regex": "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
 },
 "redactWith": {
 "type": "RectangleRedaction",
 "borderColor": "#FF0000",
 "fillColor": "#FF0000",
 "fontColor": "#000000",
 "reason": "Redacted",
 "data": {
 "author": "John Smith",
 "phone": "+1 123 456 789"
 }
 }
 }
]
 },
 "processId": "iFhSZRvrz2vtFjcTSi9Qlg",
 "state": "error",
 "errorCode": "MarkupCreationError",
 "percentComplete": 0,
 "expirationDateTime": "2019-02-07T13:24:35.395Z"
}

POST /PCCIS/V1/RedactionCreator
NOTE: This URL has been deprecated and will be removed from the public API in a future release.
Please use the newer POST /v2/redactionCreators instead.

Creates and starts a new RedactionCreator.

A RedactionCreator represents a process that runs on the server which searches a document for text matching a
Regular Expression and then, based on any matches, creates a new Markup XML document containing redaction
markup. The redaction Markup XML that is created by this process can be used with the markup burner API to
"burn" the redactions into a document.

The server process to create the redaction markup is started by this request, but a response is sent before the
process is complete. Use the GET /PCCIS/V1/RedactionCreator/{processId} URL below to get the state
and results of an in-progress or completed RedactionCreator process.

There are two required inputs to create a RedactionCreator:

One is a WorkFile object that represents the source document whose text will be searched, and
One or more Regular Expressions to match the document text.

PrizmDoc Viewer v13.17 1003

©2021 My Company. All Rights Reserved.

See the work file API topic for more information about a WorkFile.

A new Markup XML document will be created that will contain the redaction markup. The new document will be
made available by a new WorkFile ID.

By default, RedactionCreator objects will be automatically deleted 20 minutes after they are created.

Request

Request Headers

Name Description

Content-

Type

Must be application/json

Accusoft-

Affinity-

Token

The affinityToken of the work file involved in the input to the process. Required when server
clustering is enabled. Providing this value is important to ensuring the process will execute on the
machine where the input work files actually exist.

NOTE: If you do not provide the required Accusoft-Affinity-Token, the POST itself will succeed
but the process itself will likely fail.

Request Body

In the request body, provide JSON containing the following properties:

input (Object) Input to create the RedactionCreator.
documentFileId (String) Required. The ID of the WorkFile that represents the source document
whose text will be searched. This document will not be modified.
autoRedactionRegularExpressions (Array of strings) Required. The Regular Expressions to
match within the source document text. Multiple Regular Expressions provided in the array will be
concatenated into a single Regular Expression using the format: "(regex1)|(regex2)…|(regexN)".

minSecondsAvailable (Integer) The minimum number of seconds which this RedactionCreator must
remain available. If not provided, a configurable default value is used. This value is ignored if it is shorter
than the configurable value.

Response Body

If successful, this method returns JSON containing the following properties:

input (Object) Input we accepted to create the RedactionCreator.
documentFileId (String) The ID of the WorkFile that represents the source document whose text
will be searched. This document will not be modified. This is an echo of what was passed in by the
request.
autoRedactionRegularExpressions (Array of Strings) The Regular Expressions to match within
the source document text. This is an echo of what was passed in by the request.

expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the
RedactionCreator will be deleted.
processId (String) The ID of the RedactionCreator.
state (String) The current state of the markup burning process running on the server. This will always be
"processing" in this response.
percentComplete (Integer) The percentage (0 – 100) complete of the redaction creation process. This will
always be 0 in this response.

PrizmDoc Viewer v13.17 1004

©2021 My Company. All Rights Reserved.

errorCode (String) An error code string if a problem occurred during the markup burning process. This will
always be null in this response.
output (Object)

markupFileId (String) The ID of the new WorkFile that represents the new redaction XML markup.
This will always be null in this response.

affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses

Status
Code Description

400 Bad Request, if input.documentFileId, input.autoRedactionRegularExpressions is missing
or invalid format, or if minSecondsAvailable is not a number.

405 Method Not Allowed, if POST HTTP method is not used.

Examples

Request

POST prizmdoc_server_base_url/PCCIS/V1/RedactionCreator
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "autoRedactionRegularExpressions": [
 "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
]
 },
 "minSecondsAvailable": 60
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "autoRedactionRegularExpressions": [
 "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
]
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

PrizmDoc Viewer v13.17 1005

©2021 My Company. All Rights Reserved.

GET /PCCIS/V1/RedactionCreator/{processId}
NOTE: This URL has been deprecated and will be removed from the public API in a future release.
Please use the newer POST /v2/redactionCreators and GET /v2/redactionCreators/{processId} instead.

Gets the state and result of an existing RedactionCreator.

Requests can be sent to this URL repeatedly while state is "processing".

When state is "complete", the new markup XML document containing redactions will be made available by a
new WorkFile ID in the output.markupFileId. See the work file API topic to find out how to download a
WorkFile.

If the markup burning process encountered an error, the state property will be "error", the errorCode property
will contain an error code string and output will be null.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-

Affinity-Token

The affinityToken of the work file specified by input.documentFileId. Required
when server clustering is enabled.

URL Parameters

Parameter Description

{processId} The id of the process.

Response Body

If successful, this method returns JSON containing the following properties:

input (Object) Input we accepted to create the MarkupBurner.
documentFileId (String) The ID of the WorkFile that represents the source document whose text
will be searched. This document will not be modified.
autoRedactionRegularExpressions (Array of Strings) The Regular Expressions to match within
the source document text.

expirationDateTime (String) The date and time (in ISO 8601 Extended Format) when the
RedactionCreator will be deleted.
processId (String) The ID of the RedactionCreator.
state (String) The current state of the redaction creation process running on the server. The following
values are allowed:

"processing" - The redaction creation is in progress.
"complete" - The redaction creation is completed.
"error" - The redaction creation returns an error.

percentComplete (Integer) The percentage (0 – 100) complete of the redaction creation process.
errorCode (String) An error code string if a problem occurred during the redaction creation process.

PrizmDoc Viewer v13.17 1006

©2021 My Company. All Rights Reserved.

errorCode (String) An error code string if a problem occurred during the redaction creation process.
output (Object)

markupFileId (String) The ID of the new WorkFile that represents a new XML Markup document
specifying the redactions.

affinityToken (String) Affinity token for this search context. Present when clustering is enabled.

Error Responses

Status Code Description

404 Not Found, if {processId} does not exist.

405 Method Not Allowed, if GET HTTP method is not used.

Examples

Request

GET prizmdoc_server_base_url/PCCIS/V1/RedactionCreator/ElkNzWtrUJp4rXI5YnLUgw
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Response when the state is "processing"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "autoRedactionRegularExpressions": [
 "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
]
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "processing",
 "percentComplete": 0,
 "errorCode": null,
 "output": null
}

Response when the state is "complete"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "autoRedactionRegularExpressions": [
 "[0-9]{3}[-]?[0-9]{2}[-]?[0-9]{4}"
]

PrizmDoc Viewer v13.17 1007

©2021 My Company. All Rights Reserved.

 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "complete",
 "percentComplete": 100,
 "errorCode": null,
 "output": {
 "markupFileId": "vry3FPE0zQqYwhzndRccOQ"
 }
}

Response when the state is "error" because the work file that represents the source document whose text
will be searched could not be found

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentFileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "markupFileId": "aQ1BdViqmUisBuevJKO9Sw"
 },
 "expirationDateTime": "2014-12-17T20:38:39.796Z",
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "percentComplete": 0,
 "errorCode": "DocumentFileIdDoesNotExist"
}

Search Contexts

Introduction
The search context and search task REST APIs allow your application to perform server-side searching and text
retrieval of a document.

A search context contains a collection of records of full-page text data, one record per page.

Available URLs

URL Description

POST /v2/searchContexts Creates a new search context.

GET /v2/searchContexts/{contextId} Gets information about a search context.

DELETE /v2/searchContexts/{contextId} Deletes a search context.

PUT
/v2/searchContexts/{contextId}/records

Uploads previously extracted text records to a context, when the
context uses input.source of "upload".

PrizmDoc Viewer v13.17 1008

©2021 My Company. All Rights Reserved.

POST
/v2/searchContexts/{contextId}/completed

Marks all previously extracted text records as uploaded, when the
context uses input.source of "upload".

GET
/v2/searchContexts/{contextId}/records

Gets full-page text data (records) for a specified set of pages.

POST /v2/searchContexts
Creates a search context which will eventually hold a set of full-page text records for a source document.

After a successful POST to create the search context, we immediately begin a background process to extract the
text records using a work file you specified in the POST (via input.fileId). As we extract pages of text, new
records will become available for you to GET. The search context state will change from "processing" to
"complete" when there are no more records to extract.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-

Affinity-

Token

The affinityToken of the work file specified by input.fileId. Required when server
clustering is enabled and input.source is "workFile".

Request Body

input
documentIdentifier (String) Required. Your own unique identifier for the source document. It is
crucial that you use a unique value for each unique document, otherwise, the returned text for a
document will not be correct.
source (String) Required. The following values are allowed:

"workFile" - Indicates that the server should use an existing work file and extract the text
from it.
"upload"- Indicates that the user would like to upload previously extracted text to the server
to be used for search.

fileId (String) Required with source: "workfile". The id of the work file to extract text
records from.
password (String) Password to open the source document, when using a source of "workFile".

minSecondsAvailable (Integer) The minimum number of seconds this search context will remain
available. The actual lifetime may be longer. The default lifetime is defined by the processIds.lifetime
central configuration parameter.

Successful Response

Response Body

JSON with metadata about the created search context. You can check for changes to this metadata with additional
GET requests.

URL Description

PrizmDoc Viewer v13.17 1009

©2021 My Company. All Rights Reserved.

input (Object) Input we accepted to create the search context.
contextId (String) Unique id for this search context.
affinityToken (String) Affinity token for this search context. Present when clustering is enabled.
state (String) State of acquiring text records for the given input.documentIdentifier.

"processing" - The server is acquiring text records. No further actions are needed.
"awaitingInput" - The server is waiting for text to be uploaded by client. The client should take
action and provide all required text records. This state only occurs when the client created a
searchContext using input.source: "upload". Note that based on the provided
documentIdentifier, the server may skip this state and go directly to "processing" or
"complete" if it determines that it already has the required data.
"complete" - All text records have been acquired.
"error" - There was a problem acquiring text records.

percentComplete (Integer) Percentage of text records which have been acquired (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search context resource will
expire and no longer be available for use. This time may be extended if we have need to keep using the data
(for example, if there are search tasks executing against this context). Format is RFC 3339 Internet Date/Time
profile of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.

Error Responses

Status
Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token
request header was not provided.

480 "MissingInput" A required input value was not provided. See errorDetails in the response
body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Creating a searchContext using a workfile:

Request

POST prizmdoc_server_base_url/v2/searchContexts
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 }
}

PrizmDoc Viewer v13.17 1010

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Creating a searchContext using previously extracted text:

Note that it is recommended that you use the Accusoft-Affinity-Hint header here when working in multi-
server mode, so that multiple contexts created for the same document can be routed to the same server when possible.

Request

POST prizmdoc_server_base_url/v2/searchContexts
Content-Type: application/json
Accusoft-Affinity-Hint: "your-own-unique-identifier-for-the-source-document"

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "upload"
 },
 "minSecondsAvailable": 1200
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{

 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "upload"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "awaitingInput",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

PrizmDoc Viewer v13.17 1011

©2021 My Company. All Rights Reserved.

GET /v2/searchContexts/{contextId}
Gets information about a search context.

Request

URL Parameters

Parameter Description

{contextId} The contextId which identifies the resource.

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the search context. Required when server clustering is
enabled.

Successful Response

Response Body

JSON with current metadata about the search context.

input (Object) Input we accepted to create the search context.
contextId (String) Unique id for this search context.
affinityToken (String) Affinity token for this search context. Present when clustering is enabled.
state (String) State of acquiring text records for the given input.documentIdentifier.

"processing" - The server is acquiring text records. No further actions are needed.
"awaitingInput" - The server is waiting for text to be uploaded by client. The client should take
action and provide all required text records. This state only occurs when the client created a
searchContext using input.source: "upload". Note that based on the provided
documentIdentifier, the server may skip this state and go directly to "processing" or
"complete" if it determines that it already has the required data.
"complete" - All text records have been acquired.
"error" - There was a problem acquiring text records.

percentComplete (Integer) Percentage of text records which have been acquired (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search context resource will
expire and no longer be available for use. This time may be extended if we have need to keep using the data
(for example, if there are search tasks executing against this context). Format is RFC 3339 Internet Date/Time
profile of ISO 8601, e.g. "2016-11-05T08:15:30-05:00".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.

Error Responses

PrizmDoc Viewer v13.17 1012

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

Status
Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token
request header was not provided.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Request

GET prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Response when the state is still "processing"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "processing",
 "percentComplete": 47,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Response when the state is "complete"

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "complete",
 "percentComplete": 100,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

PrizmDoc Viewer v13.17 1013

©2021 My Company. All Rights Reserved.

Response when the state is "error" because the work file could not be found

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "errorCode": "ResourceNotFound",
 "errorDetails": {
 "in": "searchContext",
 "at": "input.fileId"
 },
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Response when the source document required a password but no password was provided

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "errorCode": "InvalidPassword",
 "errorDetails": {
 "in": "searchContext",
 "at": "input.password"
 },
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Response when the source document required a password but the wrong password was provided

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "documentIdentifier": "your-own-unique-identifier-for-the-source-document",
 "source": "workFile",
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",

PrizmDoc Viewer v13.17 1014

©2021 My Company. All Rights Reserved.

 "password": "wrong-password"
 },
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=",
 "state": "error",
 "errorCode": "InvalidPassword",
 "errorDetails": {
 "in": "searchContext",
 "at": "input.password"
 },
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

DELETE /v2/searchContexts/{contextId}
Deletes a search context. Further requests using this contextId will return errors.

Request

URL Parameters

Parameter Description

{contextId} The contextId which identifies the resource.

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the search context. Required when server clustering is
enabled.

Successful Response

This request returns no body in the response when successful.

Error Responses

Status
Code JSON errorCode Description

404 "Not Found" No search context with the provided contextId could be found.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token
request header was not provided.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Request

DELETE prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw

PrizmDoc Viewer v13.17 1015

©2021 My Company. All Rights Reserved.

Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Response

HTTP/1.1 204 No Content

PUT /v2/searchContexts/{contextId}/records
This URL is used to upload one or more previously extracted text records to a search context.

Note that this is only necessary when creating a searchContext using input.source of "upload" and receive
a state of "awaitingInput".

Request

URL Parameters

Parameter Description

{contextId} The contextId which identifies the resource.

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-Affinity-

Token

The affinityToken of the search context. Required when server clustering is
enabled.

Request Body

NOTE: Since this is previously extracted text being uploaded, the body of the request corresponds to the
body of the response on GET /v2/searchContexts/{contextId}/records.

pages[] (Array of Objects) Array of full-page text record objects for the requested pages. Note that the
order of the records is not guaranteed; you must use the number property of each returned item to know
its page index. Items may contain:

number (Integer) Required. Page index (zero-indexed page number). The property is named simply
number for backwards compatibility reasons.
text (String) Page text. Either text or errorCode is required.
errorCode (String) A value indicating there was a problem with the page text. Either text or
errorCode is required.
width (Number) Required with text. Page width.
height (Number) Required with text. Page height.
rectangles[] (Array of Arrays) Required with text. Bounding boxes for individual glyphs on the
page. Each item will contain four numbers:

[0] (Number) Distance from the left edge of the page to the left edge of the glyph bounding
box.

PrizmDoc Viewer v13.17 1016

©2021 My Company. All Rights Reserved.

[1] (Number) Distance from the top edge of the page to the top edge of the glyph bounding
box.
[2] (Number) Width of the glyph bounding box.
[3] (Number) Height of the glyph bounding box.

markup[] (Array of Objects) Objects describing hyperlinks, if any. Each item may contain:
changeType (String) Value will always be "Add".
markType (String) Value will always be "DocumentHyperlink".
properties (Object) Properties of the hyperlink.

href (String) Destination URL.
rectangle (Object) Dimensions of the hyperlink bounding box on the page.

x (Number) Distance from the left edge of the page to the left edge of the
hyperlink bounding box.
y (Number) Distance from the top edge of the page to the top edge of the
hyperlink bounding box.
width (Number) Width of the hyperlink bounding box.
height (Number) Height of the hyperlink bounding box.

borderThickness (Number) Border thickness which should be applied.
borderHorizontalRadius (Number) Horizontal border radius which should be
applied.
borderVerticalRadius (Number) Vertical border radius which should be applied.
borderOpacity (Integer) Border opacity which should be applied. Value will be from
0 to 255, where 0 represents fully transparent and 255 represents fully opaque.

Successful Response

This request returns no body in the response when successful.

Error Responses

Status
Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-
Token request header was not provided.

480 "MissingInput" A required input value was not provided. See errorDetails in the
response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "ResourceNotUsable" The search context is in a state of "error", or has otherwise become
unusable.

480 "IncorrectUsage" The state of the search context is not correct. See errorDetails in the
response body.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Request

PUT prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw/records
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

PrizmDoc Viewer v13.17 1017

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "pages": [{
 "number": 1,
 "text": "the text to be searched",
 "width": 147,
 "height": 349
 "rectangles": [
 [23.6, 767.75, 15.01, 23.08],
 ...
]
 }, ...]
}

Responses

When the data was successfully accepted

HTTP/1.1 200 OK

When the search context is not awaiting input

HTTP/1.1 480 IncorrectUsage
Content-Type: application/json

{
 "errorCode": "IncorrectUsage",
 "errorDetails": {
 "in": "searchContext",
 "at": "state",
 "actual": "processing",
 "expected": {
 "value": "awaitingInput"
 }
 }
}

POST /v2/searchContexts/{contextId}/completed
This URL is used to let the server know that all previously extracted records have been uploaded.

Note that this is only necessary when creating a searchContext using input.source of "upload" and receive
a state of "awaitingInput".

The provided records should make up a set of contiguous page records (e.g. [1,2,3,4,5] and not
[1,2,3,5,27]), and if any pages are missing from the set, the context will not be allowed to complete
successfully.

Request

URL Parameters

PrizmDoc Viewer v13.17 1018

©2021 My Company. All Rights Reserved.

Parameter Description

{contextId} The contextId which identifies the resource.

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the search context. Required when server clustering is
enabled.

Request Body

This request has no body.

Successful Response

This request returns no body in the response when successful.

Error Responses

Status
Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-
Token request header was not provided.

480 "ResourceNotUsable" The search context is in a state of "error", or has otherwise become
unusable.

480 "IncorrectUsage" The state of the search context is not correct. See errorDetails in the
response body.

480 "MissingRecords" A non-contiguous set of pages was present at the time that this request
was made.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

Request

POST prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw/completed
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Responses

When the context is successfully completed

HTTP/1.1 200 OK

PrizmDoc Viewer v13.17 1019

©2021 My Company. All Rights Reserved.

When a non-contiguous range of pages is provided (e.g. [1, 2, 3, 5, 27])

HTTP/1.1 480 MissingRecords
Content-Type: application/json

{
 "errorCode": "MissingRecords"
}

When the state of the context is "error"

HTTP/1.1 480 ResourceNotUsable
Content-Type: application/json

{
 "errorCode": "ResourceNotUsable"
}

When the context is not awaiting input

HTTP/1.1 480 IncorrectUsage
Content-Type: application/json

{
 "errorCode": "IncorrectUsage",
 "errorDetails": {
 "in": "searchContext",
 "at": "state",
 "actual": "processing",
 "expected": {
 "enum": ["awaitingInput","complete"]
 }
 }
}

GET /v2/searchContexts/{contextId}/records?pages={pages}
Gets full-page text data (records) for a specified set of pages.

Request

URL Parameters

Parameter Description

{contextId} The contextId which identifies the resource.

{pages} Required. A set of comma-delimited page indices (zero-indexed page numbers) and/or

PrizmDoc Viewer v13.17 1020

©2021 My Company. All Rights Reserved.

{pages}
hyphenated page index ranges for which you want the full-page text data (records). See more
below.

pages

The pages parameter accepts one or more zero-indexed page numbers (page indices). Between commas, you can
specify individual pages (like 0), closed page ranges (like 0-3), and open-ended page ranges (like 3-, which means
page index 3 through the end of the document).

Here are some examples:

Example Description

pages=0 Get the text data for page index 0.

pages=5 Get the text data for page index 5.

pages=0-5 Get the text data for page indices 0-5.

pages=3- Get the text data for page indices 3 through the end of the document.

pages=0- Get the text data for all pages (page index 0 through the end of the document).

pages=1- Get the text data for all but the first page (page index 1 through the end of the document).

pages=0,2,5,9 Get the text data for page indices 0, 2, 5, and 9.

pages=2,4-5,7- Get the text data for page indices 2, 4 through 5, and 7 through the end of the document.

Request Headers

Name Description

Accusoft-Affinity-

Token

The affinityToken of the search context. Required when server clustering is
enabled.

Successful Response

JSON containing full-page text records for the requested pages.

pages[] (Array of Objects) Always present. Array of full-page text record objects for the requested pages.
Note that the order of the records is not guaranteed; you must use the number property of each returned
item to know its page index. Items may contain:

number (Integer) Always present. Page index (zero-indexed page number). The property is named
simply number for backwards compatibility reasons.
text (String) Page text.
errorCode (String) A descriptive page-level error code (such as "CouldNotGetPageData") if
there was a problem getting data for the page.
width (Number) Page width.
height (Number) Page height.
rectangles[] (Array of Arrays) Bounding boxes for individual glyphs on the page. Each item will
contain four numbers:

[0] (Number) Distance from the left edge of the page to the left edge of the glyph bounding
box.

Parameter Description

PrizmDoc Viewer v13.17 1021

©2021 My Company. All Rights Reserved.

[1] (Number) Distance from the top edge of the page to the top edge of the glyph bounding
box.
[2] (Number) Width of the glyph bounding box.
[3] (Number) Height of the glyph bounding box.

markup[] (Array of Objects) Objects describing hyperlinks, if any. Each item may contain:
changeType (String) Value will always be "Add".
markType (String) Value will always be "DocumentHyperlink".
properties (Object) Properties of the hyperlink.

href (String) Destination URL.
rectangle (Object) Dimensions of the hyperlink bounding box on the page.

x (Number) Distance from the left edge of the page to the left edge of the
hyperlink bounding box.
y (Number) Distance from the top edge of the page to the top edge of the
hyperlink bounding box.
width (Number) Width of the hyperlink bounding box.
height (Number) Height of the hyperlink bounding box.

borderThickness (Number) Border thickness which should be applied.
borderHorizontalRadius (Number) Horizontal border radius which should be
applied.
borderVerticalRadius (Number) Vertical border radius which should be applied.
borderOpacity (Integer) Border opacity which should be applied. Value will be from
0 to 255, where 0 represents fully transparent and 255 represents fully opaque.

errorCode (String) Descriptive error code. Present if there was a general problem getting all of the
requested data.
errorDetails (Object) Present if there are additional error details.

Error Responses

Status
Code JSON errorCode Description

404 No search context exists for the {contextId} given in the URL. It may have
expired, or it may have never existed.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token
request header was not provided.

480 "MissingInput" A required input was missing. See the errorDetails for more information.

480 "InvalidSyntax" Can occur when the pages query string parameter is set to a value we cannot
understand.

480 "ResourceNotUsable" Can occur when the search context is in a state of "error". You may be
able to get more information from a GET
/v2/searchContexts/{contextId}.

580 "InternalError" The server encountered an internal error when handling the request.

Examples

When all data is returned successfully

Request records for pages 0 through 9:

PrizmDoc Viewer v13.17 1022

©2021 My Company. All Rights Reserved.

GET prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw/records?
pages=0-9
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

Successful response (where ... indicates that data has been omitted for brevity):

HTTP/1.1 200 OK
Content-Type: application/json

{
 "pages": [
 {
 "number": 0,
 "text": "the page text",
 "width": 648.00,
 "height": 828.00,
 "rectangles": [
 [
 202.25,
 135.05,
 27.00,
 73.26
],
 [
 229.25,
 135.05,
 30.00,
 73.26
],
 ...
]
 "markup": [
 {
 "changeType": "Add",
 "markType": "DocumentHyperlink",
 "properties": {
 "rectangle": {
 "height": 14.71,
 "width": 86.20,
 "y": 73.50,
 "x": 71.31
 },
 "borderHorizontalRadius": 0.0,
 "borderVerticalRadius": 0.0,
 "borderThickness": 0.0,
 "href": "http://www.google.com/",
 "borderOpacity": 255
 }
 },
 ...
]
 },
 ...
]
}

When the data stream is interrupted

PrizmDoc Viewer v13.17 1023

©2021 My Company. All Rights Reserved.

Because this URL may return large amounts of data, we progressively stream data to the HTTP response. As such, it
is possible that we encounter a data streaming error after we have sent HTTP 200. When this happens, we will close
the JSON with a top-level errorCode of "DataStreamInterruption", like so:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "pages": [...],
 "errorCode": "DataStreamInterruption"
}

When out-of-range, non-existent pages are requested

If you request a set of pages that include non-existent pages beyond the length of the document, we will include
whatever actual pages we can, but we will also add a top-level errorCode of "RequestedPagesOutOfRange"
with the actual documentPageCount within an errorDetails object, like so:

GET prizmdoc_server_base_url/v2/searchContexts/ElkNzWtrUJp4rXI5YnLUgw/records?
pages=0-9
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "pages": [...],
 "errorCode": "RequestedPagesOutOfRange",
 "errorDetails": {
 "documentPageCount": 3
 }
}

When data cannot be extracted from some pages

The pages array will contain one item for each requested page that actually exists. If we are unable to obtain data
for a particular page, we will include an item in the pages array that contains the page number and a page-
specific errorCode of "CouldNotGetPageData", like so:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "pages": [
 {
 "number": 0,
 "text": "Once upon a time...",
 "width": 612.00,
 "height": 792.00,
 "rectangles": [...]

PrizmDoc Viewer v13.17 1024

©2021 My Company. All Rights Reserved.

 },
 {
 "number": 1,
 "errorCode": "CouldNotGetPageData"
 },
 {
 "number": 2,
 "errorCode": "CouldNotGetPageData"
 },
 {
 "number": 3,
 "text": "and then, she said to the dragon...",
 "width": 612.00,
 "height": 792.00,
 "rectangles": [...]
 }
]
}

Search Tasks

Introduction
The search context and search task REST APIs allow your application to perform server-side searching and text retrieval of a document.

A search task represents an asynchronous full-text search of a document (via a search context) and yields results as they become available.

Available URLs

URL Description

POST /v2/searchTasks Starts an asynchronous full-text search against a search context.

POST /v2/viewingSessions/{viewingSessionId}/searchTasks Starts an asynchronous full-text search against a viewing session's source document.

GET /v2/searchTasks/{processId} Gets information about a search task.

GET /v2/searchTasks/{processId}/results Gets available search results.

DELETE /v2/searchTasks/{processId} Cancels a search task.

POST /v2/searchTasks
Starts an asynchronous full-text search against a search context.

After a successful POST to create the search task, we immediately begin a background process to start populating search results for you to GET. You do not need to wait for the full set of results to
be available; you can start retrieving partial search results as soon as they are available. Once the full text of the document has been searched and no more results will be added, the search task
state will change from "processing" to "complete".

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-Affinity-Token The affinityToken of the search context specified by input.contextId. Required when server clustering is enabled.

Request Body

input
contextId (String) Required. Identifies the search context which holds the full-text data to search.
searchTerms[] (Array of Objects) Required and must contain at least one item. Each item must be an object which conforms to one of the following:

Simple (finds all occurrences of a single regex pattern):
type: "simple" (String) Required. Must be set to "simple" to indicate this is a simple term object.
pattern (String) Required. Regular expression to search for, using a JavaScript-flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when matching this term. Default is false.
contextPadding (Integer) Maximum number of characters to include both before and after the search result in the returned context string. For example, a value of
25 would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a termId property on each search result produced by this term. When used, we do
not enforce uniqueness; it is your responsibility to use a unique termId for each term.

Proximity (finds all occurrences of multiple regex patterns which are near each other):
type: "proximity" (String) Required. Must be set to "proximity" to indicate this is a proximity term object.
subTerms[] (Array of Objects) Required and must contain at least two items. Each item may contain:

pattern (String) Required. Regular expression for this particular term, using a JavaScript-flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when matching this term. Default is false.

PrizmDoc Viewer v13.17 1025

©2021 My Company. All Rights Reserved.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

caseSensitive (Boolean) Determines whether we consider case when matching this term. Default is false.
distance (Integer) Required. Maximum number of words allowed between any two consecutive search terms.
contextPadding (Integer) Maximum number of characters to include both before and after the search result in the returned context string. For example, a value of
25 would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a termId property on each search result produced by this term. When used, we do
not enforce uniqueness; it is your responsibility to use a unique termId for each term.

minSecondsAvailable (Integer) The minimum number of seconds this search task will remain available. The actual lifetime may be longer. The default lifetime is defined by the
processIds.lifetime central configuration parameter.

Successful Response

Response Body

JSON with metadata about the created search task.

input (Object) Input we accepted to create the search task.
processId (String) Unique id for this search task.
affinityToken (String) Affinity token for this search task. Present when clustering is enabled.
state (String) State of getting search results.

"processing" - The search is still being executed. Additional results may become available.
"complete" - The search is complete. No additional results will become available.
"error" - There was a problem performing the search. No additional results will become available.

percentComplete (Integer) Percentage of the document text which has been searched (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search task resource will expire and no longer be available for use. Format is RFC 3339 Internet Date/Time profile
of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".

Error Responses

Status Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token request header was not provided.

480 "MissingInput" A required input value was not provided. See errorDetails in the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "MissingInputForSimpleTerm" An invalid input value was used in a "simple" term object. See errorDetails in the response body.

480 "InvalidInputForSimpleTerm" An invalid input value was used in a "simple" term object. See errorDetails in the response body.

480 "MissingInputForProximityTerm" An invalid input value was used in a "proximity" term object. See errorDetails in the response body.

480 "InvalidInputForProximityTerm" An invalid input value was used in a "proximity" term object. See errorDetails in the response body.

480 "ResourceNotFound" Can occur when the search context specified by contextId could not be found. See errorDetails in the response body.

480 "ResourceNotUsable" Can occur when the search context specified by contextId is not usable. See errorDetails in the response body.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

POST prizmdoc_server_base_url/v2/searchTasks
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "input": {
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }]
 }
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick",
 "caseSensitive": false,
 "contextPadding": 25
 }]
 },
 "processId": "pR5X6nPDgMwat6cxlmn0Q3",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Additional Examples

For more examples of how to construct different searches, see Example Searches.

PrizmDoc Viewer v13.17 1026

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

POST /v2/viewingSessions/{viewingSessionId}/searchTasks
Starts an asynchronous full-text search against a viewing session's source document.

After a successful POST to create the search task, we immediately begin a background process to start populating search results for you to GET. You do not need to wait for the full set of results to
be available; you can start retrieving partial search results as soon as they are available. Once the full text of the document has been searched and no more results will be added, the search task
state will change from "processing" to "complete".

Request

Request Headers

Name Description

Content-Type Must be application/json

Request Body

input
searchTerms[] (Array of Objects) Required and must contain at least one item. Each item must be an object which conforms to one of the following:

Simple (finds all occurrences of a single regex pattern):
type: "simple" (String) Required. Must be set to "simple" to indicate this is a simple term object.
pattern (String) Required. Regular expression to search for, using a JavaScript-flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when matching this term. Default is false.
contextPadding (Integer) Maximum number of characters to include both before and after the search result in the returned context string. For example, a value of
25 would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a termId property on each search result produced by this term. When used, we do
not enforce uniqueness; it is your responsibility to use a unique termId for each term.

Proximity (finds all occurrences of multiple regex patterns which are near each other):
type: "proximity" (String) Required. Must be set to "proximity" to indicate this is a proximity term object.
subTerms[] (Array of Objects) Required and must contain at least two items. Each item may contain:

pattern (String) Required. Regular expression for this particular term, using a JavaScript-flavored regular expression string.
caseSensitive (Boolean) Determines whether we consider case when matching this term. Default is false.

distance (Integer) Required. Maximum number of words allowed between any two consecutive sub-terms.
contextPadding (Integer) Maximum number of characters to include both before and after the search result in the returned context string. For example, a value of
25 would allow up to 25 preceding and 25 following characters of content. Default is 25.
termId (String) Optional id of your choosing which, if provided, will be included as a termId property on each search result produced by this term. When used, we do
not enforce uniqueness; it is your responsibility to use a unique termId for each term.

minSecondsAvailable (Integer) The minimum number of seconds this search task will remain available. The actual lifetime may be longer. The default lifetime is defined by the
processIds.lifetime central configuration parameter.

Successful Response

Response Body

JSON with metadata about the created search task.

input (Object) Input we used to create the search task. May include default values not explicitly provided in the original POST.
processId (String) Unique id for this search task.
affinityToken (String) Affinity token for this search task. Present when clustering is enabled.
state (String) State of getting search results.

"processing" - The search is still being executed. Additional results may become available.
"complete" - The search is complete. No additional results will become available.
"error" - There was a problem performing the search. No additional results will become available.

percentComplete (Integer) Percentage of the document text which has been searched (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search task resource will expire and no longer be available for use. Format is RFC 3339 Internet Date/Time profile
of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".

Error Responses

Status Code JSON errorCode Description

404 - No viewing session with the provided {viewingSessionId} could be found.

480 "DocumentNotProvidedYet" The viewing session does not yet have a source document attached.

480 "MissingInput" A required input value was not provided. See errorDetails in the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "MissingInputForSimpleTerm" An invalid input value was used in a "simple" term object. See errorDetails in the response body.

480 "InvalidInputForSimpleTerm" An invalid input value was used in a "simple" term object. See errorDetails in the response body.

480 "MissingInputForProximityTerm" An invalid input value was used in a "proximity" term object. See errorDetails in the response body.

480 "InvalidInputForProximityTerm" An invalid input value was used in a "proximity" term object. See errorDetails in the response body.

480 "FeatureDisabled" The viewing session was created with "serverSideSearch" disabled.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

POST
prizmdoc_server_base_url/v2/viewingSessions/DLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/searchTasks

Content-Type: application/json

PrizmDoc Viewer v13.17 1027

©2021 My Company. All Rights Reserved.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }]
 }
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick",
 "caseSensitive": false,
 "contextPadding": 25
 }]
 },
 "processId": "pR5X6nPDgMwat6cxlmn0Q3",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

Additional Examples

For more examples of how to construct different searches, see Example Searches.

GET /v2/searchTasks/{processId}
Gets information about a search task.

To get search results, use GET /v2/searchTasks/{processId}/results.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the search task.

Request Headers

Name Description

Accusoft-Affinity-Token The affinityToken of the search task. Required when server clustering is enabled.

Successful Response

Response Body

JSON with metadata about the search task.

input (Object) Input we used to create the search task. May include default values not explicitly provided in the original POST.
processId (String) Unique id for this search task.
affinityToken (String) Affinity token for this search task. Present when clustering is enabled.
state (String) State of getting search results.

"processing" - The search is still being executed. Additional results may become available.
"complete" - The search is complete. No additional results will become available.
"error" - There was a problem performing the search. No additional results will become available.

percentComplete (Integer) Percentage of the document text which has been searched (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the search task resource will expire and no longer be available for use. Format is RFC 3339 Internet Date/Time profile
of ISO 8601, e.g. "2016-11-05T08:15:30.494Z".

Error Responses

Status Code JSON errorCode Description

404 - No search task with the provided {processId} could be found.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token request header was not provided.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

GET prizmdoc_server_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

PrizmDoc Viewer v13.17 1028

©2021 My Company. All Rights Reserved.

https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.6

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "contextId": "ElkNzWtrUJp4rXI5YnLUgw",
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick",
 "caseSensitive": false,
 "contextPadding": 25
 }]
 },
 "processId": "pR5X6nPDgMwat6cxlmn0Q3",
 "state": "complete",
 "percentComplete": 100,
 "expirationDateTime": "2016-12-17T20:38:39.796Z"
}

GET /v2/searchTasks/{processId}/results?limit={limit}&continueToken={continueToken}
Gets a block of newly-available search results up to a limit.

This URL is designed to give you the results in chunks as they become available. Each GET request will return the currently-known results up to a limit (default is 100). If a response contains a
continueToken, it indicates that additional results may be available and that you should issue another GET request using that continueToken as a query string parameter to skip the results
you have already received. As long as a response contains a continueToken, use it to issue a subsequent GET for more results. When you encounter a response which does not have a
continueToken, you have received all of the results and no more GET requests are necessary.

In order to optimize the number of network requests you make, any response which contains a continueToken will also contain a continueAfter value with a recommended number of
milliseconds you should wait before sending the next GET request.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the search task.

{limit} The maximum number of results to return for this HTTP request. Must be an integer greater than 0. Default is 100.

{continueToken} Used to continue getting results from the point where a previous GET request left off.

Request Headers

Name Description

Accusoft-Affinity-Token The affinityToken of the search task. Required when server clustering is enabled.

Successful Response

Response Body

JSON with any available search results.

results (Array of Objects) Always present. Array of newly-available search results. If no new results are available, this array will be empty.
id (Integer) Unique number assigned to this search result.
pageIndex (Integer) Zero-indexed page number where this search result occurs in the document.
text (String) Text which was matched.
context (String) Contextual excerpt, including the matched text itself. The amount of leading and trailing characters to include in this value is controlled by
input.contextPadding in the initial POST to create the search task.
boundingRectangle (Object) Bounding rectangle dimensions of the matched text on the page where it occurs.

x (Number) Distance from the left edge of the page to the left edge of the search result bounding box.
y (Number) Distance from the top edge of the page to the top edge of the search result bounding box.
width (Number) Width of the search result bounding box.
height (Number) Height of the search result bounding box.

lineRectangles (Array of Objects) Array of rectangles for each line of the matched text on the page where it occurs. If the match is on one line, the result is a single array item with
a rectangle equal to boundingRectangle. If the match is on multiple lines, all rectangles in the array will be within the bounds of the boundingRectangle.

x (Number) Distance from the left edge of the page to the left edge of the search result line rectangle.
y (Number) Distance from the top edge of the page to the top edge of the search result line rectangle.
width (Number) Width of the search result line rectangle.
height (Number) Height of the search result line rectangle.

pageData (Object) Information about the dimensions of the page where this search result occurs.
width (Number) Width of the page.
height (Number) Height of the page.

searchTerm (Object) Search term which produced this result. The value will correspond to one of the items passed in to input.searchTerms in the initial POST to create the
search task.

When type is "simple":
type (String) Always present with a value of "simple".
pattern (String) Always present. Regular expression which produced this result.
caseSensitive (Boolean) Always present. Indicates whether or not case was considered for this result.
contextPadding (Integer) Always present. Amount of context padding requested for this term in the initial POST.
termId (String) When provided in the initial POST, termId of the term which produced this result.

When type is "proximity":
type (String) Always present with a value of "proximity".
subTerms[] (Array of Objects) Always present. The sub-terms which contributed to this result. Each item will contain:

PrizmDoc Viewer v13.17 1029

©2021 My Company. All Rights Reserved.

subTerms[] (Array of Objects) The sub-terms which contributed to this result. Each item will contain:
pattern (String) Always present. Regular expression for this particular sub-term.
caseSensitive (Boolean) Always present. Indicates whether or not case was considered when matching this particular sub-term in the result.

distance (Integer) Always present. Maximum number of words allowed between any two consecutive sub-terms.
contextPadding (Integer) Always present. Amount of context padding requested for this term in the initial POST.
termId (String) When provided in the initial POST, termId of the term which produced this result.

startIndex (Integer) JavaScript string index into the full-page text string where the matched text begins (to get the full-page text string, see GET
/v2/searchContexts/{contextId}/records).
startIndexInContext (Integer) JavaScript string index into the returned context string where the matched text begins.

pagesWithoutText (Array of Integers) Always present. Currently known pages in the document which do not contain any text content at all. Values are zero-indexed page numbers. If
the search task is still processing (a continueToken is present in the response), the data should be considered partial. Note that, unlike results, this value is cumulative (we always
deliver the entire set of pages we know to not contain text data).
continueToken (String) When present, indicates that more search results may be available. An additional GET request should be made for more results using this value as the
continueToken query string parameter. When not present, indicates that the search is complete and no further results will be available.
continueAfter (Number) Recommended milliseconds to delay before issuing the next GET request for more results.

Error Responses

Status Code JSON errorCode Description

404 - No search task with the provided {processId} could be found.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token request header was not provided.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "ResourceNotUsable" Can occur when the search task is in a state of "error". You may be able to get more information from a GET /v2/searchTasks/{processId}.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Say you have a search task which was created to find the regex "manag[a-z]*" in a particular whitepaper. Here is an example sequence of requests and responses illustrating how you would
acquire the full set of results for the search task (for brevity, the total number of search results in this example is small).

You would start with an initial GET:

GET prizmdoc_server_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "results": [
 {
 "id": 0,
 "pageIndex": 0,
 "text": "Management",
 "context": "Enterprise Content Management Best Practices",
 "boundingRectangle": { "x": 24.20, "y": 13.74, "width": 234.20, "height": 26.10 },
 "lineRectangles": [{ "x": 24.20, "y": 13.74, "width": 234.20, "height": 26.10 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 19,
 "startIndexInContext": 19
 },
 {
 "id": 1,
 "pageIndex": 0,
 "text": "management",
 "context": "ue of enterprise content management software should go way b",
 "boundingRectangle": { "x": 156.07, "y": 352.19, "width": 105.00, "height": 13.41 },
 "lineRectangles": [{ "x": 156.07, "y": 352.19, "width": 105.00, "height": 13.41 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 527,
 "startIndexInContext": 25
 }
],
 "pagesWithoutText": [],
 "continueToken": "Cx07GHlkmi32gxAQhv49WZ",
 "continueAfter": 500
}

The initial response has given us two results for the first page of the document (page index 0) and a continueToken which we should use to get more results after waiting 500 milliseconds.

So, half a second later, we issue a follow-up request with the continueToken passed in as a query string parameter (so we skip over the results we already have):

GET prizmdoc_server_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results?continueToken=Cx07GHlkmi32gxAQhv49WZ
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK

PrizmDoc Viewer v13.17 1030

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "results": [
 {
 "id": 2,
 "pageIndex": 1,
 "text": "management",
 "context": "Enterprise content management software helps eliminate",
 "boundingRectangle": { "x": 310.21, "y": 562.14, "width": 254.03, "height": 26.10 },
 "lineRectangles": [{ "x": 310.21, "y": 562.14, "width": 254.03, "height": 26.10 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 652,
 "startIndexInContext": 19
 }
],
 "pagesWithoutText": [2,3],
 "continueToken": "B4uGe7m0ZtxR3lkqA07Nmj",
 "continueAfter": 500
}

This time we get back a new result as well as some new information about pagesWithoutText: we now know that at least page indices 2 and 3 (zero-indexed page numbers) have no text at all.

The presence of a new continueToken tells us there may be more results, so we submit another request with the new continueToken:

GET prizmdoc_server_base_url/v2/searchTasks/pR5X6nPDgMwat6cxlmn0Q3/results?continueToken=B4uGe7m0ZtxR3lkqA07Nmj
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "results": [
 {
 "id": 3,
 "pageIndex": 5,
 "text": "management",
 "context": "upply chains to contract management, or HR processes to gove",
 "boundingRectangle": { "x": 67.00, "y": 142.53, "width": 254.03, "height": 26.10 },
 "lineRectangles": [{ "x": 67.00, "y": 142.53, "width": 254.03, "height": 26.10 }],
 "pageData": { "width": 612, "height": 792 },
 "searchTerm": {
 "type": "simple",
 "pattern": "manag[a-z]*",
 "caseSensitive": false,
 "contextPadding": 25
 },
 "startIndex": 113,
 "startIndexInContext": 25
 }
],
 "pagesWithoutText": [2,3,4]
}

This time we get a new result for page index 5, and we now know that page indices 2, 3, and 4 all contain no text at all (apparently this was not much of a whitepaper!). The lack of a
continueToken tells us we have received all of the results, so there are no more GET requests to make.

DELETE /v2/searchTasks/processId
Cancels the search task. Further requests using this processId will return errors.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the search task.

Request Headers

Name Description

Accusoft-Affinity-Token The affinityToken of the search task. Required when server clustering is enabled.

Successful Response

HTTP/1.1 204 No Content

Error Responses

PrizmDoc Viewer v13.17 1031

©2021 My Company. All Rights Reserved.

Status Code JSON errorCode Description

404 - No search task with the provided {processId} could be found.

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token was not provided.

580 "InternalError" The server encountered an internal error when handling the request.

Example Searches
The following examples demonstrate how to use input.searchTerms for both the POST /v2/searchTasks and POST /v2/viewingSessions/{viewingSessionId}/searchTasks
URLs.

Start a search for a single word

This partial input JSON begins a search task which finds all instances of the word "quick":

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }]
 }
}

Start a case-sensitive search for an exact phrase

This partial input JSON begins a case-sensitive search for the exact phrase "The quick brown fox jumped over the lazy dog.". Notice that we had to escape the period character because it is a
special regex character (\.), and because this is a JSON string value, the backslash itself must also be escaped ("\\."):

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "The quick brown fox jumped over the lazy dog\\.",
 "caseSensitive": true
 }]
 }
}

Start a search for every instance of the word "quick" or "brown" or "fox"

This partial input JSON begins a search for the words "quick" or "brown" or "fox", locating all instances of each of these words:

{
 "input": {
 "searchTerms": [{
 "type": "simple",
 "pattern": "quick"
 }, {
 "type": "simple",
 "pattern": "fox"
 }, {
 "type": "simple",
 "pattern": "dog"
 }]
 }
}

Start a search for "quick" and "fox" and "dog" where there are no more than 5 words between any two consecutive occurrences of them

{
 "input": {
 "searchTerms": [{
 "type": "proximity",
 "subTerms": [{
 "pattern": "quick"
 }, {
 "pattern": "fox"
 }, {
 "pattern": "dog"
 }],
 "distance": 5
 }]
 }
}

Start a case-sensitive search for "John Doe" within 30 words of what looks like a social security number

{
 "input": {
 "searchTerms": [{
 "type": "proximity",
 "subTerms": [{
 "pattern": "John Doe",
 "caseSensitive": true

PrizmDoc Viewer v13.17 1032

©2021 My Company. All Rights Reserved.

 }, {
 "pattern": "\\d{3}-\\d{2}-\\d{4}"
 }],
 "distance": 30
 }]
 }
}

Work Files

Introduction
The work file REST API provides a temporary storage system to upload file input and download file output. Each
work file has a unique fileId which can be used to pass that file as input to a process or viewing session or to
download the raw bytes of the file.

Work files should not be used for archival storage. All work files are temporary and, by default, will be deleted 24
hours after creation.

Available URLs

URL Description

POST /PCCIS/V1/WorkFile when
body is file bytes

Creates a work file resource from file bytes (used to upload input files).

POST /PCCIS/V1/WorkFile when
body is JSON

Creates a "package" work file from a set of existing work files. Used to prepare a
set of dependent files for viewing or processing (e.g. CAD with XREF).

GET /PCCIS/V1/WorkFile/{fileId} Gets the file bytes associated with a work file resource (used to download
output files).

GET
/PCCIS/V1/WorkFile/{fileId}/Info

Gets metadata information about a work file resource.

POST /PCCIS/V1/WorkFile when body is file bytes
Creates a work file resource from file bytes (used to upload input files).

Example

POST prizmdoc_server_base_url/PCCIS/V1/WorkFile
Content-Type: application/octet-stream

<<file bytes>>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "Xe6zv3dH0kVSzLuaNhd32A",
 "fileExtension": "pdf",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

PrizmDoc Viewer v13.17 1033

©2021 My Company. All Rights Reserved.

Request

Request Headers

Name Description

Content-

Type

We recommend you use the value application/octet-stream to explicitly indicate that you
are uploading file bytes. If you do not provide a value, application/octet-stream is assumed
by default.

Accusoft-

Affinity-

Token

Used to ensure that this work file will be assigned to the same machine in the cluster as another
existing resource (work file, process, or viewing session). If provided, the value must be the
affinityToken of another existing resource. If not provided, an affinityToken will be
randomly assigned to each work file created whenever there is more than one server in the cluster.

Request Parameters

POST prizmdoc_server_base_url/PCCIS/V1/WorkFile{?
FileExtension,MinSecondsAvailable}

Name Type Description Example

FileExtension string File extension of the file being uploaded without any leading
period. Only required when the file type cannot be automatically
detected (e.g. csv, tsv, txt, eml). The FileExtension
parameter may only accept alpha-numeric characters. Note that, if
we are able to detect the file type automatically, the detected type
will always be used and this value will be ignored.

pdf

MinSecondsAvailable integer The minimum number of seconds this work file must remain
available. The actual lifetime may be longer.

300

Request Body

The bytes of the file being uploaded.

Successful Response

JSON with metadata about the newly created work file.

Response Headers

Name Value

Content-Type application/json

Response Body

{
 "fileId": "Xe6zv3dH0kVSzLuaNhd32A",

PrizmDoc Viewer v13.17 1034

©2021 My Company. All Rights Reserved.

 "fileExtension": "pdf",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Name Type Description

fileId string The unique id of the new work file resource, often used later as input to a viewing
session or process.

fileExtension string The file extension assigned to this resource which indicates what type of file we
understand it to be.

affinityToken string A value used to identify which machine in the cluster this work file resides on. Only
present when there is more than one machine in the cluster. A work file is only
accessible to another resource if that resource resides on the same machine in the
cluster. You can ensure that other resources you create (work files, viewing sessions,
and processes) are assigned to the same machine by passing this value in an
Accusoft-Affinity-Token request header when submitting the POST to create
the other resource.

Error Responses

Status
Code JSON errorCode Description

400 - There was a problem with an input parameter:

FileExtension was required and not provided.

FileExtension was an invalid value.

MinSecondsAvailable was not a number.

405 - An HTTP method other than POST was used.

580 "UnrecognizedFileFormat" The file type of the uploaded bytes could not be automatically
detected. You will need to manually specify a FileExtension.

POST /PCCIS/V1/WorkFile when body is JSON
Creates a "package" work file from a set of existing work files, defining one file in the set as the primary file for
viewing and content conversion.

This special type of work file is particularly useful for CAD drawings which are made up of multiple files (such as
dwg files which use other files via XREF).

Example

POST prizmdoc_server_base_url/PCCIS/V1/WorkFile
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "primaryPath": "master.dwg",

PrizmDoc Viewer v13.17 1035

©2021 My Company. All Rights Reserved.

 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/a.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/b.dwg" }
]
}

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "nkG9fiAmj27X3MhqGdbsXA",
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/a.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/b.dwg" }
],
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Request

Request Headers

Name Description

Content-

Type

You must use the value application/json to indicate that you are assembling a new work file
from a set of existing work files rather than simply uploading file bytes. If you forget to specify a
Content-Type of application/json, we will assume you are attempting to upload file bytes.

Accusoft-

Affinity-

Token

Whenever there is more than one machine in the cluster, you will need to ensure that all of the
work files in the set reside on to the same machine. To do this, upload the first file in the set, get
the affinityToken in the response, and then use that value in an Accusoft-Affinity-Token
request header for every subsequent work file POST, including this final POST to assemble a work
file for the entire set.

Request Parameters

POST prizmdoc_server_base_url/PCCIS/V1/WorkFile{?MinSecondsAvailable}

Name Type Description Example

MinSecondsAvailable integer The minimum number of seconds this work file must remain
available. The actual lifetime may be longer.

300

Request Body

A JSON object which specifies:

which work files are in the set
what their local paths would be

PrizmDoc Viewer v13.17 1036

©2021 My Company. All Rights Reserved.

which path should be considered the primary entry point for viewing or conversion

For example:

{
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/a.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/b.dwg" }
]
}

Name Type Description

primaryPath string Required. The primary entry point for viewing or conversion. This value must match the
path value of one of the objects in the items array.

items array Required. The work files which are to be included in the set and what their local paths
would be.

Items

Name Type Description

fileId string Required. The fileId of a work file to be included in the set.

path string Required. A path value for this file in the set. Typically this is just the relative path of this file in
relation to the primary file. Each item in the set must have a unique path value.

Successful Response

JSON with metadata about the new work file resource, the most important part being a new fileId which you
can use to represent the entire set of files.

Response Headers

Name Value

Content-Type application/json

Response Body

{
 "fileId": "nkG9fiAmj27X3MhqGdbsXA",
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/a.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/b.dwg" }
],
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

PrizmDoc Viewer v13.17 1037

©2021 My Company. All Rights Reserved.

Name Type Description

fileId string The unique id of this new "package" work file, intended to be used as input to a
viewing session or process which needs to consume the entire package as a single
document.

primaryPath string The primary entry point which will be used for viewing or conversion.

items array The work files which are included in the set and their assigned paths.

affinityToken string A value used to identify which machine in the cluster this work file resides on. Only
present when there is more than one machine in the cluster. A work file is only
accessible to another resource if that resource resides on the same machine in the
cluster. You can ensure that other resources you create (work files, viewing sessions,
and processes) are assigned to the same machine by passing this value in an
Accusoft-Affinity-Token request header when submitting the POST to create
the other resource.

Error Responses

Status
Code JSON errorCode Description

480 "MissingInput" A required input was not provided. See the errorDetails in the
response.

480 "InvalidInput" One of the input values was invalid.
Possible causes:

MinSecondsAvailable was not a number.
primaryPath did not match the path of any of the items.

See the errorDetails in the response.

480 "ValueMustBeUnique" One or more of the path values in the items array was non-unique.

580 UnrecognizedFileFormat This will occur if you forget to specify a Content-Type of
application/json when making your request. If no Content-Type is
specified (or if any value other than application/json is specified), we
will understand you to be making a request to upload file bytes rather
than giving us JSON instructions to create a new work file from a set of
existing work files. And, since we do not automatically detect JSON as a
file format, this is the error which is returned. If you are trying to create a
work file from a set of existing work files (as described in this section),
make sure you set the request Content-Type header to
application/json.

GET /PCCIS/V1/WorkFile/{fileId}
Gets the file bytes associated with a work file resource (used to download output files).

Example

Get work file with default filename

PrizmDoc Viewer v13.17 1038

©2021 My Company. All Rights Reserved.

GET prizmdoc_server_base_url/PCCIS/V1/WorkFile/Xe6zv3dH0kVSzLuaNhd32A
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Disposition: attachment; filename="file-Xe6zv3dH0kVSzLuaNhd32A.pdf"

<<file bytes>>

Get work file with non-ASCII character in the filename

GET prizmdoc_server_base_url/PCCIS/V1/WorkFile/Xe6zv3dH0kVSzLuaNhd32A?
ContentDispositionFilename=GreekΑΒΓΔ
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/pdf
Content-Disposition: attachment; filename="file-Xe6zv3dH0kVSzLuaNhd32A.pdf";
filename*=UTF-8''Greek%CE%91%CE%92%CE%93%CE%94.pdf`

<<file bytes>>

Request

Request Headers

Name Description

Accusoft-

Affinity-

Token

If there is more than one machine in the cluster (an affinityToken was provided in the response
to the initial POST request to create the work file), then this header must be set to the
affinityToken of the work file you are trying to access.

Request Parameters

GET prizmdoc_server_base_url/PCCIS/V1/WorkFile/{fileId}{?
ContentDispositionFilename}

Name Type Description Example

fileId string Required. The fileId of the work
file whose file bytes you want to
download.

Xe6zv3dH0kVSzLuaNhd32A

ContentDispositionFilename string The filename as a URL-encoded
string, without extension, to be
used in the Content-

GreekΑΒΓΔ

PrizmDoc Viewer v13.17 1039

©2021 My Company. All Rights Reserved.

Disposition response header
(the file extension will be appended
automatically). The default is file-
<fileId>.

Successful Response

The raw bytes of the file.

Response Headers

Name Description Example

Content-

Type

The MIME type of the file being downloaded. application/pdf

Content-

Disposition

Specifies 'attachment' disposition, RFC-2183
compatible filename parameter and, if
ContentDispositionFilename was
specified in the request, RFC-8187 compatible
filename* parameter, allowing the use of
non-ASCII filenames.

attachment;

filename="Greek____.pdf";

filename*=UTF-

8''Greek%CE%91%CE%92%CE%93%CE%94.pdf

Response Body

The raw bytes of the file.

Error Responses

Status
Code JSON errorCode Description

400 "InvalidInput" One of the input values was invalid. Possible causes:

Accusoft-Affinity-Token was invalid.

See the errorDetails in the response.

480 "DataNotAvailable" No file bytes exist for download. This can occur if you attempt to download the
file bytes for a ["package" work file](#post-json) which merely groups a set of
related work files under a single fileId.

404 - No work file existed for the given fileId.

405 - An HTTP method other than GET was used.

GET /PCCIS/V1/WorkFile/{fileId}/Info
Gets metadata information about a work file resource, the same information returned in the original POST request
which created the work file.

Example

Name Type Description Example

PrizmDoc Viewer v13.17 1040

©2021 My Company. All Rights Reserved.

GET prizmdoc_server_base_url/PCCIS/V1/WorkFile/Xe6zv3dH0kVSzLuaNhd32A/Info
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

HTTP/1.1 200 OK
Content-Type: application/json

{
 "fileId": "Xe6zv3dH0kVSzLuaNhd32A",
 "fileExtension": "pdf",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Request

Request Headers

Name Description

Accusoft-

Affinity-

Token

If there is more than one machine in the cluster (an affinityToken was provided in the response
to the initial POST request to create the work file), then this header must be set to the
affinityToken of the work file you are trying to access.

Request Parameters

GET prizmdoc_server_base_url/PCCIS/V1/WorkFile/{fileId}/Info

Name Type Description Example

fileId string Required. The fileId of the work file you need information
about.

Xe6zv3dH0kVSzLuaNhd32A

Successful Response

JSON with information about the work file.

Response Headers

Name Value

Content-Type application/json

Response Body

For simple work files

{
 "fileId": "Xe6zv3dH0kVSzLuaNhd32A",
 "fileExtension": "pdf",

PrizmDoc Viewer v13.17 1041

©2021 My Company. All Rights Reserved.

 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Name Type Description

fileId string The unique id of this resource.

fileExtension string File extension assigned to this resource, indicating what type of file we understand it to
be.

affinityToken string A value used to identify which machine in the cluster this work file resides on. Only
present when there is more than one machine in the cluster.

For "package" work files

{
 "fileId": "nkG9fiAmj27X3MhqGdbsXA",
 "primaryPath": "master.dwg",
 "items": [
 { "fileId": "CVBuD7DbQYNoJDqByGierQ", "path": "master.dwg" },
 { "fileId": "5qTYa3gzN9gYUb5SzqUhqg", "path": "parts/a.dwg" },
 { "fileId": "o1bLJwFGxf9QGuTkyrOqig", "path": "parts/b.dwg" }
],
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

Name Type Description

fileId string The unique id of this resource.

primaryPath string The primary entry point which will be used for viewing or conversion.

items array The work files which are included in the set and their assigned paths.

affinityToken string A value used to identify which machine in the cluster this work file resides on. Only
present when there is more than one machine in the cluster.

Error Responses

Status Code Description

404 No work file existed for the given fileId.

405 An HTTP method other than GET was used.

Self-Hosted Administration
These REST APIs are useful if you are self-hosting PrizmDoc Server instances:

Health Status
Cluster Management

Health Status

PrizmDoc Viewer v13.17 1042

©2021 My Company. All Rights Reserved.

Introduction
For customers who are self-hosting PrizmDoc Server, the health REST API allows an administrator or application to
check the health of a PrizmDoc Server instance.

Available URLs

URL Description

GET
/PCCIS/V1/Service/Current/Health

Determines whether or not a specific PrizmDoc Server instance is healthy.

GET /PCCIS/V1/Service/Current/Info Gets metadata about the current status of a specific PrizmDoc Server
instance.

GET /PCCIS/V1/Service/Current/Health
Determines whether or not a specific PrizmDoc Server instance is healthy.

Response

You can use the HTTP status code to determine the health of the instance:

HTTP Status Code Status

200 Healthy

500 Unhealthy

You can also determine health by looking at the response body. When healthy, the response body will be plaintext
with a value of OK. When unhealthy, the response will have no body.

NOTE: If PrizmDoc Viewer has just started, unhealthy status may be returned for a short time until the
system has completely started up.

Example

Request

GET http://prizmdoc_server_base_url/PCCIS/V1/Service/Current/Health

Response

HTTP/1.1 200 OK

OK

GET /PCCIS/V1/Service/Current/Info

PrizmDoc Viewer v13.17 1043

©2021 My Company. All Rights Reserved.

Gets metadata about the current status of a specific PrizmDoc Server instance.

NOTE: Do not take any actions when any child service reports unhealthy status. PrizmDoc Server has
its own mechanism to recover.

Successful Response

Response Body

JSON with the following:

serviceStatus (String) Status of PrizmDoc Server:
"starting"
"running"
"unhealthy"

licenseStatus (String) Information about the PrizmDoc Server License:
"retrieving" - Returned when the product is starting and the licensed status is not yet known.
"unlicensed" - Returned when the provided license key is not valid. Your license may be expired,
or you may not have correctly configured your license key.
"licensed as 'Your Solution Name'" - Returned when a valid license key is found. Your
Solution Name will be replaced with the value of your actual solution name.

instances[] (Array of Objects) Objects describing the PrizmDoc Server instances that are currently
running. Items contain:

serviceStatus (String) Status of the PrizmDoc Server used for viewing.
serviceInstallerVersion (String) Version of the installer used to install PrizmDoc Server.
pccisVersion (String) Version of the PrizmDoc Server used for viewing.
runtimeVersion (String) .NET runtime version supporting the PrizmDoc Server used for viewing.
operatingSystem (String) Operating System of the server on which PrizmDoc Server is running.
startTime (String) Last recorded time the PrizmDoc Server were started. Time is reported in UTC
and is ISO-8601 format.
instanceId (String) Host name of the server running PrizmDoc Server.
childServices[] (Array of Objects) Objects describing the health status for each individual
PrizmDoc Service. > NOTE: It's important not to programmatically depend upon the value of a Service
name because the total number of items in the childServices array may change from release to
release (items may be added or removed). Items may contain:

name (String) Name of the child PrizmDoc Service.
status (String) Status of the child PrizmDoc Service:

"starting"
"running"
"unhealthy"

Example

Request

GET http://prizmdoc_server_base_url/PCCIS/V1/Service/Current/Info

Response

HTTP/1.1 200 OK

PrizmDoc Viewer v13.17 1044

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "serviceStatus": "running",
 "licenseStatus": "licensed as 'Acme Inc.'",
 "instances": [
 {
 "serviceStatus": "running",
 "serviceInstallerVersion": "XX.X.XX.XXX",
 "pccisVersion": "XX.X.XX.XXXX",
 "runtimeVersion": "4.0.30319.34014",
 "operatingSystem": "Microsoft Windows NT 6.3.9600.0",
 "startTime": "1971-01-01T00:00:00.0Z",
 "instanceId": "myhostname",
 "childServices": [
 {
 "name": "PCC Error Reporting Service",
 "serviceStatus": "running"
 },
 {
 "name": "PCC Imaging Conversion Service",
 "serviceStatus": "running",
 "version": "X.X.XXXX.XXXX"
 },
 {
 "name": "PCC PDF Processing Service",
 "serviceStatus": "running"
 },
 {
 "name": "PCC Raster Conversion Service",
 "serviceStatus": "running",
 "version": "X.X.XXXX.XXXX"
 },
 {
 "name": "PCC Vector Conversion Service",
 "serviceStatus": "running",
 "version": "X.X.XXXX.XXXX"
 },
 {
 "name": "PCC Html Conversion Service",
 "serviceStatus": "running",
 "version": "X.X.XXXX.XXXX"
 },
 {
 "name": "PCC Work File Service",
 "serviceStatus": "running",
 "version": "X.X.X"
 },
 {
 "name": "PCC Office Conversion Service",
 "serviceStatus": "running",
 "version": "X.XX.XXXX.XXXX"
 },
 {
 "name": "PCC Format Detection Service",
 "serviceStatus": "running"
 },
 {
 "name": "PCC AutoRedaction Service",
 "serviceStatus": "running"
 },
 {

PrizmDoc Viewer v13.17 1045

©2021 My Company. All Rights Reserved.

 "name": "PCC Redaction Service",
 "serviceStatus": "running",
 "version": "X.X.X"
 },
 {
 "name": "PCC Email Processing Service",
 "serviceStatus": "running"
 },
 {
 "name": "PCC Email Conversion Service",
 "serviceStatus": "running",
 "version": "X.X.XXXX.XXXX"
 },
 {
 "name": "PCC Content Conversion Service",
 "serviceStatus": "running"
 },
 {
 "name": "configuration-service",
 "serviceStatus": "running"
 },
 {
 "name": "licensing-service",
 "serviceStatus": "running"
 },
 {
 "name": "health-service",
 "serviceStatus": "running"
 }
]
 }
]
}

Cluster Management

Introduction
For customers self-hosting PrizmDoc Server, the cluster management REST API allows you to inform a PrizmDoc
Server instance whenever a new instance is added to or removed from the cluster.

NOTE: The cluster management REST API is only available if 1) you are self-hosting PrizmDoc Server
and 2) you have clustering enabled. If you are using PrizmDoc Cloud, or if you are self-hosting in
single-server mode, the URLs discussed in this page will not be available.

Each PrizmDoc Server instance in a cluster has its own list of the host and port of all servers it considers to be in the
cluster (including itself). Each server uses its list when deciding how to route internal traffic within the cluster. In
order for your cluster to function correctly, it is important that every server in the cluster always have a correct list
of active servers.

There are two cluster management URLs:

A GET which returns the active list of servers a particular server knows about
A PUT which changes the active list of servers a particular server should use

Unlike other PrizmDoc Server APIs, requests to these URLs should be sent directly to individual servers (rather than

PrizmDoc Viewer v13.17 1046

©2021 My Company. All Rights Reserved.

to, say, a load balancer which you have put in front of your cluster which would route the request to a random
server). Additionally, requests to these URLs must be sent to a server's public port (not it's cluster port, otherwise
you will receive 403 Forbidden).

Whenever a server is added to or removed from your cluster, you should send a PUT request to every server in the
cluster informing them of the new active list of servers they should use.

For more information, see PrizmDoc Cluster Mode.

Available URLs

URL Description

GET /PCCIS/V1/Service/Properties/Servers Returns the active list of servers a particular server knows about.

PUT /PCCIS/V1/Service/Properties/Servers Sets the active list of servers a particular server should use.

GET /PCCIS/V1/Service/Properties/Servers
Gets the active list servers which a particular server is currently using to route requests to. The list of servers
returned here must first have been set by a request to PUT /PCCIS/V1/Service/Properties/Servers or via
the Central Configuration file.

Successful Response

Response Body

JSON containing the list of host addresses and ports which this server is currently using to route requests to.

servers (Array of Objects) List of servers which this server is currently using to route requests to. Each item
in the array will be an object containing:

address (String) Hostname or IP address where internal traffic should be sent
port (String) The cluster port where internal traffic should be sent (typically "18682"). The cluster
port for a server is configured via the network.clustering.clusterPort property in the
Central Configuration file.

Error Responses

Status Code Reason Phrase Description

403 Forbidden Can occur if you send the request to a server's cluster port instead of its public port.

Example

In this example:

The Central Configuration file uses a network.publicPort value of 18681
The Central Configuration file uses a network.clustering.clusterPort value of 18682 (used by
PrizmDoc Services for internal communication between servers)

The GET request must be sent to a specific server at its public port (18681):

GET http://192.168.0.1:18681/PCCIS/V1/Service/Properties/Servers

PrizmDoc Viewer v13.17 1047

©2021 My Company. All Rights Reserved.

The returned data shows the list of all servers (including the server the request was sent to) with their internal
cluster port (as a string, "18682"):

HTTP/1.1 200 OK
Content-Type: application/json

{
 "servers": [
 {
 "address": "192.168.0.1",
 "port": "18682"
 },
 {
 "address": "192.168.0.2",
 "port": "18682"
 },
 {
 "address": "192.168.0.3",
 "port": "18682"
 }
]
}

PUT /PCCIS/V1/Service/Properties/Servers
Sets the active list of servers which a particular server should start using to route requests to. The list of servers
should include the server this request is sent to.

Request

Request Headers

Name Description

Content-Type Should be application/json

Request Body

JSON indicating the new active list of servers to use:

servers (Array of Objects) Required. List of servers which this server should start using to route requests
to. Each item in the array must be an object containing:

address (String) Required. Hostname or IP address where internal traffic should be sent
port (String) Required. The cluster port where internal traffic should be sent (typically "18682").
The cluster port for a server is configured via the network.clustering.clusterPort property
in the Central Configuration file.

Successful Response

A plain HTTP 200 without any body indicating the new list was accepted and will be used by the server.

Error Responses

PrizmDoc Viewer v13.17 1048

©2021 My Company. All Rights Reserved.

Status
Code

Reason
Phrase Description

400 Bad

Request

The request body could not be understood. Make sure that it is syntactically valid JSON
and that it contains the required data.

403 Forbidden Can occur if you send the request to a server's cluster port instead of its public port.

Example

In this example:

The Central Configuration file uses a network.publicPort value of 18681
The Central Configuration file uses a network.clustering.clusterPort value of 18682 (used by
PrizmDoc Services for internal communication between servers)

The PUT request must be sent to a specific server at its public port (18681), but the items in the server list must use
the internal cluster port (as a string, "18682").

PUT http://192.168.0.1:18681/PCCIS/V1/Service/Properties/Servers
Content-Type: application/json

{
 "servers": [
 {
 "address": "192.168.0.1",
 "port": "18682"
 },
 {
 "address": "192.168.0.2",
 "port": "18682"
 },
 {
 "address": "192.168.0.3",
 "port": "18682"
 }
]
}

HTTP/1.1 200 OK

The response of HTTP 200 indicates the new list was accepted and will be used by the server.

Viewer Support
These REST APIs are used by PAS and our viewer. It is uncommon for your application to need to use them:

Attachments
Form Extractors
HTML5 Viewing
Viewing Sessions

PrizmDoc Viewer v13.17 1049

©2021 My Company. All Rights Reserved.

Attachments

Introduction
The attachments REST API is used by our viewer to get EML and MSG attachments for a document being viewed.

Available URLs

URL Description

GET /PCCIS/V1/ViewingSession/u{ViewingSessionID}/Attachments Lists the attachments available in the source document.

GET /PCCIS/V1/ViewingSession/u{ViewingSessionID}/Attachments
This API returns a JSON list of attachment objects. If the return object list length has a zero count and no errors detected, there are no
attachments. The status property of the list object indicates whether or not the list has been completed. If the list hasn't been completed,
the request must be retried again. Each Attachment object in the list contains displayName and viewingSessionId property. The
displayName can be used to label an href link on a web page and the link points to the viewingSessionId URL for the attachment.

Request

URL Parameters

Parameter Description

{ViewingSessionID} The ID of the viewing session associated with the request.

Successful Response

Response Body

If successful, this method returns the following properties:

status (String) Specifies the current status of the attachments.
"pending" - There may be attachments, but the list has not yet been constructed.
"complete" - The list is known and present in this object.

attachments (List) The list of attachments, if any. Each item in this list will be a new viewing session ID, which is used to view any
of the listed attachments in the Viewer by passing in the viewing session ID provided in this list.

Error Responses

Status
Code Description

500 Internal service error. This error can be returned for a number of different reasons. Please verify that your input is correct, and
contact Support if the error persists.

Examples

Request

GET prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uGcIsIsEGbLV2_V9yy4NzmK2HB-JuLOH--
A9sZ16cla9txO0ZDBGfq1G4kKu0r_GyEps4wWCvDwn4dpnZAR76Uw/Attachments

Response

HTTP/1.1 200 OK

PrizmDoc Viewer v13.17 1050

©2021 My Company. All Rights Reserved.

Content-Type: application/json

{
 "attachments": [
 {
 "displayName": "example-file.pdf",
 "viewingSessionId":
"SC0fZEMYiiGdOPMKBqLY8P6EAnVLEqxeTHjUUYqqxgJJc3s3wsQ8Lw2qqvkD1uLKTpAlF1ce23EQ6BFpYb4E3LC9TsXxwHCgB-
I1c5rPOt0"
 },
 {
 "displayName": "second-example.doc",
 "viewingSessionId": "33qQovKTjc0UKbNgOI-5POEyCpNw5x-
uEzGMB13iUVhnCa_UHSSnOpRBEzPKeD7Maxq2RQu2SOOwJjl4X4iU_65OQjx2EI5-7h-bXlYc6uA"
 }
],
 "status": "complete"
}

Form Extractors

Introduction
The form extractors REST API is used by our e-signature viewer to automatically detect form field elements in a document being viewed.

A form extractor resource represents an asynchronous form extraction process. Each form extractor that is created is assigned a unique processId.

Available URLs

URL Description

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/FormInfo Returns what kind of form field data, if any, is available in a viewing session's source document.

POST /v2/formExtractors Creates a new form extractor for a work file, starting the process of extracting form field data.

GET /v2/formExtractors/{processId} Gets the status and final output of a form extractor.

Output Schemas
"acroform" Output
"rasterForm" Output

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/FormInfo
Returns what kind of form field data, if any, is available in a viewing session's source document.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

Response Body

JSON with information about what kind of form data, if any, is available in the source document of the viewing session.

formType[] (Array of strings) Array of values indicating what types of form data, if any, are available for extraction from this viewing session's source
document. Values will be one of the following:

"acroform" - The source document is a PDF which contains AcroForm data. The data can be extracted by using an input.formType of "acroform"
in a subsequent POST to create a form extractor process.
"xfa" - The source document is a PDF which contains XFA form data. We do not yet support extraction of XFA data.
"rasterForm" - The source document is a raster file which may or may not contain detectable form fields. You can attempt to extract form data by
using an input.formType of "rasterForm" in a subsequent POST to create a form extractor process.

Error Responses

PrizmDoc Viewer v13.17 1051

©2021 My Company. All Rights Reserved.

Status Code JSON errorCode Description

404 No viewing session with the provided {viewingSessionId} could be found.

480 "DocumentNotProvidedYet" A source document has not been provided to the viewing session.

480 "FeatureNotLicensed" You are not licensed to use the form extraction feature.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

GET
/PCCIS/V1/ViewingSession/uDLbVh9sTmXJAmd1GeXbS9Gn3WHxs8oib2xPsW2xEFjnIDdoJcudPtxciodSYFQq6zYGabQ_rJIecdbkImTTkSA/FormInfo

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "formType": ["acroform"]
}

POST /v2/formExtractors
Creates a new form extractor for a work file, starting the process of extracting form field data.

Request

Request Headers

Name Description

Content-Type Must be application/json

Accusoft-Affinity-Token The affinityToken of the work file specified by input.fileId. Required when server clustering is enabled.

Request Body

input
fileId (String) Required. The id of the work file to extract form field data from.
password (String) Password to open the source document, if required.
formType (String) Required. Type of form field data to extract. Must be one of the following:

"acroform" - Extract AcroForm field data from a PDF and return results in our "acroform" JSON format.
"rasterForm" - Detect visible form fields in a raster document and return results in our "rasterForm" JSON format.

minSecondsAvailable (Integer) The minimum number of seconds this process will remain available to GET its status. The actual lifetime may be longer. The
default lifetime is defined by the processIds.lifetime central configuration parameter.

Successful Response

Response Body

JSON with metadata about the created form extractor process. You can check on the status of the form extraction process with additional GET requests.

input (Object) Input we accepted to create the form extractor process.
processId (String) Unique id for the newly-created form extractor process.
affinityToken (String) Affinity token for this form extractor. Present when clustering is enabled.
state (String) State of extracting form field data:

"processing" - The server is extracting form field data.
"complete" - All form field data has been extracted.
"error" - There was a problem extracting form field data.

percentComplete (Integer) Percentage of form extraction which has completed (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the form extractor resource will expire and no longer be available. This time may be
extended if we have need to keep using the data. Format is [RFC 3339 Internet Date/Time profile of ISO 8601], e.g. "2016-11-05T08:15:30.494Z".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.

Error Responses

PrizmDoc Viewer v13.17 1052

©2021 My Company. All Rights Reserved.

Status Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token request header was not provided.

480 "MissingInput" A required input value was not provided. See errorDetails in the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "FeatureNotLicensed" You are not licensed to use the form extraction feature.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

POST /v2/formExtractors
Content-Type: application/json
Accusoft-Affinity-Token: ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM=

{
 "input": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "formType": "acroform"
 }
}

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "fileId": "ek5Zb123oYHSUEVx1bUrVQ",
 "formType": "acroform"
 },
 "processId": "ElkNzWtrUJp4rXI5YnLUgw",
 "state": "processing",
 "percentComplete": 0,
 "expirationDateTime": "2016-12-17T20:38:39.796Z",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

GET /v2/formExtractors/{processId}
Gets the status and final output of a form extractor.

Request

URL Parameters

Parameter Description

{processId} The processId which identifies the form extractor process.

Request Headers

Name Description

Accusoft-Affinity-Token The affinityToken of the form extraction process. Required when server clustering is enabled.

Successful Response

Response Body

JSON with metadata about the form extractor process and the final output, if available. You can check on the status of the form extraction process with additional GET
requests.

input (Object) Input we accepted to create the form extraction process.
processId (String) Unique id for this form extractor process.
affinityToken (String) Affinity token for this form extractor. Present when clustering is enabled.
state (String) State of extracting form field data:

"processing" - The server is extracting form field data.
"complete" - All form field data has been extracted.

PrizmDoc Viewer v13.17 1053

©2021 My Company. All Rights Reserved.

"complete" - All form field data has been extracted.
"error" - There was a problem extracting form field data.

percentComplete (Integer) Percentage of form extraction which has completed (from 0 to 100).
expirationDateTime (String) Currently planned date and time when the form extractor resource will expire and no longer be available. This time may be
extended if we have need to keep using the data. Format is [RFC 3339 Internet Date/Time profile of ISO 8601], e.g. "2016-11-05T08:15:30.494Z".
errorCode (String) Descriptive error code. Present when state is "error".
errorDetails (Object) Additional error details, if any. May be present when errorCode is present.
output (Object) Present when state is "complete":

acroform (Object) Present when input.formType is "acroform". See "acroform" Output below for details.
rasterForm (Object) Present when input.formType is "rasterForm". See "rasterForm" Output below for details.

Error Responses

Status Code JSON errorCode Description

400 "MissingInput" Can occur when clustering is enabled and an Accusoft-Affinity-Token request header was not provided.

404 No form extractor could be found for the given {processId}.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Request

GET /v2/formExtractors/gLoltqCVnRKzXz2QFNptqw
Accusoft-Affinity-Token: D+Rmn9kB4FrLfrHoNL2bag6WpuNn2ox2qhT2GbLdf9A=

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "input": {
 "fileId": "-eo_zmq3qmPS0WKZlP_Lug",
 "formType": "acroform"
 },
 "output": {
 "acroform": {
 "pages": [
 {
 "page": 1,
 "height": 792,
 "width": 612,
 "fields": [
 {
 "fieldType": "Text",
 "name": "email",
 "required": true,
 "readOnly": "true",
 "tabOrder": 0,
 "appearance": {
 "textColor": "0 g",
 "font": "Helvetica"
 },
 "boundingBox": {
 "lowerLeftX": 89,
 "lowerLeftY": 646,
 "upperRightX": 239,
 "upperRightY": 668
 },
 "options": {
 "multiline": false,
 "maxLen": -1
 },
 "format": {
 "formatCategory": "None"
 }
 },
 {
 "fieldType": "Text",
 "name": "fullName",
 "required": false,
 "readOnly": "false",
 "tabOrder": 1,
 "appearance": {
 "textColor": "0 g",
 "font": "Helvetica"
 },
 "boundingBox": {

PrizmDoc Viewer v13.17 1054

©2021 My Company. All Rights Reserved.

 "lowerLeftX": 89,
 "lowerLeftY": 676,
 "upperRightX": 239,
 "upperRightY": 698
 },
 "options": {
 "multiline": false,
 "maxLen": -1
 },
 "format": {
 "formatCategory": "None"
 }
 }
]
 }
]
 }
 },
 "expirationDateTime": "2016-10-11T03:30:33.166Z",
 "percentComplete": 100,
 "processId": "gLoltqCVnRKzXz2QFNptqw",
 "state": "complete",
 "affinityToken": "D+Rmn9kB4FrLfrHoNL2bag6WpuNn2ox2qhT2GbLdf9A="
}

"acroform" Output

The output.acroform object will conform to the following. All properties are always present unless otherwise noted:

pages[] (Array of Objects) Pages in the document which contains acroform fields. Array will be empty if document does not contain any acroform fields. Each
item will contain:

page (Integer) One-indexed page number.
height (Number) Page height in points.
width (Number) Page width in points.
fields[] (Array of Objects) Acroform fields in the current page. Items may contain:

fieldType (String) Field type. Will be one of the following:
"Text" - Text field
"Button" - Push button, check box, or radio button:

push button when options.pushButton is true
check box when options.pushButton and options.radio are both false
radio button when options.radio is true

"Signature" - Signature field
name (String) Unique field or radio button group name.
required (Boolean) Indicates whether or not this field is required for the form to be considered complete.
readOnly (Boolean) Indicates whether or not this field is read only inside the form.
tabOrder (Integer) Tab order of the field within the document.
boundingBox (Object) Position and size of this field. Object will contain:

lowerLeftX (Number) Distance in points from the left edge of the page to the left side of this field.
lowerLeftY (Number) Distance in points from the bottom edge of the page to the bottom edge of this field.
upperRightX (Number) Distance in points from the left edge of the page to the right edge of this field.
upperRightY (Number) Distance in points from the bottom edge of the page to the top edge of this field.

appearance (Object) Field appearance details:
textColor (String) Text fill color. Not always present.
font (String) Font name to use for this field. Not always present.

format (Object) Field formatting details:
formatCategory (String) Will be one of the following:

"None" - Indicates there are no additional formatOptions for this field.
"Date" - For text fields, requires the field value to be a date.

formatOptions Additional options for the given formatCategory, if any:
When formatCategory is "Date": (String) Date format string to use when formatting the date value for display.

options (Object) Additional field options, present for some field types:
When fieldType is "Text":

multiline (Boolean) Indicates whether or not this is a multi-line text field.
maxLen (Integer) Indicates the maximum number of characters this form field accepts, or -1 if there is no limit.

When fieldType is "Button":
pushButton (Boolean) true if this field is a push button, false otherwise.
radio (Boolean) true if this field is a radio button, false otherwise.
When both pushButton and radio are false, this field is a check box.

When fieldType is "Button" and pushButton is false:
buttonOnValue (String) Indicates the form value to use when this radio button or checkbox is selected/checked.
buttonOffValue (String) Indicates the form value to use when this radio button or checkbox is not selected/checked. Value will
always be "Off".
buttonValue (String) Indicates whether or not this radio button or checkbox should be initially selected/checked. When the value
matches buttonOnValue, then this radio button or checkbox should be initially selected/checked. Otherwise (when the value is
"Off"), this radio button or checkbox should not be initially selected/checked.

PrizmDoc Viewer v13.17 1055

©2021 My Company. All Rights Reserved.

Fill Color Strings

A string of one or more numbers followed by an operator indicating what the numbers represent:

Grayscale value (when string ends in "g"): A single number between 0 and 1 followed by "g" represents the amount of white which forms a grayscale color
value. For example:

"0 g" - black
"0.5 g" - 50% gray
"1 g" - white

RGB value (when string ends in "rg"): Three numbers between 0 and 1 followed by "rg" represent the the amount of red, green, and blue light which are
additively mixed to form the final color. For example:

"1 0 0 rg" - red
"1 1 0 rg" - yellow
"0.5 0.25 0.75 rg" - 50% red, 25% blue, 75% green

CMYK (when string ends in "k"): Four numbers between 0 and 1 followed by "k" represent the amount of cyan, magenta, yellow, and black which should be
subtractively mixed to form the final color. For example:

"0 0 0 1 k" - black
"1 1 1 0 k" - black
"1 1 1 1 k" - black
"1 0 0 0 k" - cyan
"0.25 0.88 0.2 0.16 k" - 25% cyan, 88% magenta, 20% yellow, 16% black

Date Format Strings

Date format strings use the following special substitution patterns:

yy - 2-digit year (e.g. 16 for the year 2016)
yyyy - 4-digit year (e.g. 2016)
m - Month number with no zero padding (e.g. 7 for July)
mm - Month number zero-padded to always be two characters long (e.g. 07 for July)
mmm - Abbreviated month name (e.g. Jan)
mmmm - Full month name (e.g. January)
d - Day of the month with no zero padding (e.g. 4 for the fourth day of the month)
dd - Day of the month zero-padded to always be two characters (e.g. 04 for the fourth day of the month)
ddd - Abbreviated day of the week (e.g. Sun)
dddd - Full name for the day of the week (e.g. Sunday)
h - Hour number in 12-hour time with no zero padding (e.g. 2 for 2 o'clock)
hh - Hour number in 12-hour time zero-padded to always be two characters (e.g. 02 for 2 o'clock)
H - Hour number in 24-hour time with no zero padding (e.g. 13 for the 1:00 pm hour)
HH - Hour number in 24-hour time zero-padded to always be two characters (e.g. 02 for the 2:00 am hour)
M - Minute without zero padding
MM - Minute, zero-padded to always be two digits
s - Second without zero-padding
ss - Second, zero-padded to always be two digits
z - Offset from UTC (e.g. -0400)
j - Abbreviated Japanese era and year (e.g. H28 for the year 2016).
jj - Full Japanese era and year (e.g. 平成28 for the year 2016).
jjj - Japanese era year without specifying the era (e.g. 28 for the year 2016).

All other characters are considered literal punctuation for the format string. The special characters used above may be used literally by escaping them with a backslash.

"rasterForm" Output

The output.rasterForm object will conform to the following. All properties are always present unless otherwise noted:

pages[] (Array of Objects) Information about each page in the raster document. Each item will contain:
page (Integer) One-indexed page number.
height (Number) Page height in pixels.
width (Number) Page width in pixels.
fields[] (Array of Objects) Fields detected in the current page. Array will be empty if no fields were detected. Items will contain:

name (String) Unique name we have automatically assigned to this field in the document (e.g. "field5").
fieldType (String) Field type. Will be one of the following:

"Text" - Text field
"CheckBox" - Check box

confidence (Number) Our confidence in the correct detection of this field using a scale of 0 (no confidence) to 100 (complete confidence).
boundingBox (Object) Position and size of this field. Object will contain:

x (Number) Distance in pixels from the left edge of the page to the left side of this field.
y (Number) Distance in pixels from the top edge of the page to the top edge of this field.
width (Number) Distance in pixels from the left edge of this field (x) to the right edge of this field.
height (Number) Distance in pixels from the top edge of this field (y) to the bottom edge of this field.

tables[] (Array of Objects) Tables detected in the current page. Array will be empty if no tables were detected. Items will contain:
numOfColumns (Integer) Number of columns in the detected table.
numOfRows (Integer) Number of rows in the detected table.
fields[] (Array of Objects) Fields detected in the current table. Items will contain:

PrizmDoc Viewer v13.17 1056

©2021 My Company. All Rights Reserved.

fields[] (Array of Objects) Fields detected in the current table. Items will contain:
name (String) Unique name we have automatically assigned to this field in the document (e.g. "field5").
fieldType (String) Field type. Will be one of the following:

"Text" - Text field
"CheckBox" - Check box

confidence (Number) Our confidence in the correct detection of this field using a scale of 0 (no confidence) to 100 (complete
confidence).
boundingBox (Object) Position and size of this field. Object will contain:

x (Number) Distance in pixels from the left edge of the page to the left side of this field.
y (Number) Distance in pixels from the top edge of the page to the top edge of this field.
width (Number) Distance in pixels from the left edge of this field (x) to the right edge of this field.
height (Number) Distance in pixels from the top edge of this field (y) to the bottom edge of this field.

HTML5 Viewing

Introduction
The HTML5 viewing REST API is used by PAS and our viewer. It is unusual for your application to need to use this REST API.

Available URLs

URL Description

GET /PCCIS/V1/Document/q/Attributes Gets a page count for the source document of a viewing session.

GET /PCCIS/V1/Page/q/{PageNumber}/Attributes Gets metadata for a page of the source document of a viewing session.

GET /PCCIS/V1/Page/q/{PageNumber} Gets SVG or an image for a page of the source document of a viewing session.

GET /PCCIS/V1/Page/q/{PageNumber}/Tile/{x}/{y}/{width}/{height} Gets a "tile" image, a part of a page, for a page of the source document of a viewing session.

GET /PCCIS/V1/Page/q/{PageNumber}/{Width}x{Height} Gets a thumbnail image for a page of the source document of a viewing session.

GET /PCCIS/V1/Document/q/{PageNumberBegin}-{PageNumberEnd}/Text Gets currently-available text and text metadata for a range of pages for the source document of a viewing session.

GET /v2/viewingSessions/{viewingSessionId}/revisionData Gets objects which describe known changes between the two documents used as input to a comparison viewing session.

Deprecated URLs

URL Description

GET /PCCIS/V1/License/ClientViewer Deprecated.

GET /PCCIS/V1/Document/q/Attributes?DocumentID=[e,u]{ViewingSessionId}&DesiredPageCountConfidence=
{DesiredPageCountConfidence}
Gets a page count for the source document of a viewing session.

Request

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

DesiredPageCountConfidence An integer from 0 and 100 inclusive which specifies the minimum required confidence in the page count before a value is returned. A value of 50 or lower is
more likely to result in an estimated page count being returned. Default is 100, requiring that the actual page count be returned.

Successful Response

JSON metadata about the document page count.

pageCount (Integer) - Currently determined number of pages in the document.
pageCountConfidence (Integer) - An integer from 0 to 100 indicating the confidence that pageCount is accurate. When less than 100, pageCount is still being determined and the
current value should be considered an estimate. You can repeat the request to see if a more accurate pageCount is available. When 100, the pageCount has been finalized and the value
should be considered the actual number of pages in the document.

Example

GET prizmdoc_server_base_url/PCCIS/V1/Document/q/Attributes?DocumentID=uXYZ...

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "pageCount": 3,
 "pageCountConfidence": 100
}

GET /PCCIS/V1/Page/q/{PageNumber}/Attributes?DocumentID=[e,u]{viewingSessionId}&ContentType=
{ContentType}

PrizmDoc Viewer v13.17 1057

©2021 My Company. All Rights Reserved.

Gets metadata for a page of the source document of a viewing session.

Request

URL Parameters

Parameter Description

{PageNumber} Zero-indexed page number to get information about.

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

ContentType Used to indicate whether you want attributes for SVG page content or raster page content. Use svg (or svga or svgb) to get page attributes for SVG content or png to get page
attributes for raster content. Default is svg.

Successful Response

JSON metadata about the page.

version (String) - Deprecated. Value will always be "7.1".
contentType (String) - Comma-separated types of content available, hard-coded to a specific set of values depending on the requested ContentType:

Will be "jpeg,png,svg" when requested ContentType is svg (or svga, or svgb)
Will be "jpeg,png" when requested ContentType is png

imageBitDepth (Integer) - Bit depth of raster content. Only relevant when requested ContentType is png. When requested ContentType is svg (or svga or svgb), the value will be hard-
coded to 16.
imageHeight (Integer) - Height of the page:

in pixels when requested ContentType is png
in unspecified units when requested ContentType is svg (or svga or svgb)

imageWidth (Integer) - Width of the page:
in pixels when requested ContentType is png
in unspecified units when requested ContentType is svg (or svga or svgb)

imageXResolution (Integer) - Relative horizontal resolution of raster content when requested ContentType is png (like pixels per inch except that the unit is unspecified and will not
necessarily be inches). When requested ContentType is svg (or svga or svgb), the value will be hard-coded to 90.
imageYResolution (Integer) - Relative vertical resolution of raster content when requested ContentType is png (like pixels per inch except that the unit is unspecified and will not
necessarily be inches). When requested ContentType is svg (or svga or svgb), the value will be hard-coded to 90.

Examples

Get attributes for the SVG form page 0. The two most-valuable properties are "imageHeight" and "imageWidth" which indicate the width and height of the SVG page in unspecified units. The
rest are hard-coded values:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "version": "7.1",
 "contentType": "jpeg,png,svg",
 "imageBitDepth": 16,
 "imageHeight": 842,
 "imageWidth": 595,
 "imageXResolution": 90,
 "imageYResolution": 90
}

Get attributes for the raster form of page 0:

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0/Attributes?DocumentID=uXYZ...?ContentType=png

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "version": "7.1",
 "contentType": "jpeg,png",
 "imageBitDepth": 8,
 "imageHeight": 1755,
 "imageWidth": 1240,
 "imageXResolution": 150,
 "imageYResolution": 150
}

GET /PCCIS/V1/Page/q/{PageNumber}?DocumentID=[e,u]{ViewingSessionId}&Scale={Scale}&ContentType=
{ContentType}
Gets SVG or an image for a page of the source document of a viewing session.

Request

Request Headers

PrizmDoc Viewer v13.17 1058

©2021 My Company. All Rights Reserved.

Name Description

Accept-

Encoding

Specify gzip to allow gzip compression of the response. Gzip compression will only be applied to SVG responses (it is not used for PNG and JPEG responses) and it may be skipped if
the SVG is small. If a response is compressed it will contain a Content-Encoding: gzip response header. Because all modern browsers support Content-Encoding: gzip
responses, we recommend you always provide an Accept-Encoding: gzip request header.

URL Parameters

Parameter Description

{PageNumber} Zero-indexed page number whose content should be returned.

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

ContentType Type of content to be returned. Default is png. Possible values:

svgb - Fully-optimized SVG (uses a unicode inline font to store glyph definitions). Smallest possible SVG, but may not be compatible with some browsers. Recommended
whenever possible.
svga - Partially-optimized SVG (uses a non-unicode inline font to store only the most frequently-occurring glyph definitions). May not be compatible with some browsers.
Use only if svgb content is not compatible with the target browser.
NOTE: PrizmDoc ViewerControl falls back to svga Content-Type if svgb content is not compatible with the browser.
svg - Unoptimized SVG (no font is used; glyph definitions are expressed as SVG path operations). Broadest compatibility with browsers but typically much larger, so it
renders and scrolls much slower than svgb and svga. Not recommended. Use only as a fallback if both svgb and svga are not compatible with the target browser, or the
use of webfonts is disabled in the target browser.
NOTE: PrizmDoc ViewerControl falls back to svg Content-Type if both svgb and svga are not compatible with the browser or the use of webfonts is disabled.
png - PNG image.
jpeg - JPEG image.

Scale Scaling factor to apply when returning a PNG or JPEG image. The image will be resized by multiplying its width and height by this value. A value of 1.0 leaves the image unscaled,
values less than 1.0 make the image smaller, and values greater than 1.0 make the image larger. For example, a value of 2.0 would return an image whose width and height have
been doubled. A value of 0.5 would return an image whose width and height have been halved. Only applies when ContentType is png or jpeg, ignored otherwise. Default is
1.0 (no scaling applied).

Successful Response with Page Content

Response Headers

Name Description

Content-Type The type of content returned. Possible values:

image/svg+xml - When the request query string parameter ContentType was svg, svga, or svgb.
image/png - When the request query string parameter ContentType was png.
image/jpeg - When the request query string parameter ContentType was jpeg.

Content-Encoding May be set to gzip if the request used Accept-Encoding: gzip.

Accusoft-Data-Encrypted Indicates whether or not page content has been encrypted. true when page content is encrypted, false otherwise. See Enabling Content Encryption.

Response Body

SVG, PNG, or JPEG for the requested page.

Examples

Get page 0 as SVG

Request:

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0?DocumentID=uXYZ...&ContentType=svgb

Response:

HTTP/1.1 200 OK
Content-Type: image/svg+xml
Content-Encoding: gzip
Accusoft-Data-Encrypted: false

<svg height="842" style="font-family:qsnvcgduoqekywbefqyyjjhodpw;font-size:12px;" version="1.2" viewBox="0 0 595 842" width="595"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 ...
</svg>

Get page 0 as a PNG

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0?DocumentID=uXYZ...&ContentType=png

Response:

PrizmDoc Viewer v13.17 1059

©2021 My Company. All Rights Reserved.

HTTP/1.1 200 OK
Content-Type: image/png
Accusoft-Data-Encrypted: false

<<PNG bytes>>

Response When SVG Content is Not Available

SVG content is typically preferred but not always available. For example, if the source document is raster (such as a TIFF), then only raster page content (PNG and JPEG) will be available. It is common
for a client viewer to always try and request SVG content first. Then, once it becomes clear SVG is not available, the client viewer can fallback to only requesting PNG or JPEG page content.

For this reason, if SVG is requested but is not available, we respond with a successful HTTP 200 but with a JSON body indicating that SVG is not available. Additionally, we include raster page
attributes metadata in the JSON so that the viewer does not need to issue an additional request for page attributes.

Example

Request:

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0?DocumentID=uXYZ...&ContentType=svgb

Response when SVG is not available:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "errorCode": "SvgNotAvailable",
 "pageAttributes": {
 "version": "7.1",
 "contentType": "jpeg,png",
 "imageBitDepth": 8,
 "imageHeight": 280,
 "imageWidth": 593,
 "imageXResolution": 72,
 "imageYResolution": 72
 }
}

GET /PCCIS/V1/Page/q/{PageNumber}/Tile/{X}/{Y}/{Width}/{Height}?DocumentID=[e,u]
{ViewingSessionId}&ContentType={ContentType}&Scale={Scale}
Gets a "tile" image, a part of a page, for a page of the source document of a viewing session.

Request

URL Parameters

Parameter Description

{PageNumber} Zero-indexed page number to extract a tile from.

{X} Where the left edge of the tile should begin, expressed as the number of pixels from the left edge of the page. Must be less than the pixel width of the (scaled) page.

{Y} Where the top of the tile should begin, expressed as the number of pixels from the top edge of the page. Must be less than the pixel height of the (scaled) page.

{Width} Width of the tile in pixels, extended right from {X}. If the right edge of the tile extends beyond the right edge of the page then the tile will be trimmed so that only actual page
content is returned. You can safely use a {Width} value that goes beyond the right edge of the page, but note that the actual width of the returned image may be different than
what you requested.

{Height} Height of the tile in pixels, extended down from {Y}. If the bottom edge of the tile extends beyond the bottom edge of the page then the tile will be trimmed so that only actual
page content is returned. You can safely use a {Height} value that goes beyond the bottom edge of the page, but note that the actual height of the returned image may be
different than what you requested.

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

ContentType Type of image to be returned. Default is png. Possible values:

png

jpeg - Not recommended if you are requesting multiple tiles to be "stitched" together due to alignment artifacts that will occur at tile boundaries.

Scale Scaling factor to apply to the entire page before cropping to the specified tile region. The full page image will be resized by multiplying its width and height by this value. A value of
1.0 leaves the page unscaled, values less than 1.0 make the page smaller, and values greater than 1.0 make the page larger. Default is 1.0 (no scaling applied).

Successful Response

Response Headers

PrizmDoc Viewer v13.17 1060

©2021 My Company. All Rights Reserved.

Name Description

Content-Type The type of content returned. Possible values:

image/png - When the request query string parameter ContentType was png.
image/jpeg - When the request query string parameter ContentType was jpeg.

Accusoft-Data-Encrypted Indicates whether or not page content has been encrypted. true when page content is encrypted, false otherwise. See Enabling Content Encryption.

Response Body

Tile image.

Example

Request a 512x512 PNG tile for page 0 starting at x-position 1024 (from left) and y-position 1536 (from top):

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0/Tile/1024/1536/512/512?DocumentID=uXYZ...

HTTP/1.1 200 OK
Content-Type: image/png

<<PNG bytes>>

GET /PCCIS/V1/Page/q/{PageNumber}/{Width}x{Height}?DocumentID=[e,u]{ViewingSessionId}&ContentType=
{ContentType}
Gets a thumbnail image for a page of the source document of a viewing session.

The page will be resized, maintaining aspect ratio, to fit within the {Width} and {Height} specified in the URL.

Request

URL Parameters

Parameter Description

{PageNumber} Zero-indexed page number to create a thumbnail image for.

{Width} Maximum allowed width, in pixels, of the thumbnail. Must be an integer greater than 0.

{Height} Maximum allowed height, in pixels, of the thumbnail. Must be an integer greater than 0.

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

ContentType Type of image to be returned. Default is png. Possible values:

png

jpeg

Successful Response

Response Headers

Name Description

Content-Type The type of content returned. Possible values:

image/png - When the request query string parameter ContentType was png.
image/jpeg - When the request query string parameter ContentType was jpeg.

Response Body

Thumbnail image.

Example

Request a thumbnail image of page 0 that fits within a 200x200 square:

GET prizmdoc_server_base_url/PCCIS/V1/Page/q/0/200x200?DocumentID=uXYZ...

HTTP/1.1 200 OK
Content-Type: image/png

<<PNG bytes>>

GET /PCCIS/V1/Document/q/{PageNumberBegin}-{PageNumberEnd}/Text?DocumentID=[e,u]{ViewingSessionId}

PrizmDoc Viewer v13.17 1061

©2021 My Company. All Rights Reserved.

Gets currently-available text and text metadata for a range of pages for the source document of a viewing session.

NOTE: This URL is designed to support our viewer. If you want to simply programmatically extract text from a document, use the Search Contexts API instead, specifically POST
/v2/searchContexts and GET /v2/searchContexts/{contextId}/records.

Request

URL Parameters

Parameter Description

{PageNumberBegin} Zero-indexed page number of the first page in the range.

{PageNumberEnd} Zero-indexed page number of the last page in the range.

Query String Parameters

Parameter Description

DocumentID Required. The viewingSessionId which identifies the viewing session, prefixed with u if in unencoded plaintext form or prefixed with e if base-64 encoded.

Request Headers

Name Description

Accept-

Encoding

Specify gzip to allow gzip compression of the response. Gzip compression may be skipped if the overall response size is small. If a response is compressed it will contain a Content-
Encoding: gzip response header. Because all modern browsers support Content-Encoding: gzip responses, we recommend you always provide an Accept-Encoding:
gzip request header.

Successful Response

Response Headers

Name Description

Content-Encoding May be set to gzip if the request used Accept-Encoding: gzip.

Accusoft-Data-Encrypted Indicates whether or not page content has been encrypted. true when page content is encrypted, false otherwise. See Enabling Content Encryption.

Response Body

JSON containing page text and text positioning metadata.

pages[] (Array of Objects) Always present in case of success. Optional in case of failure. Will contain an array of objects, each containing text data for a page, for pages where text has
been successfully extracted. Note, however, that text extraction takes time and text may not yet be available for the range of pages requested. If the array is empty or contains fewer items than
the number of pages included in your page range, then the text for the requested page range has not been fully extracted. Repeating the request should eventually produce an array with the
expected number of items. Note also that the order of the records is not guaranteed; you must use the number property of each returned item to know its page index. Items may contain:

number (Integer) Always present. Page index (zero-indexed page number). The property is named simply number for backwards compatibility reasons.
text (String) Page text.
errorCode (Integer) When text cannot be extracted for this page, present with a value of 1.
errorDescription (String) When text cannot be extracted for this page, a descriptive error message explaining why (such as "No page data was found.") or an empty string if
the cause of the error is unknown.
width (Number) Page width.
height (Number) Page height.
rectangles[] (Array of Arrays) Bounding boxes for individual glyphs on the page. Each item will contain four numbers:

[0] (Number) Distance from the left edge of the page to the left edge of the glyph bounding box.
[1] (Number) Distance from the top edge of the page to the top edge of the glyph bounding box.
[2] (Number) Width of the glyph bounding box.
[3] (Number) Height of the glyph bounding box.

markup[] (Array of Objects) Objects describing hyperlinks, if any. Each item may contain:
changeType (String) Value will always be "Add".
markType (String) Value will always be "DocumentHyperlink".
properties (Object) Properties of the hyperlink.

href (String) Destination URL.
rectangle (Object) Dimensions of the hyperlink bounding box on the page.

x (Number) Distance from the left edge of the page to the left edge of the hyperlink bounding box.
y (Number) Distance from the top edge of the page to the top edge of the hyperlink bounding box.
width (Number) Width of the hyperlink bounding box.
height (Number) Height of the hyperlink bounding box.

borderThickness (Number) Border thickness which should be applied.
borderHorizontalRadius (Number) Horizontal border radius which should be applied.
borderVerticalRadius (Number) Vertical border radius which should be applied.
borderOpacity (Integer) Border opacity which should be applied. Value will be from 0 to 255, where 0 represents fully transparent and 255 represents fully opaque.

errorCode (Integer) Might be present in case of failure and missing pages[] object. When text cannot be extracted for this page, present with a value of 1.
errorDescription (String) Might be present in case of failure and missing pages[] object. When text cannot be extracted for this page, a descriptive error message explaining why
(such as "No page data was found.") or an empty string if the cause of the error is unknown.

Examples

Request text for pages 0 through 9:

GET prizmdoc_server_base_url/PCCIS/V1/Document/q/0-9/Text?DocumentID=xXYZ...

Response when text is not yet available:

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

PrizmDoc Viewer v13.17 1062

©2021 My Company. All Rights Reserved.

Accusoft-Data-Encrypted: false

{
 "pages": []
}

Response when text is available (where ... indicates that data has been omitted for brevity):

HTTP/1.1 200 OK
Content-Type: application/json

{
 "pages": [
 {
 "number": 0,
 "text": "the page text",
 "width": 648.00,
 "height": 828.00,
 "rectangles": [
 [
 202.25,
 135.05,
 27.00,
 73.26
],
 [
 229.25,
 135.05,
 30.00,
 73.26
],
 ...
]
 "markup": [
 {
 "changeType": "Add",
 "markType": "DocumentHyperlink",
 "properties": {
 "rectangle": {
 "height": 14.71,
 "width": 86.20,
 "y": 73.50,
 "x": 71.31
 },
 "borderHorizontalRadius": 0.0,
 "borderVerticalRadius": 0.0,
 "borderThickness": 0.0,
 "href": "http://www.google.com/",
 "borderOpacity": 255
 }
 },
 ...
]
 },
 ...
]
}

GET /v2/viewingSessions/{viewingSessionId}/revisionData?limit={limit}&continueToken={continueToken}
Gets objects which describe known changes between the two documents used as input to a comparison viewing session.

This URL is designed to give you an array of changes in chunks as the individual changes become available. Each GET request will return the currently-known changes up to a limit (default is 100). If a
response contains a continueToken, it indicates that additional changes may be available and that you should issue another GET request using that continueToken as a query string parameter
to skip the changes you have already received. As long as a response contains a continueToken, use it to issue a subsequent GET for more changes. When you encounter a response which does
not have a continueToken, you have received all of the changes and no more GET requests are necessary.

In order to optimize the number of network requests you make, any response which contains a continueToken will also contain a continueAfter value with a recommended number of
milliseconds you should wait before sending the next GET request.

Request

URL Parameters

Parameter Description

{limit} The maximum number of changes to return for this HTTP request. Must be an integer greater than 0. Default is 100.

{continueToken} Used to continue getting changes from the point where a previous GET request left off.

Request Headers

Name Description

Accept-Encoding Set to gzip to get a gzipped response body.

Successful Response

Response Headers

Name Description

Content-Encoding Will be set to gzip if the request used Accept-Encoding: gzip

PrizmDoc Viewer v13.17 1063

©2021 My Company. All Rights Reserved.

Response Body

JSON with any available changes.

changes (Array of Objects) Always present. Array of newly-available changes, objects which each describe a difference between the two documents being compared. If no new changes are
available, this array will be empty.

id (Integer) Unique number assigned to this change.
endPageIndex (Integer) Zero-indexed page number where this change ends in the document.
type (String) Type of the change. Will be one of the following:

"contentInserted"
"contentDeleted"
"propertyChanged"
"paragraphNumberChanged"
"paragraphPropertyChanged"
"tablePropertyChanged"
"sectionPropertyChanged"
"styleDefinitionChanged"
"contentMovedFrom"
"contentMovedTo"
"tableCellInserted"
"tableCellDeleted"
"tableCellsMerged"

continueToken (String) When present, indicates that more changes may be available. An additional GET request should be made for more changes using this value as the continueToken
query string parameter. When not present, indicates that all changes have been obtained and no further changes will be available.
continueAfter (Number) Recommended milliseconds to delay before issuing the next GET request for more changes.

Error Responses

Status Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be found.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

580 "InternalError" The server encountered an internal error when handling the request.

Example

Here is an example sequence of requests and responses illustrating how you would acquire the full set of changes for a comparison viewing session (for brevity, the total number of changes in this
example is small).

You would start with an initial GET:

GET
prizmdoc_server_base_url/v2/viewingSessions/luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lkBs8mk63aArufxZ9jaXZ0ykG5LsMlWorI6u3Ui6YApkw/revisionData

Accept-Encoding: gzip

HTTP/1.1 200 OK
Content-Type: application/json
Content-Encoding: gzip

{
 "changes": [],
 "continueToken": "luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lmZwRo30ojTLjaT0J2D2f8D",
 "continueAfter": 500
}

In this case, the initial response did not return any changes at all (the changes array is empty), but the presence of a continueToken indicates they may simply not have been available yet. We
should issue another GET request after waiting 500 milliseconds (the amount of time recommended by continueAfter).

So, half a second later, we issue a follow-up request with the continueToken passed in as a query string parameter:

GET
prizmdoc_server_base_url/v2/viewingSessions/luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lkBs8mk63aArufxZ9jaXZ0ykG5LsMlWorI6u3Ui6YApkw/revisionData?
continueToken=luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lmZwRo30ojTLjaT0J2D2f8D
Accept-Encoding: gzip

HTTP/1.1 200 OK
Content-Type: application/json
Content-Encoding: gzip

{
 "changes": [
 {
 "id": 0,
 "endPageIndex": 0,
 "type": "contentInserted"
 },
 {
 "id": 1,
 "endPageIndex": 0,
 "type": "contentDeleted"
 }
],
 "continueToken": "luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lklhqP2L79Yero0nM9aoZ9r",
 "continueAfter": 500
}

This time we receive two changes. The presence of a new continueToken tells us there may be more, so we submit another request with the new continueToken.

PrizmDoc Viewer v13.17 1064

©2021 My Company. All Rights Reserved.

Notice in the next response that the changes which have already been given to us are not repeated:

GET
prizmdoc_server_base_url/v2/viewingSessions/luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lkBs8mk63aArufxZ9jaXZ0ykG5LsMlWorI6u3Ui6YApkw/revisionData?
continueToken=luMJZGIeGQr20veYl5JQwsv77iIvaFsvHAW4x1L88lklhqP2L79Yero0nM9aoZ9r
Accept-Encoding: gzip

HTTP/1.1 200 OK
Content-Type: application/json
Content-Encoding: gzip

{
 "changes": [
 {
 "id": 2,
 "endPageIndex": 5,
 "type": "styleChanged"
 }
]
}

This time we get a new change, and the lack of a continueToken tells us we have received all of the changes, so there are no more GET requests to make.

GET /PCCIS/V1/License/ClientViewer
NOTE: This URL has been deprecated and will be removed from the public API in a future release. It no longer functions and returns HTTP 500 Internal Server Error.

Viewing Sessions

Introduction
The PrizmDoc Server viewing sessions REST API is used by PAS and is maintained for backwards compatibility. It should
not be used for new application development. Please use the newer PAS viewing sessions REST API instead.

Available URLs

URL Description

POST /PCCIS/V1/ViewingSession Creates a new viewing session.

GET /PCCIS/V1/ViewingSession/u{viewingSessionId} Gets information about a viewing session.

PUT /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile Uploads the source document to be used for a
viewing session.

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/original When viewing a comparison of two source
documents, uploads the first of the two source
documents.

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/revised When viewing a comparison of two source
documents, uploads the second of the two source
documents.

PUT /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceRef Attach an existing work file (or, when doing
comparison, two work files) as the source document
to be used for a viewing session.

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile Downloads the source document in use for a viewing
session.

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/original When viewing a comparison of two documents,
downloads the first of the two source documents.

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/revised When viewing a comparison of two documents,
downloads the second of the two source documents.

GET /v2/viewingSessions/{viewingSessionId}/restrictions Returns information about any restrictions enforced
by the server for the current viewing session.

PrizmDoc Viewer v13.17 1065

©2021 My Company. All Rights Reserved.

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/FileId Gets the work file id for the source document in use
for a viewing session.

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionStarted

Ensures PrizmDoc Server has started the process of
converting a viewing session's source document to
HTML.

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionStopped

Invalidates a viewing session so that it can no longer
be used.

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionErrored

Marks a viewing session as errored so that it can no
longer be used.

POST /PCCIS/V1/ViewingSession/u{viewingSessionId}/Replacement Replaces a viewing session with new parameters.

DELETE /PCCIS/V1/ViewingSession/u{viewingSessionId} Deletes a viewing session.

POST /PCCIS/V1/ViewingSession
Creates a new viewing session. At a high level, a viewing session takes a source document as input and produces HTML page content
and document text as output.

Request

Request Headers

Name Description

Content-

Type

Should be application/json

Accusoft-

Affinity-

Hint

Some sort of string value which uniquely identifies the source document you intend to use for the viewing session.
Used to ensure that two viewing sessions created with the same Accusoft-Affinity-Hint are very likely to be
handled by the same server, increasing the chances that cached output is reused for viewing sessions of the same
source document. See Optimizing Cache Performance for Cluster Mode.

Accusoft-

Affinity-

Token

When you intend to use an existing work file as the source document via a subsequent call to PUT /SourceRef, the
affinityToken of the existing work file. Required only when you intend to use an existing work file as the
source document.

Request Body

minSecondsAvailable (Integer) Minimum number of seconds the viewing session will exist or 0 to use the default value
specified by product configuration. This property is only really useful if you explicitly set serverCaching to "none". When
serverCaching is "full", the only allowed value for this property is 0. Default is 0.
documentSource (String) Specifies how the source document will be provided. Default is "api". Possible values:

"api" - The source document will be provided by the calling application in a subsequent API request.
"http" - PrizmDoc Server will download the source document from a URL specified by externalId.
"file" - PrizmDoc Server will use a local file as the source document using the file path specified by externalId. >
NOTE: By default, "file" is not enabled as a valid documentSource. Enable "file" by adding it to the
viewing.sessionConstraints.documentSource.allowedValues array in Central Configuration.

externalId (String) Required when documentSource is "http" or "file". Indicates where the source document
should be acquired from:

When documentSource is "http": A URL where the source document will be downloaded from.
When documentSource is "file": A path to a file on the server which will be used as the source document.

documentExtension (String) - File extension of the source document (like "docx", "html", or "csv") used to indicate the
source document file format. Often unnecessary. Only required when 1) the documentSource is "http" or "file" but the
externalId containing the URL or file path did not end with a recognizable file extension and 2) the source document file
format could not be automatically detected (this most-commonly occurs for text-based file formats, such as txt, csv, and

URL Description

PrizmDoc Viewer v13.17 1066

©2021 My Company. All Rights Reserved.

format could not be automatically detected (this most-commonly occurs for text-based file formats, such as txt, csv, and
html). > NOTE: If Format Detection is disabled, then the source document format will never be automatically detected.
password (String) Password to use when opening a password-protected source document.
tenantId (String) Custom, arbitrary tenant id to be associated with the viewing session. PrizmDoc Server has no concept of
tenants; if provided, this metadata is only for use by the calling application.
origin (Object) Custom, arbitrary set of key/value string pairs to be associated with the viewing session. Intended for
associating end user origin data (like IP address or hostname), but you can use any set of key/value strings you want.
render (Object) Options which control how browser content is rendered:

html5 (Object) Options when the output format is HTML:
alwaysUseRaster (Boolean) Required. Determines whether only raster data, instead of SVG, should be
created for the viewing session. With modern browsers, it is rare to only want raster. This is typically set to
false.
svgMaxImageSize (Number) The maximum edge length, in pixels, that is allowable for any image when
creating SVG. For example, a value of 8000 would ensure that any images in a PDF whose width or height were
greater than 8000 pixels would be down-sampled before the image was added to the final SVG. Default is
configurable, but is typically 8000. To disable this optimization, use a value of 0.
vectorTolerance (Number) For CAD documents, the amount of path simplification that is allowable when
creating the SVG. Path simplification will merge points which are "close together" to create optimized SVG. You
can think of this value as defining what "close together" means. Higher values introduce more simplification but
also more distortion. Default is configurable, but is typically 0.3. Cannot be greater than 10.0. To disable this
optimization, use a value of 0.
rasterResolution (Integer) Deprecated. Providing this value no longer has any effect.

flash (Object) Deprecated. We no longer produce Flash content. Providing these options no longer has any effect.
optimizationLevel (Integer) Deprecated. Providing this value no longer has any effect.

watermarks (Array of Objects) Objects describing watermarks which should be applied to page content. Each item must be
an object which conforms to the following:

text watermark:
type: "text" (String) Required. Must be set to "text" to indicate the object represents a text watermark.
text (String) Actual text of the watermark. Within the string, you can use the following special tokens to insert
dynamic values:

{{pageNumber}} - Will be replaced with the current page number.
{{pageCount}} - Will be replaced with the total number of pages.

opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely transparent. Default
is 1.0.
color (String) Text color. Can be any valid CSS color name (like "red") or hex value (like "#FF0000"). Default
is "black".
fontFamily (String) Font family for the text. Default for SVG output is to use the browser's default font. Default
for raster output is unspecified.
fontSize (String) Font size specified in points (like "12pt"). Default for SVG output is to use the browser's
default font size. Default for raster output is unspecified.
fontWeight (String) Determines the font weight. Possible values:

"normal" (default)
"bold"

fontStyle (String) Determines the font style. Possible values:
"normal" (default)
"italic"

textDecoration (String) Possible values:
"none" (default)
"underlined"

horizontalAlign (String) Determines the horizontal position of the watermark.
Default is "center". Possible values:

"left" - Text will be horizontally anchored to the left side of the page and text
will be left aligned.
"center" Text will be horizontally anchored to the center of the page and text
will be centered. (default)
"right" - Text will be horizontally anchored to the right side of the page and
text will be right aligned.

verticalAlign (String) Determines the vertical position of the watermark. Default is
"middle". Possible values:

"top" - Text will be vertically anchored to the top of the page.

PrizmDoc Viewer v13.17 1067

©2021 My Company. All Rights Reserved.

"top" - Text will be vertically anchored to the top of the page.
"middle" Text will be vertically anchored to the middle of the page. (default)
"bottom" - Text will be vertically anchored to the bottom of the page.

diagonal text watermark:
type: "diagonalText" (String) Required. Must be set to "diagonalText" to indicate the object
represents a diagonal text watermark.
text (String) Actual text of the watermark. Within the string, you can use the following special tokens to insert
dynamic values:

{{pageNumber}} - Will be replaced with the current page number.
{{pageCount}} - Will be replaced with the total number of pages.

opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely transparent. Default
is 1.0.
color (String) Text color. Can be any valid CSS color name (like "red") or hex value (like "#FF0000"). Default
is "black".
fontFamily (String) Font family for the text. Default for SVG output is to use the browser's default font. Default
for raster output is unspecified.
fontSize (String) Font size specified in points (like "12pt"). Default for SVG output is to use the browser's
default font size. Default for raster output is unspecified.
fontWeight (String) Determines the font weight. Possible values:

"normal" (default)
"bold"

fontStyle (String) Determines the font style. Possible values:
"normal" (default)
"italic"

textDecoration (String) Possible values:
"none" (default)
"underlined"

slope (String) Controls the text angle. Default is "up". Possible values:
"up" - Text will start in the lower-left corner of the page and extend upwards to the upper-right corner
of the page. (default)
"down" - Text will start in the upper-left corner of the page and extend downwards to the lower-right
corner of the page.

image watermark:
type: "image" (String) Required. Must be set to "image" to indicate the object represents an image
watermark.
opacity (Number) Opacity of the watermark. 1.0 is completely opaque, 0.0 is completely transparent. Default
is 1.0.
src (String) Required. URL or work file id of a PNG image to use for this watermark. When using a URL, the URL
must be accessible from the server where PrizmDoc Server is running. > NOTE: The src MUST be a PNG. If you
use a different image format, invalid watermarks will be created.
horizontalAlign (String) Determines the horizontal position of the watermark.
Default is "center". Possible values:

"left" - Image will be horizontally anchored near the left side of the page.
"center" Image will be horizontally anchored to the center of the page.
(default)
"right" - Image will be horizontally anchored near the right side of the page.

verticalAlign (String) Determines the vertical position of the watermark. Default is
"middle". Possible values:

"top" - Image will be vertically anchored near the top of the page.
"middle" Image will be vertically anchored to the middle of the page. (default)
"bottom" - Image will be vertically anchored near the bottom of the page.

scale (Number) - Determines the relative size of the image as compared to the size of the page. Value must be
between 0.0 and 1.0. A value of 1.0 indicates the image will be scaled to the size of the page while 0.0
indicates the image will be scaled infinitesimally small and will not be rendered. Default is 0.25.
autoSize (String) When set, the image will be automatically
sized to fill the page (any value provided for scale,
horizontalAlign, and verticalAlign will be ignored).
Possible values:

"fit" - Image will be scaled to be as large as
possible while still completely fitting within the page.

PrizmDoc Viewer v13.17 1068

©2021 My Company. All Rights Reserved.

The aspect ratio of the image is maintained.
"fill" - Image will be scaled to be large enough
that the entire page is covered by the image. Some of the image may fall off the edge of the page, but
the entire page is guaranteed to be covered by some part of the image. The aspect ratio of the image is
maintained.
"stretch" - Image width and height will be independently resized so that the image width and height
are the same as the page. The aspect ratio of the image is ignored.

watermarkText (String) Deprecated. Providing this value no longer has any effect. Use watermarks instead.
pageContentEncryption (String) - Controls whether or not page content will be encrypted for the viewing session. See the
Enabling Content Encryption topic for more information about this feature. Possible values:

"default" - Product configuration will be used to determine whether or not page content will be encrypted (see
viewing.contentEncryption.enabled in the Central Configuration file).
"enabled" - Page content will be encrypted for the viewing session.
"disabled" - Page content will not be encrypted for the viewing session.

countOfInitialPages (Integer) Number of pages which should be eagerly converted, or 0 if all pages should be eagerly
converted. Default is 0.
startConverting (String) When the documentSource is "http" or "file", controls whether initial pages should be
converted as soon as the document has been acquired. Default is "none". Possible values:

"none" - Conversion will begin only after the session is explicitly started or page content or attributes are requested.
(default)
"initialPages" - Conversion will begin as soon as the source document has been acquired.

contentType (String) - Determines what kind of browser content will be eagerly pre-generated (other kinds of content may
still be generated if explicitly requested). Possible values:

"svgb" - Pre-generate fully-optimized SVG (uses a unicode inline font to store glyph definitions). Smallest possible
SVG, but may not be compatible with some browsers. Recommended whenever possible.
"svga" - Pre-generate partially-optimized SVG (uses a non-unicode inline font to store only the most frequently-
occurring glyph definitions). May not be compatible with some browsers. Use only if "svgb" content is not compatible
with the target browser.
"svg" - Pre-generate unoptimized SVG (no font is used; glyph definitions are expressed as SVG path operations).
Broadest compatibility with browsers but typically much larger, so it renders and scrolls much slower than "svgb" and
"svga". Not recommended. Use only as a fallback if both svgb and svga are not compatible with the target browser,
or the use of webfonts is disabled in the target browser.
"png" - Pre-generate raster content.

serverCaching (String) Controls whether output is kept for potential reuse by other viewing sessions. Default is "full".
Possible values:

"full" - Output will be written to disk on the server and retained for reuse by other viewing sessions created for the
same source document. Output will not be deleted until the configured viewing cache lifetime is reached (which is a full
day with an out-of-box configuration; see viewing.cacheLifetime in Central Configuration). Saves processing time
if a source document is viewed repeatedly before the cached data is deleted, but does consume more disk space.
(default)
"none" - Output will be written to disk on the server but only retained for the duration of the viewing session and
never shared with other viewing sessions. Once the viewing session expires, the output will be deleted from the disk.
Saves disk space if you know that it is unlikely a source document will ever be viewed more than once, but can result in
redundant processing if the same source document is viewed repeatedly.

serverSideSearch (String) Determines whether the server-side search feature will be available for the viewing session.
Default is "enabled". Possible values:

"enabled" - Server-side search will be available for the viewing session. (default)
"disabled" - Server-side search will not be available for the viewing session.

attachmentIndex (Integer) - Intended for use only by PrizmDoc Server when it automatically creates viewing sessions for
attachments. This is not a property your application should use. If the source document is an attachment that belongs to
another document (such as an email), the 1-based index of this attachment in the list of all attachments (e.g. 1 means it was
the first attachment, 2 means it was the second, etc.) or 0 to indicate that the source document is not an attachment. Default is
0.
attachmentDisplayName (String) - Intended for use only by PrizmDoc Server when it automatically creates viewing sessions
for attachments. This is not a property your application should use. If the source document is an attachment that belongs to
another document (such as an email), the filename of the attachment or null. Default is null.

Successful Response

PrizmDoc Viewer v13.17 1069

©2021 My Company. All Rights Reserved.

Response Body

JSON with metadata about the created viewing session.

viewingSessionId (String) Unique id for this viewing session.
affinityToken (String) Affinity token for this viewing session. Present when clustering is enabled.

Error Responses

Some error responses will have a JSON body with an errorCode and errorDetails:

Status
Code JSON errorCode Description

480 "MissingInput" A required input value was not provided. See errorDetails
in the response body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the
response body.

480 "InputNotSupportedWithServerCachineEnabled" Can occur when minSecondsAvailable is specified when
serverCaching is not set to "none". See errorDetails in
the response body.

Some error responses will include an error message in an Accusoft-Status-Message header.

Example

Request

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession
Content-Type: application/json

{
 "tenantId": "my application name",
 "externalId": "my-unique-document-name.docx",
 "render": {
 "html5": {
 "alwaysUseRaster": false
 }
 },
 "minSecondsAvailable": 1500,
 "watermarks": [
 {
 "type": "text",
 "opacity": 0.6,
 "text": "jdoe\n67.79.169.114\n11/13/2014 2:24 PM\nNOT FOR DISTRIBUTION",
 "color": "red",
 "fontFamily": "Consolas",
 "fontSize": "16pt",
 "fontWeight": "bold",
 "verticalAlign": "bottom",
 "horizontalAlign": "right"
 }
]
}

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{

PrizmDoc Viewer v13.17 1070

©2021 My Company. All Rights Reserved.

 "viewingSessionId":"GcIsIsEGbLV2_V9yy4NzmK2HB-JuLOH--
A9sZ16cla9txO0ZDBGfq1G4kKu0r_GyEps4wWCvDwn4dpnZAR76Uw"
 "affinityToken":" S2ZqtGi9vUAXBgdmM/PNNpCM4CApe9NxLIp/4QnAHlg="
}

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}
Returns the metadata associated with a valid, active viewing session. The properties returned will be those provided in the POST
request that created the viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

JSON metadata about the viewing session:

creationTime (String) A UTC-formatted time string representing the moment the viewing session was created.
minSecondsAvailable (Integer) Minimum number of seconds the viewing session will exist.
documentSource (String) Will be one of the following:

null - No value was specified in the initial POST to create the viewing session. Same as "api".
"api" - The source document will be provided by the calling application via an API request.
"http" - PrizmDoc Server will download the source document from the URL specified by externalId.
"file" - PrizmDoc Server will use a local file as the source document using the file path specified by externalId.

externalId (String) Indicates where the source document was acquired from when the documentSource is "http" or
"file":

When documentSource is "http": The URL where the source document was acquired from
When documentSource is "file": The path to the file on the server which was used as the source document

documentExtension (String) - File extension of the source document provided in the original POST to create the viewing
session or null if no value was provided.
password (String) Password provided to open the source document.
tenantId (String) Custom tenant id assigned to the viewing session in the original POST.
origin (Object) Custom origin data included in the original POST to create the viewing session.
render (Object) Rendering options in use for the viewing session:

html5 (Object) HTML5 output options in use for the viewing session:
alwaysUseRaster (Boolean) Indicates whether or not only raster data, instead of SVG, will be created for the
viewing session.
svgMaxImageSize (Number) The maximum edge length, in pixels, that is allowable for any image when
creating the SVG. See POST /ViewingSession for more info.
vectorTolerance (Number) For CAD documents, the amount of path simplification that is allowable when
creating the SVG. See POST /ViewingSession for more info.
rasterResolution (Integer) Deprecated and unused. Provided only for backwards compatibility.

flash (Object) Deprecated and unused. Provided only for backwards compatibility.
optimizationLevel (Integer) Deprecated and unused. Provided only for backwards compatibility.

watermarks (Array of Objects) Objects describing watermarks which should be applied to page content. See POST
/ViewingSession for more info.
watermarkText (String) Deprecated and unused. Provided only for backwards compatibility.
pageContentEncryption (String) - Will be one of the following:

null - No value was specified in the initial POST to create the viewing session. Same as "default".
"default" - Product configuration will be used to determine whether or not page content will be encrypted (see
viewing.contentEncryption.enabled in the Central Configuration file).
"enabled" - Page content will be encrypted for the viewing session.
"disabled" - Page content will not be encrypted for the viewing session.

PrizmDoc Viewer v13.17 1071

©2021 My Company. All Rights Reserved.

"disabled" - Page content will not be encrypted for the viewing session.
countOfInitialPages (Integer) Number of pages which will be eagerly converted, or 0 if all pages should be eagerly
converted. Default is 0.
startConverting (String) When the documentSource is "http" or "file", indicates whether initial pages will be
converted as soon as the document has been acquired. Default is "none". Possible values:

null - No value was specified in the initial POST to create the viewing session. Same as "none".
"none" - Conversion will begin only after the session is explicitly started or page content or attributes are requested.
(default)
"initialPages" - Conversion will begin as soon as the source document has been acquired.

contentType (String) - Indicates what kind of browser content will be eagerly pre-generated (other kinds of content may still
be generated if explicitly requested). Will be one of the following:

null - No value was specified in the initial POST to create the viewing session.
"svgb" - Pre-generate fully-optimized SVG (uses a unicode inline font to store glyph definitions). Smallest possible
SVG, but may not be compatible with some browsers. Recommended whenever possible.
"svga" - Pre-generate partially-optimized SVG (uses a non-unicode inline font to store only the most frequently-
occurring glyph definitions). May not be compatible with some browsers. Use only if "svgb" content is not compatible
with the target browser.
"svg" - Pre-generate unoptimized SVG (no font is used; glyph definitions are expressed as SVG path operations).
Broadest compatibility with browsers but typically much larger, so it renders and scrolls much slower than "svgb" and
"svga". Not recommended. Use only as a fallback if both svgb and svga are not compatible with the target browser,
or the use of webfonts is disabled in the target browser.
"png" - Pre-generate raster content.

serverCaching (String) Indicates whether output is kept for potential reuse by other viewing sessions. Will be one of the
following:

"full" - Output will be written to disk on the server and retained for reuse by other viewing sessions created for the
same source document. Output will not be deleted until the configured viewing cache lifetime is reached (which is a full
day with an out-of-box configuration; see viewing.cacheLifetime in Central Configuration). Saves processing time
if a source document is viewed repeatedly before the cached data is deleted, but does consume more disk space.
(default)
"none" - Output will be written to disk on the server but only retained for the duration of the viewing session and
never shared with other viewing sessions. Once the viewing session expires, the output will be deleted from the disk.
Saves disk space if you know that it is unlikely a source document will ever be viewed more than once, but can result in
redundant processing if the same source document is viewed repeatedly.

attachmentIndex (Integer) - If the viewing session was created for an attachment on a parent source document (such as an
email), the 1-based index of this attachment in the list of all attachments (e.g. 1 means it was the first attachment, 2 means it
was the second, etc.). 0 otherwise.
attachmentDisplayName (String) - If the viewing session was created for an attachment on a parent source document
(such as an email), the filename of the attachment this viewing session was created for. null otherwise.
serverSideSearch (String) Indicates whether or not the server-side search feature will be available for the viewing session.
Will be one of the following:

"enabled" - Server-side search is available for the viewing session. (default)
"disabled" - Server-side search is not available for the viewing session.

Error Responses

Status
Code Reason Phrase Description

403 The session is invalid

or has expired

You requested a valid {viewingSessionId} but it is no longer available.

500 Internal Server Error Can occur if you forget to prefix the {viewingSessionId} portion of the URL with u, or
if you simply request an invalid {viewingSessionId}.

Example

Request

GET prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ...

PrizmDoc Viewer v13.17 1072

©2021 My Company. All Rights Reserved.

Response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "origin": {},
 "render": {
 "flash": {
 "optimizationLevel": 1
 },
 "html5": {
 "alwaysUseRaster": false,
 "rasterResolution": 150
 }
 },
 "password": null,
 "watermarkText": null,
 "externalId": null,
 "attachmentIndex": 0,
 "attachmentDisplayName": null,
 "tenantId": null,
 "creationTime": "2015-10-14T11:55:32.6521255Z",
 "countOfInitialPages": 0,
 "documentSource": null,
 "documentExtension": "help",
 "serverCaching": "full",
 "startConverting": null,
 "contentType": null,
 "pageContentEncryption": null,
 "watermarks": []
}

PUT /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile?
FileExtension={FileExtension}
Uploads the source document to be viewed.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{FileExtension} Required for text-based formats (such as txt, csv, html). File extension of the document being
uploaded. This parameter may or may not be required depending on the file type and whether Format
Detection is enabled. Note that the extension must not include the leading period (for example, csv is
accepted but .csv will return an error). Extensions are not case sensitive. > NOTE: If Format Detection is
disabled, then FileExtension is always required. When provided, FileExtension may only include
alpha-numeric characters.

If Format Detection is enabled (the default), the use of FileExtension is as follows:

If we can auto-detect the file format, we ignore FileExtension.
If we cannot auto-detect the file format, we require a FileExtension be specified, otherwise we return HTTP 580 with an
errorCode of "UnrecognizedFileFormat". This most-commonly occurs with text-based source documents (such as txt,
csv, or html).

PrizmDoc Viewer v13.17 1073

©2021 My Company. All Rights Reserved.

Request Body

The bytes of the source document.

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Some error responses will have a JSON body with an errorCode and errorDetails:

Status
Code JSON errorCode Description

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document for viewing or 2) two
documents (original and revised) which should be viewed as a comparison, but you cannot do both.
If you receive this error from this URL, it is because one or more files (original and/or revised) have
already been provided for comparison.

Some error responses will include an error message in an Accusoft-Status-Message header:

Status
Code

Accusoft-
Status-
Message Header

Description

580 "Unrecognized

File Format"

Occurs when the file format cannot be automatically detected. To avoid this, provide an explicit
FileExtension query string parameter for this kind of file. This most-commonly occurs with text-
based source documents where we require an explicit FileExtension to know the file format (such as
txt, csv, or html). You may need to create a new viewing session for the PUT to succeed.

580 "Watermark

image

download

failed"

Occurs when image watermark defined in the Viewing Session cannot be downloaded.

Example

Request

PUT prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../SourceFile?FileExtension=doc

<<file bytes>>

Response

HTTP/1.1 200 OK

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/original
Used when viewing a comparison of two documents, uploads the first of the two documents, the original document.

Request

URL Parameters

PrizmDoc Viewer v13.17 1074

©2021 My Company. All Rights Reserved.

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Request Body

The bytes of the original document (for comparison with a revised document).

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be found.

480 "CannotChangeDocument" The viewing session already has an original document assigned.

480 "UnsupportedFormatForComparison" The uploaded file was not a Word document (for comparison viewing, we
currently only support "doc" and "docx" files).

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document
for viewing or 2) two documents (original and revised) which should be viewed
as a comparison, but you cannot do both. If you receive this error from this
URL, it is because a single source document has already been provided.

480 "FeatureNotLicensed" The server's license does not allow the use of the MSO (Microsoft Office)
feature, so document comparison is not possible.

480 "FeatureDisabled" The server has not been configured to allow the use of the Microsoft Office
renderer, so document comparison is not possible.

Example

Request

PUT prizmdoc_server_base_url/v2/viewingSessions/XYZ.../sourceFile/original

<<file bytes>>

Response

HTTP/1.1 200 OK

PUT /v2/viewingSessions/{viewingSessionId}/sourceFile/revised
Used when viewing a comparison of two documents, uploads the second of the two documents, the revised document.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

PrizmDoc Viewer v13.17 1075

©2021 My Company. All Rights Reserved.

Request Body

The bytes of the revised document (for comparison with an original document).

Successful Response

A simple HTTP 200 status code indicating the file was received.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be found.

480 "MissingInput" A required input value was not provided. See errorDetails in the response
body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "CannotChangeDocument" The viewing session already has a revised source document assigned.

480 "UnsupportedFormatForComparison" The uploaded file was not a Word document (for comparison viewing, we
currently only support "doc" and "docx" files).

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document
for viewing or 2) two documents (original and revised) which should be viewed
as a comparison, but you cannot do both. If you receive this error from this
URL, it is because a single source document has already been provided.

480 "FeatureNotLicensed" The server's license does not allow the use of the MSO (Microsoft Office)
feature, so document comparison is not possible.

480 "FeatureDisabled" The server has not been configured to allow the use of the Microsoft Office
renderer, so document comparison is not possible.

Example

Request

PUT prizmdoc_server_base_url/v2/viewingSessions/XYZ.../sourceFile/revised

<<file bytes>>

Response

HTTP/1.1 200 OK

PUT /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceRef
Attach an existing work file (or, when doing comparison, two work files) as the source document to be used for a viewing session.

Using a source reference can be particularly useful when you want to avoid repeatedly uploading the same source file to the back
end.

Request

Request Headers

PrizmDoc Viewer v13.17 1076

©2021 My Company. All Rights Reserved.

Name Description

Content-Type Must be application/json

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Request Body when assigning reference for a single document

refType (string) Required. Must be set to "workFile".
fileId (string) Required. The id of the work file to use as the source document.

Request Body when comparing two documents

refType (string) Required. Must be set to "comparison".
original

refType (string) Required. Must be set to "workFile".
fileId (string) Required. The id of the work file to use as the original document.

revised
refType (string) Required. Must be set to "workFile".
fileId (string) Required. The id of the work file to use as the revised document.

Successful Response

A simple HTTP 200 status code.

Error Responses

Status
Code JSON errorCode Description

480 "MissingInput" A required input value was not provided. See errorDetails in the response
body.

480 "InvalidInput" An invalid input value was used. See errorDetails in the response body.

480 "NotFound" The given work file has expired or does not exist. See errorDetails in the
response body.

480 "CannotChangeDocument" The viewing session already has a source document assigned. See
errorDetails in the response body.

480 "UnsupportedFormatForComparison" One of the files provided for comparison was not a Word document (for
comparison viewing, we currently only support "doc" and "docx" files). See
errorDetails in the response body.

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document
for viewing or 2) two documents (original and revised) which should be viewed
as a comparison, but you cannot do both. If you have already provided a
source document and then attempt to provide an original and revised
document pair, or vice versa, you will receive this error.

480 "FeatureNotLicensed" The server's license does not allow the use of the MSO (Microsoft Office)
feature, so document comparison is not possible.

480 "FeatureDisabled" The server has not been configured to allow the use of the Microsoft Office
renderer, so document comparison is not possible.

Examples

PrizmDoc Viewer v13.17 1077

©2021 My Company. All Rights Reserved.

Assigning a single source document

PUT prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../SourceRef
Content-Type: application/json

{
 "refType": "workFile",
 "fileId": "CVBuD7DbQYNoJDqByGierQ",
}

HTTP/1.1 200 OK

Assigning two documents to be viewed as a comparison

PUT prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../SourceRef
Content-Type: application/json

{
 "refType": "comparison",
 "original": {
 "refType": "workFile",
 "fileId": "CVBuD7DbQYNoJDqByGierQ",
 },
 "revised": {
 "refType": "workFile",
 "fileId": "5qTYa3gzN9gYUb5SzqUhqg",
 }
}

HTTP/1.1 200 OK

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile?
ContentDispositionFilename={ContentDispositionFilename}
Gets the source document in use for a viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{ContentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in the Content-
Disposition response header (appropriate file extension such as doc or docx will
automatically be added). By default, the value will be SourceFile.<ext>.

Response Headers

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and specifies the
filename the browser should use.

PrizmDoc Viewer v13.17 1078

©2021 My Company. All Rights Reserved.

Content-Type The most-specific MIME type for the returned document or application/octet-stream otherwise.

Response Body

The raw bytes of the viewing session's source document.

Example

Request

GET prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../SourceFile?
ContentDispositionFilename=MonthlySalesReport

Response

200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=MonthlySalesReport.docx; filename*=UTF-
8''MonthlySalesReport.docx

<<file bytes>>

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/original?
contentDispositionFilename={contentDispositionFilename}
When viewing a comparison of two documents, gets the original document used in the comparison. The document returned will be
an identical copy of the document originally provided.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{contentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in the Content-
Disposition response header (appropriate file extension such as doc or docx will
automatically be added). By default, the value will be OriginalSourceFile.<ext>.

Response Headers

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and specifies the
filename the browser should use.

Content-Type The most-specific MIME type for the returned document or application/octet-stream otherwise.

Response Body

The raw bytes of the first of the two documents being viewed as a comparison, the original document.

Error Responses

Name Description

PrizmDoc Viewer v13.17 1079

©2021 My Company. All Rights Reserved.

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be found.

480 "DocumentNotProvidedYet" An original document has not been provided to the viewing session yet.

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document for
viewing or 2) two documents (original and revised) which should be viewed as a
comparison, but you cannot do both. If you receive this error from this URL, it is because
a single source document was provided for viewing, so there will never be an original
comparison document to get.

Example

Request

GET prizmdoc_server_base_url/v2/viewingSessions/XYZ.../sourceFile/original?
contentDispositionFilename=OldMonthlySalesReport

Response

200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=OldMonthlySalesReport.docx; filename*=UTF-
8''OldMonthlySalesReport.docx

<<file bytes>>

NOTE: See GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile for an example when filename includes non-
ASCII characters.

GET /v2/viewingSessions/{viewingSessionId}/sourceFile/revised?
contentDispositionFilename={contentDispositionFilename}
When viewing a comparison of two documents, gets the revised document used in the comparison. The document returned will be an
identical copy of the document originally provided.

The response will set the Content-Type header to the most-specific MIME type it can or application/octet-stream
otherwise.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

{contentDispositionFilename} The filename as a URL-encoded string, without extension, to be used in the Content-
Disposition response header (appropriate file extension such as doc or docx will
automatically be added). By default, the value will be RevisedSourceFile.<ext>.

Response Headers

PrizmDoc Viewer v13.17 1080

©2021 My Company. All Rights Reserved.

Name Description

Content-

Disposition

Indicates to a browser that the response body should be treated as a file download and specifies the
filename the browser should use.

Content-Type The most-specific MIME type for the returned document or application/octet-stream otherwise.

Response Body

The raw bytes of the second of the two documents being viewed as a comparison, the revised document.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided viewingSessionId could be found.

480 "DocumentNotProvidedYet" A "revised" document has not been associated with the viewing session yet.

480 "IncorrectUsage" For any new viewing session, you can give it either 1) a single source document for
viewing or 2) two documents (original and revised) which should be viewed as a
comparison, but you cannot do both. If you receive this error from this URL, it is because
a single source document was provided for viewing, so there will never be a revised
comparison document to get.

Example

Request

GET prizmdoc_server_base_url/v2/viewingSessions/XYZ.../sourceFile/revised?
contentDispositionFilename=NewMonthlySalesReport

Response

HTTP/1.1 200 OK
Content-Type: application/msword
Content-Disposition: attachment; filename=NewMonthlySalesReport.docx; filename*=UTF-
8''NewMonthlySalesReport.docx

<<file bytes>>

NOTE: See GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile for an example when filename includes non-
ASCII characters.

GET /v2/viewingSessions/{viewingSessionId}/restrictions
Returns information about any restrictions enforced by the server for the current viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

PrizmDoc Viewer v13.17 1081

©2021 My Company. All Rights Reserved.

JSON with information about any restrictions currently in place for the viewing session:

delayEnabled (Boolean) - Indicates whether the server has enforced an artificial delay before the document conversion
results are allowed to be delivered to the viewer.
delaySecondsRemaining (Integer) - The number of seconds remaining in the artificially-imposed delay before the
document conversion results are allowed to be delivered to the viewer. Only present when delayEnabled is true.
downloadDisabled (Boolean) - Indicates whether downloading of the source document has been disabled for this viewing
session.
markupBurnersDisabled (Boolean) Indicates whether the markup burner feature has been disabled for this viewing
session.
formInfoDisabled (Boolean) Indicates whether the form detection feature has been disabled for this viewing session.

Example Responses

When the product is licensed and the form detection feature is available

HTTP/1.1 200 OK
Content-Type: application/json

{
 "delayEnabled": false,
 "downloadDisabled": false,
 "markupBurnersDisabled": false,
 "formInfoDisabled": false
}

When the product is unlicensed (evaluation mode), and 9 seconds of initial delay are remaining:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "delayEnabled": true,
 "delaySecondsRemaining": 9,
 "downloadDisabled": true,
 "markupBurnersDisabled": true,
 "formInfoDisabled": true
}

GET /PCCIS/V1/ViewingSession/u{viewingSessionId}/FileId
Gets the work file id of the source document in use for a viewing session.

Regardless of how the source document was provided or acquired, internally PrizmDoc Server will always ensure a work file exists for
the source document. This URL allows you to get the work file id for a viewing session's source document. This can be helpful if you
want to create a new viewing session using the same source document; you can simply create the new viewing session and then
attach the existing work file to it as the source document (see PUT /SourceRef).

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

PrizmDoc Viewer v13.17 1082

©2021 My Company. All Rights Reserved.

JSON with the work file id.

fileId (String) - Work file id for the source document of the viewing session.
affinityToken (String) Work file affinity token. Present when clustering is enabled.

Error Responses

Status
Code JSON errorCode Description

480 "DocumentNotProvidedYet" Occurs when you create a viewing session with a documentSource of "api" but
have not yet made the API call(s) necessary to provide the source document.

480 "LicenseCouldNotBeVerified" The server's license could not be verified. If you are evaluating the product without a
license, the product is running in evaluation mode and this particular part of the
product is unavailable without a license. If you have a license, make sure you
configured your license correctly, that your license has not expired, and that you have
not exceeded any license limits (such as, for a Cloud License, the total number of
logical CPU cores in use).

Example

Request

GET prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../FileId

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "fileId": "1OGayKFk2dGtC8jhOtSknw",
 "affinityToken": "ejN9/kXEYOuken4Pb9ic9hqJK45XIad9LQNgCgQ+BkM="
}

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionStarted
Ensures PrizmDoc Server has started the process of converting a viewing session's source document to HTML.

The User-Agent header should be set to an appropriate browser string to enable the PrizmDoc Server to begin generating the
correct content for the Viewer.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Request Headers

Name Description

Content-Type Should be application/json.

PrizmDoc Viewer v13.17 1083

©2021 My Company. All Rights Reserved.

User-Agent Browser user agent string which PrizmDoc Server uses to generate the most-appropriate content for the viewer.

Request Body

viewer (String) - Type of viewer being used. Default is "HTML5". Possible values:
"HTML5"

Successful Response

A simple HTTP 200 status code indicating the session has been started.

Error Responses

Status Code Description

500 Can occur if your request body is not JSON. Make sure your JSON contains at least an empty object ({}).

Example

Request

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../Notification/SessionStarted
Content-Type: application/json

{
}

Response

HTTP/1.1 200 OK

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionStopped
Invalidates a viewing session so that it can no longer be used.

Invalidating a viewing session can be useful when:

1. A viewing session has been created but something prevents your application from being able to provide a source document
for the viewing session.

2. An end user has finished using a viewing session and no additional access to the viewing session should be allowed.

When you invalidate a viewing session, you must provide a JSON body which specifies what HTTP status code and reason phrase
should be returned as an error for future requests to the invalidated viewing session. This allows you to control what sort of HTTP
response other people or applications will receive if they make requests to your invalidated viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Request Headers

Name Description

PrizmDoc Viewer v13.17 1084

©2021 My Company. All Rights Reserved.

Name Description

Content-Type Should be application/json.

Request Body

httpStatus (Integer) - HTTP status code to respond with for any future requests to this viewing session. Default is 580.
endUserMessage (String) - Error message to use for both the HTTP reason phrase and Accusoft-Status-Message
response header for any future requests to this viewing session. Default is "Session is stopped".
accusoftErrorNumber (Integer) - Value for the Accusoft-Status-Number response header for any future requests to
this viewing session. Default is 580 or httpStatus if it is provided.
serverLogMessage (String) - Message that should be emitted to the PrizmDoc Server log file when the session is stopped.
Default is "The viewing session is stopped on request from the client.".

Successful Response

A simple HTTP 200 status code indicating the session has been stopped.

Example

Request

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../Notification/SessionStopped
Content-Type: application/json

{
 "httpStatus": 418,
 "endUserMessage": "My custom end user error message"
}

Response

HTTP/1.1 200 OK

Then, if any future requests are made to the viewing session, the response will be:

HTTP/1.1 418 My custom end user error message
Accusoft-Status-Message: My custom end user error message
Accusoft-Status-Number: 418

POST
/PCCIS/V1/ViewingSession/u{viewingSessionId}/Notification/SessionErrored
Mark a viewing session as errored so that it can no longer be used but it is still possible to request the source file. (See GET
/PCCIS/V1/ViewingSession/u{viewingSessionId}/SourceFile)

Erroring a viewing session can be useful when:

1. It is necessary to stop its usage but keep a source document available to download.
2. The password is invalid for a password-protected source document so the viewing session can be replaced using POST

/PCCIS/V1/ViewingSession/u{viewingSessionId}/Replacement API.

When you mark a viewing session as errored, you must provide a JSON body which specifies what HTTP status code and reason
phrase should be returned as an error for future requests to the invalidated viewing session. This allows you to control what sort of

PrizmDoc Viewer v13.17 1085

©2021 My Company. All Rights Reserved.

HTTP response other people or applications will receive if they make requests to your errored viewing session.

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Request Headers

Name Description

Content-Type Should be application/json.

Request Body

httpStatus (Integer) - HTTP status code to respond with for any future requests to this viewing session. Default is 580.
endUserMessage (String) - Error message to use for both the HTTP reason phrase and Accusoft-Status-Message
response header for any future requests to this viewing session. Default is "Session is errored".
accusoftErrorNumber (Integer) - Value for the Accusoft-Status-Number response header for any future requests to
this viewing session. Default is 580 or httpStatus if it is provided.
serverLogMessage (String) - Message that should be emitted to the PrizmDoc Server log file when the session is stopped.
Default is "The viewing session is errored on request from the client.".

Successful Response

A simple HTTP 200 status code indicating the session has been errored.

Example

Request

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../Notification/SessionErrored
Content-Type: application/json

{
 "httpStatus": 418,
 "endUserMessage": "My custom end user error message"
}

Response

HTTP/1.1 200 OK

Then, if any future requests are made to the viewing session, the response will be:

HTTP/1.1 418 My custom end user error message
Accusoft-Status-Message: My custom end user error message
Accusoft-Status-Number: 418

POST /PCCIS/V1/ViewingSession/u{viewingSessionId}/Replacement
Replace the existing viewing session with a new one that has a new password parameter value. The other original viewing session

PrizmDoc Viewer v13.17 1086

©2021 My Company. All Rights Reserved.

Replace the existing viewing session with a new one that has a new password parameter value. The other original viewing session
parameters are preserved. If a source document is uploaded it is attached to the newly created viewing session with a new password.
The old viewing session is stopped.

The replacement API is useful when a session is errored because of either an invalid or missing password, and you want to replace it
with a new session with the same parameters against the same document but with a modified password.

Request

Request Headers

Name Description

Content-Type Should be application/json

Request Body

password (String) Password to use when opening a password-protected source document. If the parameter is not provided a
new viewing session is created with a default null password parameter value.

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

Response Body

JSON with metadata about the created viewing session.

viewingSessionId (String) Unique id for this viewing session.

Error Responses

Status
Code Reason Phrase Description

403 The session is invalid

or has expired

You requested a valid {viewingSessionId} but it is no longer available.

500 Internal Server Error Can occur if you forget to prefix the {viewingSessionId} portion of the URL with u, or
if you simply request an invalid {viewingSessionId}.

Some error responses will have a JSON body with an errorCode and errorDetails:

Status
Code JSON errorCode Description

480 "PropertyNotReplaceable" Unsupported property to replace was used. See errorDetails in the response
body.

Example

Request

POST prizmdoc_server_base_url/PCCIS/V1/ViewingSession/uXYZ.../Replacement
Content-Type: application/json

{
 "password":"123"
}

PrizmDoc Viewer v13.17 1087

©2021 My Company. All Rights Reserved.

Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=utf-8

{
 "viewingSessionId": "THMMytF4ACHrxmN2bXj4vahx4Gnwly_kEeFt20XtRau-
z43pPHIjUy5JXJ05Wj1MaqvdfsXp98JxIk7ALWkukg"
}

DELETE /PCCIS/V1/ViewingSession/u{viewingSessionId}
Deletes a viewing session. Only possible for viewing sessions created with serverCaching set to "none".

Request

URL Parameters

Parameter Description

{viewingSessionId} The viewingSessionId which identifies the viewing session.

Successful Response

HTTP 204 indicating the session was deleted.

Error Responses

Status
Code JSON errorCode Description

404 - No viewing session with the provided {viewingSessionId} could be
found.

580 "CannotDeleteCachedViewingSession" The viewing session you attempted to delete was not created with
serverCaching set to "none".

Unsupported Routes
These unsupported REST APIs are only for internal use by Accusoft products and components:

Unsupported Routes

Unsupported Routes

Introduction
The following endpoints are intended only for internal use by Accusoft products and components.

If you are a PrizmDoc Server administrator, you should expose these endpoints to ensure that all product functionality
is available.

However, if you are an application developer, you should not call these endpoints. They are undocumented,

PrizmDoc Viewer v13.17 1088

©2021 My Company. All Rights Reserved.

unsupported, and subject to change without notice.

Available URLs
POST /unsupported/excelShapeExtractors
GET /unsupported/excelShapeExtractors/{processId}

PrizmDoc Server .NET SDK
The PrizmDoc Server .NET SDK is a wrapper around the PrizmDoc Server REST APIs, making it easy to use PrizmDoc
Server functionality in .NET. It is an open source library published as a NuGet package.

To learn more and get started, visit the PrizmDoc Server .NET SDK documentation site:

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/

PrizmDoc Viewer v13.17 1089

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/
https://github.com/Accusoft/PrizmDocServerDotNetSDK
https://www.nuget.org/packages/Accusoft.PrizmDocServerSDK/
https://help.accusoft.com/PrizmDoc/sdks/server/dotnet/v1/

Troubleshooting
This Troubleshooting section is designed to help you work through some common issues.

If you're experiencing an issue that isn't covered in this section, make sure to also visit the Technical
FAQs for PrizmDoc Viewer on our website. These FAQs are updated regularly, based on Customer
Support interactions. Also be sure to check our Release Notes.

This section contains the following information:

Document Viewing Issues
Office Files
Text Files
CAD/PDF Files

Viewing Package Issues
Redaction & Annotation Issues
Form Field Detector Error Messages
Log File Growth
Memory Consumption Issues
PrizmDoc Server Health Issues

See also Accusoft Support.

Document Viewing Issues

Introduction
This section outlines possible reasons why some documents may render differently than expected:

Office Files
Text Files
CAD/PDF Files

Note for all Formats

Viewing pages in documents which have more than 10,000 pages

PrizmDoc Viewer currently does not support viewing pages past the 10,000th page.

As a possible workaround, consider splitting the original document into a number of smaller PDF files. For example,
use 1,000 pages per document for viewing. You can use the PrizmDoc Content Conversion Service API for splitting an
original document into smaller files. Specify a PDF as the output format and specify the desired page range for each
resulting PDF.

Related FAQs
Why do the fonts in my document look different when rendered in PrizmDoc?
My document appears to be loading incorrectly. Are there any troubleshooting steps I can take?
Why is it taking a long time to load PDF documents when viewing a document in PrizmDoc using Google
Chrome 71?
In PrizmDoc, why is my document appearing smaller on the page relative to the viewer?

PrizmDoc Viewer v13.17 1090

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/faqs/topics/prizmdoc-viewer/
https://www.accusoft.com/faqs/topics/prizmdoc-viewer/
https://www.accusoft.com/faqs/why-do-the-fonts-in-my-document-look-different-when-rendered-in-prizmdoc/
https://www.accusoft.com/faqs/my-document-appears-to-be-loading-incorrectly-are-there-any-troubleshooting-steps-i-can-take/
https://www.accusoft.com/faqs/why-is-it-taking-a-long-time-to-load-pdf-documents-when-viewing-a-document-in-prizmdoc-using-google-chrome-71/
https://www.accusoft.com/faqs/why-is-it-taking-a-long-time-to-load-pdf-documents-when-viewing-a-document-in-prizmdoc-using-google-chrome-71/
https://www.accusoft.com/faqs/in-prizmdoc-why-is-my-document-appearing-smaller-on-the-page-relative-to-the-viewer/

Office Files

Introduction
This section outlines possible reasons why some Office documents may be rendered differently than expected.

MS Office Documents do not Render in the Viewer using MSO
Rendering Mode
Below are some reasons for intermittent or continuous issues when viewing MS Office documents.

1. Check the environment (CPU/RAM) to ensure it is properly sized according to the PrizmDoc Server Sizing
recommendations. If you do not meet the sizing requirements, increase your system resources to match
sizing recommendations.

2. Check the NonInteractiveSystemHeapSize value using the table in the Registry Changes section. If it
is not correct, set the registry key to match the table and restart your server.

3. Verify whether your MS Office version is up to date. You can find the latest available updates for your
version by checking: Update history for Office 2013 or Update history for Office 2016 C2R. If you are not on
the latest version, upgrade to the latest patch for your version and restart the server.

Office Documents Render Differently in PrizmDoc than MS Office
PrizmDoc has two different rendering engines: LibreOffice (LO mode) and MS Office (MSO mode).

In LO rendering mode, it is expected that there will be some differences from MS Office. To make sure the
PrizmDoc is operating in MSO rendering mode, check whether your PrizmDoc Viewer license includes MSO
support and whether the steps described in Natively Render MSO Documents are followed.

Alternatively, check how the document is rendered in MS Office Print Preview mode, and compare it with PrizmDoc
output.

For Excel documents, please note that PrizmDoc has its own pagination mechanism enabled by default. For details,
refer to the Central Configuration topic.

If you prefer the MSO rendering and are not currently licensed, please speak with your sales representative for
information regarding this feature.

Excel Documents Render in PrizmDoc with a lot of Pages
Compared to MS Excel
When comparing PrizmDoc Viewer output to MS Excel output, consider that MS Excel shows the document content
in "Normal View" mode by default, which does not split the content into pages. Your document might have special
formatting or small text in a cell that is not visible on the screen.

To see how many pages are actually there, switch to Page Layout View mode or go to Print Preview -> Print
Entire Workbook and see how many pages there are, and what the document will look like when printed. Once
you've located the cell with the unexpected data, you can delete it, and then it will render the same.

Office Documents Render Asian Characters Incorrectly
When opening Office documents with Asian characters in PrizmDoc Viewer, the document may contain
unrecognizable characters.

PrizmDoc Viewer v13.17 1091

©2021 My Company. All Rights Reserved.

https://docs.microsoft.com/en-us/officeupdates/update-history-office-2013
https://docs.microsoft.com/en-us/officeupdates/update-history-office-2019

This can occur when the specific font type in the document is not available on the PrizmDoc Server. The PrizmDoc
Server will attempt to use the most suitable font available which can produce less accurate results.

In order to assign a proper match of fonts, refer to the following topic for more information: Substitute Fonts for
Office Rendering Fidelity

Related FAQs
Why am I unable to see pictures on certain Excel spreadsheets in PrizmDoc Viewer?
In PrizmDoc, why do I fail to load/convert Excel documents with the error "Exception from HRESULT:
0x800AC472"?

Text Files

Introduction
This section outlines possible reasons why some text documents rendered differently than expected.

The text file shows only a single line of text when rendered by
PrizmDoc
For text files which only show a single line of text, the text file may have Mac-style line endings - CR (or '\r') only
without line feed character LF (or '\n'). To verify, open text file in Notepad++ and select View, Show Symbol, Show All
characters.

CAD/PDF Files

Introduction
This section outlines possible reasons why some CAD/PDF documents rendered differently than expected.

Related FAQ
Why are the fonts in my CAD files showing up garbled/unrecognizable/not as expected?

Viewing Package Issues

Introduction
This section outlines how to troubleshoot viewing package failures.

Viewing Package Creation Failures
If you are getting Viewing Package creation failures, make sure you are not hitting the file system or database capacity
limits for the viewing package storage.

PrizmDoc Viewer v13.17 1092

©2021 My Company. All Rights Reserved.

https://help.accusoft.com/PrizmDoc/v13.15/HTML/substitute-fonts-for-office-rendering.html
https://help.accusoft.com/PrizmDoc/v13.15/HTML/substitute-fonts-for-office-rendering.html
https://www.accusoft.com/faqs/why-am-i-unable-to-see-pictures-on-certain-excel-spreadsheets-in-prizmdoc-viewer/
https://www.accusoft.com/faqs/in-prizmdoc-why-do-i-fail-to-load-convert-excel-documents-with-the-error-exception-from-hresult-0x800ac472/
https://www.accusoft.com/faqs/in-prizmdoc-why-do-i-fail-to-load-convert-excel-documents-with-the-error-exception-from-hresult-0x800ac472/
https://www.accusoft.com/faqs/why-are-the-fonts-in-my-cad-files-showing-up-garbled-unrecognizable-not-as-expected/

Redaction & Annotation Issues

Introduction
This section outlines possible reasons why some documents may have been redacted differently than expected.

Redacting the Attached PDF File does not Remove Certain Text
While we do our best to make sure the markup burner API handles PDF documents appropriately, due to
complexity of the PDF specification and a variety of PDF producers, there might be some rare PDF documents
causing this problem. To guarantee secure content redaction, we suggest the following approach:

1. Perform your normal redaction including redaction reasons, if necessary.
2. Convert the output PDF to TIFF using the Content Converter API.
3. Convert the TIFF back to PDF using the same Content Converter API, using the option to create a searchable

PDF to allow for searching the redaction reasons and other text content in the output PDF.

Redactions are Unexpectedly Applied on Subsequent Pages
The reason for the issue is that the PDF document can contain one image that is shared between several pages.
PrizmDoc not only redacts the text, but also the underlying raster image. As a result, if the image (e.g., a
background image) is shared between multiple pages, all of those pages get the same update, such that the
redaction rectangle will start to render on all pages for which that source image is shared. This behavior is similar
to Adobe Acrobat redaction, with the difference that PrizmDoc uses black redactions by default, while the Acrobat
uses white. This product behavior is by design. You can specify a non-default redaction color using the
/v2/redactionCreators API.

Note: This behavior only occurs when downloading a PDF with redactions actually burned in
(Redactions > Redact); it does not occur when using "See Through" redactions.

When downloading a PDF with Chinese text annotations, the PDF
does not properly display the Chinese characters.
When the PrizmDoc Viewer sends a text annotation markup to burn it in, it includes the font parameters (including
the font name) for the annotation text to use. The supported out-of-the-box list of fonts is defined in the viewer
sample template, and these fonts do not have Chinese characters. So, the PrizmDoc backend can't find the Chinese
unicodes for the provided font, and these characters are replaced with the square (tofu) characters.

To resolve this issue, you can customize the viewer sample template code to add a font with Chinese characters to
make sure that PrizmDoc markup burner API can process the Chinese annotation text, assuming that this Asian font
is actually available on the server system.

To update the template to add new font:

Customize C:\Prizm\Samples\dotnet\webforms\full-viewer-sample to add a new font (FangSong) as follows:

1. Make sure that the font with Chinese characters (e.g., FangSong) is available on the server (it may need to
be installed separately).

2. Open the html template viewer-assets\src\templates\contextMenuTemplate.html and find the following
code:

PrizmDoc Viewer v13.17 1093

©2021 My Company. All Rights Reserved.

 <div data-pcc-toggle-id="dropdown-font" class="pcc-dropdown">
 <div><%= fontArial %></div>
 <div><%= fontComicSans %></div>
 <div><%= fontCourier %></div>
 <div><%= fontCourierNew %></div>
 <div><%= fontGeneva %></div>
 <div><%= fontGeorgia %></div>
 <div><%= fontHelvetica %></div>
 <div><%= fontTimes %></div>
 <div><%= fontTimesNewRoman %></div>
 <div><%= fontVerdana %></div>
 </div>

3. Insert the following line:

 <div><%= fontFangSong %></div>

Note: The first font in the list is the default font.

4. Save the file.

5. Open the file viewer-assets\src\languages\en-US.json and find the code:

 "fontArial": "Arial",
 "fontBoldText": "Bold Text",
 "fontColorMenuItem": "Font Color",
 "fontComicSans": "Comic Sans MS",
 "fontCourier": "Courier",
 "fontCourierNew": "Courier New",

6. Add the line:

 "fontFangSong": "FangSong",

7. Save the file.

8. Follow the instructions from C:\Prizm\Samples\dotnet\webforms\full-viewer-sample\viewer-
assets\README.md to build the sample.

After reloading the PrizmDoc Viewer web page, a new font will be available in the Viewer and can be selected to be
explicitly used by the markup burner to burn in the Chinese text.

Form Field Detector Error Messages

Introduction
This section outlines how to troubleshoot Form Field Detection errors.

PrizmDoc Viewer v13.17 1094

©2021 My Company. All Rights Reserved.

Receiving a "Conversion Failed" Error when Trying to Convert Form
Fields in the Template Designer Sample

This issue may occur if the feature is not enabled. To verify if the feature is enabled, check the following:

1. Open the Developer Tools (F12) in your browser and select the Network tab.
2. Attempt to convert the form fields again for the same document.
3. Look for Status Code: 480 FeatureNotLicensed.

If you want to enable the feature, refer to Feature Licensing for more details.

If you don't want to enable the feature, click Continue Without Converting the next time the dialog appears
prompting you to convert the document.

Log File Growth

Introduction
This section outlines possible reasons why some log files grow larger than expected.

The plb.sep_single.log.x/plb.sep_multi.log.x and
ContentConversionService.log.x logs are taking up excessive
space
If those log files occupy some 50% or more of the total log size, it could indicate that you are polling
/v2/contentConverters too frequently. To verify how often you are polling the post request you can check the
following:

1. Search for lines matching "taskBegin.GET.v2/contentConverters" in those log files to see how frequently it is
polled.

2. Compare the number of POST contentConverters (lines matching "taskBegin.POST.v2/contentConverters") vs
the number of GET contentConverters (lines matching "taskBegin.GET.v2/contentConverters") to see how many
poll requests are issued against each conversion, on average.

When polling "GET /v2/contentConverters", frequently the API call executes constantly with no pause in between each
call. This would cause the ratio of number of polls per POST to be high depending on how long it takes to convert the
document. Modifying the polling to check once every 3-5 seconds would reduce the number of logged items
significantly and reduce the size of the log file.

PrizmDoc Viewer v13.17 1095

©2021 My Company. All Rights Reserved.

Related FAQs
PrizmDoc logs have timestamps, what timezone are they in?

Memory Consumption Issues

Introduction
This section outlines how to troubleshoot memory consumption issues that may occur with the PrizmDoc Server.

Java Services use an Unexpected Amount of Memory
When PrizmDoc Server is under a heavy processing load (specifically when performing redaction and burn-in
operations with the documents being processed), it is possible for the PrizmDoc Java backend services to
unexpectedly grow memory usage constantly. When this type of unexpected memory consumption occurs, the
OOM Killer on Linux could kill the Java backend service (or it could cause Windows to run out of memory).

There is a dedicated JVM option, "-XX:MaxRAM", to limit the memory usage by the whole Java process. Using this
option helps to avoid situations when the Java process grows more and more. It limits unmanaged and managed
heaps very effectively for Linux and Windows platforms. This option is especially applicable to applications running
in Linux containers.

Note, if you start using the option "-XX:MaxRAM", the default value for the managed heap size will likely be smaller
than recommended. To get the maximum effectiveness and performance for PrizmDoc we recommend setting the
Java heap size explicitly. There is the option "-XX:MaxRAMPercentage" to set a relative Java heap size and the
parameter "-Xmx" or "-XX:MaxHeapSize". All can be used to limit the managed heap size. For more information
read the Java article here.

Currently there are two settings in the central configuration file, one per Java service: PDF Processing (PDFPS) and
Email Processing (EPS) services - "pdfps.jvm.opts" and "eps.jvm.opts" (see Central Configuration. It can be used to
tune the default behavior of Java services.

For the PDF Processing service you can set the following options for JVM to prevent memory consumption issues:

pdfps.jvm.opts: "-XX:MaxRAM=<value1> -XX:MaxRAMPercentage=<value2> "

or

pdfps.jvm.opts: "-XX:MaxRAM=<value1> -Xmx<value2> "

Where the "value1" is the maximum amount of memory that the JVM may use for the Java heap before applying
ergonomics heuristics. The default value is the maximum amount of available memory to the JVM process. The
"value2" in percent (or byte size for Xmx) is the maximum amount of memory that the JVM may use for the Java
heap before applying ergonomics heuristics as a percentage of the maximum amount determined as described in
the -XX:MaxRAM option.

For example, to reliably limit the PDF Processing service maximal memory usage to 25% of available memory on
the instance with 32 GB RAM, you could use:

pdfps.jvm.opts: "-XX:MaxRAM=8G -XX:MaxRAMPercentage=75.0"

PrizmDoc Viewer v13.17 1096

©2021 My Company. All Rights Reserved.

https://www.accusoft.com/faqs/prizmdoc-logs-have-timestamps-what-timezone-are-they-in/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

or

pdfps.jvm.opts: "-XX:MaxRAM=8G -Xmx6G"

For this case, the whole Java heap will be limited by 8 GB. The managed heap size will be limited to 75% of all
available heap size of 8G. In testing, we found that relations of 75% for managed heap and 25 % for unmanaged
show a good balance between performance and stability for PrizmDoc Viewer.

This is not a strict recommendation though; you should determine the exact value by experimenting and observing
the impact of PrizmDoc on your environment. Note that this value impacts product performance. A higher value
means better performance in the case of intensive operations with PDF files because it allows you to put more
documents in memory, work with them at the same time, and not call the garbage collector frequently.

PrizmDoc Server Health Issues

Introduction
This section outlines possible reasons why the PrizmDoc Server may not show as healthy.

If you've checked the PrizmDoc Server health, and any of the services are unhealthy, try the following:

Check your permissions, login, and password of the service user
Verify that you are using a valid license

If your services are still unhealthy, there are some common reasons for this:

The System has Limited Resources
Linux-specific Instructions

The cache is corrupted or inaccessible
PAS or PrizmDoc Server isn't running

Windows-specific Instructions
The cache is corrupted or inaccessible
PAS or PrizmDoc Server isn't running
PAS isn't connected to PrizmDoc Server

The System Has Limited Resources
The system resources for a machine running PrizmDoc are described in Sizing Servers. Please note that PrizmDoc
will require at least a few gigabytes free while running and no conversions are taking place. If your system has
PrizmDoc installed and idles with 1-2GB free RAM, then the services will run into stability issues. For more
information, refer to the Memory Consumption Issues topic.

Linux-specific Instructions

The Cache is Corrupted or Inaccessible
A common problem is not running or installing PrizmDoc Server as the root user, which is a requirement for
running PrizmDoc on a Linux server. Correcting this will solve permission-related issues while accessing the cache.
To clear a potentially corrupted cache manually, use the following steps:

PrizmDoc Viewer v13.17 1097

©2021 My Company. All Rights Reserved.

1. Run: /usr/share/prizm/scripts/pccis.sh stop
2. Delete the contents of: /usr/share/prizm/cache/
3. Start up PrizmDoc Server: /usr/share/prizm/scripts/pccis.sh start

PAS or PrizmDoc Server is Not Running
Another common issue is that either PrizmDoc Application Services (PAS) or PrizmDoc Server isn't running.

To check that PAS is running:

1. Navigate to: /usr/share/prizm/pas/pm2
2. Run: ./pas.sh status

To check that the PrizmDoc Server is running:

1. Navigate to: /usr/share/prizm/scripts
2. Run: ./pccis.sh status

If the steps above have been checked and the Admin page shows that PrizmDoc is unlicensed, then the license key
will need to be verified by Accusoft Support at support@accusoft.com. You can find the current license key in
/usr/share/prizm/prizm-services-config.yml:

In the example above, the license key is "2.0.E6Aorkh8..." To locate your license key, copy everything after
"license.key:" and send your full license key to Accusoft Support.

NOTE: Your solutionName and license key may differ from the example above.

If everything seems to be functioning, and a file is still not displayed in the Viewer, there may be an issue with the
conversion of the specific file. If this is the case, send the file to support@accusoft.com for evaluation and
submission to our engineering team.

Windows-specific Instructions

The Cache is Inaccessible or Corrupted
You will need to clear the cache. To clear the cache manually, use the following steps:

1. Stop the Windows PrizmDoc Server.
2. Delete the contents of C:\Prizm\Cache.
3. Start up the Windows PrizmDoc Server, and restart IIS.

If the Admin page shows that PrizmDoc is unlicensed, then the license key will need to be verified by Accusoft
Support at support@accusoft.com. You can find the current license key in C:/Prizm/prizm-services-config.yml:

Your license key will be everything after the equal sign on Line 6. Copy and send your full key to Accusoft Support.

PrizmDoc Server or PAS is Not Running

PrizmDoc Viewer v13.17 1098

©2021 My Company. All Rights Reserved.

mailto:support@accusoft.com
mailto:support@accusoft.com
mailto:support@accusoft.com

If you've checked the PrizmDoc Server health, and any of the services are unhealthy, try the following:

1. Verify that the PrizmDoc Server is running:

2. Verify that the PrizmDoc Application Service (PAS) is running (if your application is using PAS):

3. Verify that the "Log On As" user for the PrizmDoc Server has not recently had a password change. Right-
click Properties and re-enter the user password:

4. Navigate to C:\ProgramData\Accusoft and make sure that the user from Step 2 above has full permissions
to the folders under Prizm:

a. Right-click the Prizm folder and select Properties.

b. Navigate to the Security Tab.

c. Select Advanced.

d. Select Change permissions (if required).

e. Make sure that the user from Step 2 above has Full Control.

f. Be sure to select Replace all child object permission entries with inheritable permission entries from
this object to avoid discrepancy.

g. Apply any changes that were made.

5. Open the Internet Information Services (IIS) Manager.

6. Check that the PrizmDoc Service Web Site is running with its application pool.

a. The actions menu on the right-hand side will show if it is running.

b. Click on Basic Settings in the action menu to see the application pool set.

PrizmDoc Viewer v13.17 1099

©2021 My Company. All Rights Reserved.

c. After verifying the pool name, go to Application Pools.

d. Verify that the application pool is started.

e. If the Application pool identity is a user, and that user is different from the one checked for the Windows
PrizmDoc Service, verify that the password and permissions are set in the same way as Step 3 above.

f. Open the Windows Features and check that ASP.NET Framework 4.5+ is currently installed:

7. Also, open Server Roles and check that ASP.NET 4.5+ is enabled under Web Server (IIS):

8. Check the health of the PrizmDoc Server at:

http://localhost:18681/admin

Your license status will be displayed at the top.

The health of the services will be displayed (which will display the same data in JSON format).

PAS is Not Connected to PrizmDoc Server

PrizmDoc Viewer v13.17 1100

©2021 My Company. All Rights Reserved.

To check that PAS can connect to PrizmDoc Server, this API call:

GET http://localhost:3000/servicesConnection

Returns the status of PAS connectivity to the PrizmDoc Server, whether local or configured through Accusoft
Services.

Successful Response

`200 OK`

`OK`

This response shows that the connection to PrizmDoc Server is successful, but does not take into account whether
or not those services are healthy. If you need to check the health of the services, please make a call to them
directly.

Error Responses

`580`

The response shows that PAS is not properly configured to communicate with PrizmDoc Server. For help with
configuring PAS to communicate with PrizmDoc Server, please review Configuring the PrizmDoc Server Connection

If everything seems to be functioning, and a file is still not displayed in the Viewer, there may be an issue with the
conversion of the specific file. If this is the case, send the file to support@accusoft.com for evaluation and
submission to our engineering team.

Related FAQs
Why is my Prizm Services status "unhealthy" and showing a clock for the mongo-manager-service?
Why is the PrizmDoc service health page showing unhealthy when MSO is enabled?
When running PrizmDoc on Linux, why is the service health page showing unhealthy when MSO is enabled?

PrizmDoc Viewer v13.17 1101

©2021 My Company. All Rights Reserved.

mailto:support@accusoft.com
https://www.accusoft.com/faqs/why-is-my-prizm-services-status-unhealthy-and-showing-a-clock-for-the-mongo-manager-service/
https://www.accusoft.com/faqs/why-is-the-prizmdoc-service-health-page-showing-unhealthy-when-mso-is-enabled/
https://www.accusoft.com/faqs/when-running-prizmdoc-on-linux-why-is-the-service-health-page-showing-unhealthy-when-mso-is-enabled/

1 Index
1. Integrating the Viewer, 97-99

2. Choosing a Backend & Creating a Viewing Session, 99-103

3. Setting up a Reverse Proxy, 103-119

Accusoft Policy on Log Changes, 401

Accusoft Support, 8-9

Add a Custom Button, 149-151

Add Custom Image Stamps, 147-148

Add Keyboard Shortcuts, 151-154

Adjust Caching Parameters, 358-361

Administrator Guide, 292-295

Affinity Tokens & Cluster Mode, 369-372

API Data Types, 877-879

API Reference, 405

Application Development, 882 , 972

Architecture & Design, 123-126

Architecture Basics, 129-131

Architecture Overview, 93-94

Attachments, 921-922 , 1049-1051

Authenticating Requests, 872-873

Back-end Proxy, 879-882

Base URL for PAS, 876-877

Base URL for PrizmDoc Server , 971-972

Build a Custom User Interface , 154-158

Build the E-Signature Viewers, 206-207

CAD/PDF Files, 1092

Central Configuration, 349-354

Change Annotation Default Values, 176

Change Encryption Keys for Public use Token Generation, 361-362

Change the Position of the Menu Bar, 158-159

Check PrizmDoc Server Health, 327-328

Check the Connection to PrizmDoc Server, 388-389

Class: AjaxResponse, 441-443

Class: BurnRequest, 443-451

Class: Comment, 451-461

Class: Conversation, 461-469

Class: ConversionRequest, 469-478

Class: DocumentHyperlink, 478-482

PrizmDoc Viewer v13.17 1102

©2021 My Company. All Rights Reserved.

Class: Error, 482-483

Class: ESigner, 807-811

Class: Event, 483-486

Class: ImageStamps, 486-489

Class: LoadMarkupLayersRequest, 489-495

Class: Mark, 495-573

Class: MarkupLayer, 573-592

Class: MarkupLayerCollection, 592-599

Class: MouseTool, 599-606

Class: ObservableCollection, 606-609

Class: PrintRequest, 609-614

Class: Promise, 614-618

Class: Revision, 618-621

Class: RevisionsRequest, 621-625

Class: SearchRequest, 625-631

Class: SearchResult, 631-639

Class: SearchTask, 639-642

Class: SearchTaskResult, 642-647

Class: Signature Control, 647-650

Class: SignatureDisplay, 650-651

Class: TemplateDesigner, 811-814

Class: ThumbnailControl, 651-658

Class: Viewer, 658-659

Class: ViewerControl, 659-762

Cloud Authentication, 872

Cloud License (Deprecated), 334-340

Cluster Management, 1046-1049

Clustering, 365-368 , 395

Compare Documents, 251-252

Compare Documents with PAS, 214-216

Configuration Options, 133

Configure a Cluster, 330-331

Configure Microsoft Office Conversion Connectivity, 362-363

Configure the Comments Panel, 135-136

Configure the E-Signature Viewers, 204-206

Configure the Viewer, 132-133

Configuring, 389 , 349

Content Conversion Demo, 264

Content Conversion Service, 972-983

PrizmDoc Viewer v13.17 1103

©2021 My Company. All Rights Reserved.

Content Converters, 922-926

Content Converters (Deprecated), 926-929

Convert Content with Content Conversion Service, 252-264

Copyright Information, 13

Create a Custom Mouse Tool, 159-160

Create a Custom Tab, 160

Customize the Book Reader Viewer, 207-210

Customize the E-Signature Viewers, 202

Customize the Markup, 160-162

Customize the Mouse Tools, 162-165

Customize the Styles, 165-167

Define the View Mode, 136-137

Definitions, 9-11

Design Basics, 126-129

Developer Guide, 120-121

Digital Rights Management Configuration, 137-138

Disable the Print Button, 167-168

Document Rendering Specifics, 302-303

Document Viewing Issues, 1090

Enable Content Encryption, 138-141

Enable Multiple Redaction Reasons, 168-171

Error Reporting, 398-401

E-Signature Controls, 802-803

External: jQuery, 410

External: jQuery.fn, 803-807

Fill in Fields Programmatically, 207

Form Definitions, 929-933

Form Extractors, 933-943 , 1051-1057

Form Field Detector Error Messages, 1094-1095

General Information, 876 , 971

Getting Started, 90

Glossary, 9

Handle Specific Routes with PAS, 212-214

Health, 919-920

Health Status, 1042-1046

How & When to use CORS, 395

How to Configure the Demo on Linux, 266-268

How to Configure the Demo on Windows, 264-266

PrizmDoc Viewer v13.17 1104

©2021 My Company. All Rights Reserved.

How to Customize the Viewer, 148-149

How To Examples, 250-251

How to Use Pre-defined Search, 142-145

HTML5 Viewing, 1057-1065

Illustrating the Viewing Sequence, 94-97

Image Stamps, 943-945

Implement Caching Strategies, 355-358

Implement our Top Features, 122

Initial Integration, 93

Initialization Parameters, 133

Install Asian Fonts on Traditional Linux Install Packages, 321-322

Install on Windows, 306 , 308-310 , 381-382

Install Using Traditional Linux Install Packages, 316-321

Install Using Traditional Linux Install Packages on a Headless Environment, 322-326

Installing, 303 , 377

Installing with Traditional Linux Install Packages (deprecated), 314 , 384-386

Integrate PrizmDoc Viewer Releases with Your Code , 131-132

Legacy ASP.NET MVC Sample, 184-188

Legacy ASP.NET WebForms Sample, 188-195

Legacy Create Session, 945-947

Legacy JSP Sample, 195-201

Legacy Samples, 183

Legacy Viewers, 202

Legal, 13

Licensing, 331-332

Linux, 397 , 372-374

Load Annotations from the Web Tier, 176-177

Localize the Viewer, 145-146

Log File Growth, 1095-1096

Markup Burner XML Specification, 228-238

Markup Burners, 947-951 , 983-989

Markup JSON Specification, 238-250

Markup Layers, 951-957

Markup XML, 957-960

Memory Consumption Issues, 1096-1097

Metered License, 332-334

Migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer Self-Hosted Servers, 268-269

Mixin: Data, 762-765

Mixin: SessionData, 765-768

PrizmDoc Viewer v13.17 1105

©2021 My Company. All Rights Reserved.

Modify viewer.js, 182-183

Module: button-set, 814-817

Module: checkbox-collection, 817-820

Module: data-persist, 820

Module: date-picker, 820-822

Module: download-signed-form, 823-824

Module: download-signed-form-trigger, 822-823

Module: dropdown, 824-827

Module: event-store, 827-837

Module: field-edit, 837-838

Module: field-list, 838-839

Module: fill-checklist, 839-840

Module: fill-form-controller, 840-842

Module: fill-main-toolbar, 842-843

Module: fill-progress, 843-844

Module: form-controller, 844-845

Module: form-extraction, 845-846

Module: form-summary, 846-847

Module: form-tools, 847-849

Module: global-settings-menu, 849-850

Module: global-settings-trigger, 850-851

Module: keyboard-controller, 851-852

Module: multiple-selection, 852-853

Module: notification, 853-854

Module: page-navigation, 854-855

Module: profile-manager, 855-856

Module: state-store, 856-864

Module: svg-icons, 864-865

Module: template-io, 865-866

Module: template-manager, 866-867

Module: template-name-header, 867-868

Module: text-input, 869-871

Module: zoom-fit, 871-872

Namespace: Ajax, 768-775

Namespace: fn, 411-425

Namespace: Language, 775-777

Namespace: MarkSchema, 788-801

Namespace: MarkupLayerSchema, 801-802

PrizmDoc Viewer v13.17 1106

©2021 My Company. All Rights Reserved.

Namespace: MouseTools, 777-780

Namespace: PCCViewer, 425-441

Namespace: Signatures, 780-781

Namespace: Util, 781-788

Natively Render MSO Documents, 311-312

New Terms, 11-13

Node-Locked License (Deprecated), 340-349

OAuth, 873-875

OEM License, 334

Office Files, 1090-1092

Optimize Cache Performance for Cluster Environments, 395-396

Optimize Cache Performance for Cluster Mode, 368-369

Overview , 1-3

Packaging Log Files for Support, 404

PAS, 210

PAS Configuration, 389-394

PAS Database Administration & Maintenance, 394-395

PAS REST API, 875-876

PCCIS Configuration, 354-355

Perform Auto-Redaction, 269-273

Plain Text Redactors, 989-996

Pre-Convert Documents, 216-219

Pre-Populate Fields in the E-Signature Viewer, 219-221

PrizmDoc Application Services, 375

PrizmDoc Cells Overview, 8

PrizmDoc Server, 295-296 , 224-225

PrizmDoc Server .NET SDK, 1089

PrizmDoc Server Health Issues, 1097-1101

PrizmDoc Server REST API, 970-971

Redaction & Annotation Issues, 1092-1094

Redaction Creators, 996-1008

Registry Changes, 310-311

Release Notes, 59-89

Reorganize Menus, 171-173

Requirements & Supported Environments for Traditional Linux Install Packages, 314-316 , 386-387

Run PAS on Clusters, 396-397

Sample Applications, 91-92

Scroll the Viewer Programmatically, 173-174

Search Contexts, 1008-1025

PrizmDoc Viewer v13.17 1107

©2021 My Company. All Rights Reserved.

Search Tasks, 960-970 , 1025-1033

Search Tips, 401-403

Security Guidance, 298-302

Self-Hosted Administration, 919 , 1042

Server Sizing, 375-377

Server Sizing , 296-298

Set the Initial Zoom Factor, 174-175

Set up a Viewing Session for a CAD Drawing which has XREF Dependencies, 273-279

Set up Your Database for use with PAS, 210-212

Software License Agreement, 13-17

Start & Stop PrizmDoc Server, 372

Starting & Stopping, 397

Subscribe to Events, 175-176

Substitute Fonts for Office Rendering Fidelity, 363-364

Supported File Formats, 3-7

Text Files, 1092

Third-Party Attributions, 17-58

Troubleshooting, 1090

Try It!, 90-91

uiElements, 133

Unattended Install & Uninstall, 312-314 , 383-384

Uninstall PrizmDoc Server on Windows, 314

Uninstall Traditional Linux Install Packages, 326-327 , 387

Unsupported Routes, 1088 , 1088-1089

Upgrade from Legacy Configuration, 364-365

Upgrade PrizmDoc Viewer, 328-330

Use a Custom Resource Path, 146-147

Use a Viewing Session, 280-283

Use Pre-loaded Search Parameters, 133-135

Use the Markup JSON Schema, 279-280

Use the PrizmDoc Server API, 225-228

Using Docker, 303-306 , 377-381

Viewer, 123

Viewer Control, 405-410

Viewer Modular Design, 202-204

Viewer Requirements, 7-8

Viewer Support, 920-921 , 1049

Viewing Package Creators, 904-915

PrizmDoc Viewer v13.17 1108

©2021 My Company. All Rights Reserved.

Viewing Package Issues, 1092

Viewing Packages, 915-919

Viewing Sessions, 882-904 , 1065-1088

Watermark Content in a Viewing Session, 283-291

Windows, 397-398 , 374-375

Windows Requirements & Supported Environments, 306-308 , 382-383

Work Effectively with Large Documents, 122-123

Work Files, 1033-1042

Work with Annotation Layers, 177-178

Work with Annotations, 176

Work with Annotations Programmatically, 178-181

Work with Document Comparison Programmatically, 181-182

Work with Viewing Packages, 221-224

PrizmDoc Viewer v13.17 1109

©2021 My Company. All Rights Reserved.

	PrizmDoc Viewer Overview
	Supported File Formats
	Viewer Requirements
	PrizmDoc Cells Overview
	Accusoft Support
	Glossary
	Definitions
	New Terms

	Legal
	Copyright Information
	Software License Agreement
	Third-Party Attributions

	Release Notes
	Getting Started
	Try It!
	Sample Applications

	Initial Integration
	Architecture Overview
	Illustrating the Viewing Sequence
	1. Integrating the Viewer
	2. Choosing a Backend & Creating a Viewing Session
	3. Setting up a Reverse Proxy

	Developer Guide
	Implement our Top Features
	Work Effectively with Large Documents
	Viewer
	Architecture & Design
	Design Basics
	Architecture Basics

	Integrate PrizmDoc Viewer Releases with Your Code
	Configure the Viewer
	Configuration Options
	Initialization Parameters
	uiElements
	Use Pre-loaded Search Parameters
	Configure the Comments Panel
	Define the View Mode
	Digital Rights Management Configuration
	Enable Content Encryption
	How to Use Pre-defined Search
	Localize the Viewer
	Use a Custom Resource Path
	Add Custom Image Stamps

	How to Customize the Viewer
	Add a Custom Button
	Add Keyboard Shortcuts
	Build a Custom User Interface
	Change the Position of the Menu Bar
	Create a Custom Mouse Tool
	Create a Custom Tab
	Customize the Markup
	Customize the Mouse Tools
	Customize the Styles
	Disable the Print Button
	Enable Multiple Redaction Reasons
	Reorganize Menus
	Scroll the Viewer Programmatically
	Set the Initial Zoom Factor
	Subscribe to Events
	Work with Annotations
	Change Annotation Default Values
	Load Annotations from the Web Tier
	Work with Annotation Layers
	Work with Annotations Programmatically

	Work with Document Comparison Programmatically

	Modify viewer.js
	Legacy Samples
	Legacy ASP.NET MVC Sample
	Legacy ASP.NET WebForms Sample
	Legacy JSP Sample

	Legacy Viewers
	Customize the E-Signature Viewers
	Viewer Modular Design
	Configure the E-Signature Viewers
	Build the E-Signature Viewers
	Fill in Fields Programmatically

	Customize the Book Reader Viewer

	PAS
	Set up Your Database for use with PAS
	Handle Specific Routes with PAS
	Compare Documents with PAS
	Pre-Convert Documents
	Pre-Populate Fields in the E-Signature Viewer
	Work with Viewing Packages

	PrizmDoc Server
	Use the PrizmDoc Server API
	Markup Burner XML Specification
	Markup JSON Specification
	How To Examples
	Compare Documents
	Convert Content with Content Conversion Service
	Content Conversion Demo
	How to Configure the Demo on Windows
	How to Configure the Demo on Linux

	Migrate from PrizmDoc Cloud Servers to PrizmDoc Viewer Self-Hosted Servers
	Perform Auto-Redaction
	Set up a Viewing Session for a CAD Drawing which has XREF Dependencies
	Use the Markup JSON Schema
	Use a Viewing Session
	Watermark Content in a Viewing Session

	Administrator Guide
	PrizmDoc Server
	Server Sizing
	Security Guidance
	Document Rendering Specifics
	Installing
	Using Docker
	Install on Windows
	Windows Requirements & Supported Environments
	Install on Windows
	Registry Changes
	Natively Render MSO Documents
	Unattended Install & Uninstall
	Uninstall PrizmDoc Server on Windows

	Installing with Traditional Linux Install Packages (deprecated)
	Requirements & Supported Environments for Traditional Linux Install Packages
	Install Using Traditional Linux Install Packages
	Install Asian Fonts on Traditional Linux Install Packages
	Install Using Traditional Linux Install Packages on a Headless Environment
	Uninstall Traditional Linux Install Packages

	Check PrizmDoc Server Health
	Upgrade PrizmDoc Viewer
	Configure a Cluster

	Licensing
	Metered License
	OEM License
	Cloud License (Deprecated)
	Node-Locked License (Deprecated)

	Configuring
	Central Configuration
	PCCIS Configuration
	Implement Caching Strategies
	Adjust Caching Parameters
	Change Encryption Keys for Public use Token Generation
	Configure Microsoft Office Conversion Connectivity
	Substitute Fonts for Office Rendering Fidelity
	Upgrade from Legacy Configuration

	Clustering
	Optimize Cache Performance for Cluster Mode
	Affinity Tokens & Cluster Mode

	Starting & Stopping
	Linux
	Windows

	PrizmDoc Application Services
	Server Sizing
	Installing
	Using Docker
	Install on Windows
	Windows Requirements & Supported Environments
	Unattended Install & Uninstall

	Installing with Traditional Linux Install Packages (deprecated)
	Requirements & Supported Environments for Traditional Linux Install Packages
	Uninstall Traditional Linux Install Packages

	Check the Connection to PrizmDoc Server

	Configuring
	PAS Configuration
	PAS Database Administration & Maintenance
	How & When to use CORS

	Clustering
	Optimize Cache Performance for Cluster Environments
	Run PAS on Clusters

	Starting & Stopping
	Linux
	Windows

	Error Reporting
	Accusoft Policy on Log Changes
	Search Tips
	Packaging Log Files for Support

	API Reference
	Viewer Control
	External: jQuery
	Namespace: fn

	Namespace: PCCViewer
	Class: AjaxResponse
	Class: BurnRequest
	Class: Comment
	Class: Conversation
	Class: ConversionRequest
	Class: DocumentHyperlink
	Class: Error
	Class: Event
	Class: ImageStamps
	Class: LoadMarkupLayersRequest
	Class: Mark
	Class: MarkupLayer
	Class: MarkupLayerCollection
	Class: MouseTool
	Class: ObservableCollection
	Class: PrintRequest
	Class: Promise
	Class: Revision
	Class: RevisionsRequest
	Class: SearchRequest
	Class: SearchResult
	Class: SearchTask
	Class: SearchTaskResult
	Class: Signature Control
	Class: SignatureDisplay
	Class: ThumbnailControl
	Class: Viewer
	Class: ViewerControl
	Mixin: Data
	Mixin: SessionData
	Namespace: Ajax
	Namespace: Language
	Namespace: MouseTools
	Namespace: Signatures
	Namespace: Util

	Namespace: MarkSchema
	Namespace: MarkupLayerSchema

	E-Signature Controls
	External: jQuery.fn
	Class: ESigner
	Class: TemplateDesigner
	Module: button-set
	Module: checkbox-collection
	Module: data-persist
	Module: date-picker
	Module: download-signed-form-trigger
	Module: download-signed-form
	Module: dropdown
	Module: event-store
	Module: field-edit
	Module: field-list
	Module: fill-checklist
	Module: fill-form-controller
	Module: fill-main-toolbar
	Module: fill-progress
	Module: form-controller
	Module: form-extraction
	Module: form-summary
	Module: form-tools
	Module: global-settings-menu
	Module: global-settings-trigger
	Module: keyboard-controller
	Module: multiple-selection
	Module: notification
	Module: page-navigation
	Module: profile-manager
	Module: state-store
	Module: svg-icons
	Module: template-io
	Module: template-manager
	Module: template-name-header
	Module: text-input
	Module: zoom-fit

	Cloud Authentication
	Authenticating Requests
	OAuth

	PAS REST API
	General Information
	Base URL for PAS
	API Data Types
	Back-end Proxy

	Application Development
	Viewing Sessions
	Viewing Package Creators
	Viewing Packages

	Self-Hosted Administration
	Health

	Viewer Support
	Attachments
	Content Converters
	Content Converters (Deprecated)

	Form Definitions
	Form Extractors
	Image Stamps
	Legacy Create Session
	Markup Burners
	Markup Layers
	Markup XML
	Search Tasks

	PrizmDoc Server REST API
	General Information
	Base URL for PrizmDoc Server

	Application Development
	Content Conversion Service
	Markup Burners
	Plain Text Redactors
	Redaction Creators
	Search Contexts
	Search Tasks
	Work Files

	Self-Hosted Administration
	Health Status
	Cluster Management

	Viewer Support
	Attachments
	Form Extractors
	HTML5 Viewing
	Viewing Sessions

	Unsupported Routes
	Unsupported Routes

	PrizmDoc Server .NET SDK

	Troubleshooting
	Document Viewing Issues
	Office Files
	Text Files
	CAD/PDF Files

	Viewing Package Issues
	Redaction & Annotation Issues
	Form Field Detector Error Messages
	Log File Growth
	Memory Consumption Issues
	PrizmDoc Server Health Issues

	Index

